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Tumor necrosis factor (TNF) receptor type II (TNFR2) is expressed in various tumor cells
and some immune cells, such as regulatory T cells and myeloid-derived suppressing cells.
TNFR2 contributes a lot to the tumor microenvironment. For example, it directly promotes
the occurrence and growth of some tumor cells, activates immunosuppressive cells, and
supports immune escape. Existing studies have proved the importance of TNFR2 in
cancer treatment. Here, we reviewed the activation mechanism of TNFR2 and its role in
signal transduction in the tumor microenvironment. We summarized the expression and
function of TNFR2 within different immune cells and the potential opportunities and
challenges of targeting TNFR2 in immunotherapy. Finally, the advantages and limitations
of TNFR2 to treat tumor-related diseases are discussed, and the problems that may be
encountered in the clinical development and application of targeted anti-TNFR2 agonists
and inhibitors are analyzed.

Keywords: TNFR2, signaling pathway, immune response, immune checkpoint, cancer treatment, tumor
immune microenvironment
INTRODUCTION

TNFR2-Related Signaling Pathways in Cancer
Tumor necrosis factor (TNF) plays a role in many pathophysiological processes, especially in the
different periods of cell growth, inflammatory and immune responses, as well as tumor progression
and metastasis (1, 2). Studies show that TNF functions through complicated signaling pathways,
which affect practically any type of cell, through binding to two kinds of receptors, type I and II
(TNFR1, TNFR2) (3).

TNF activates TNFR2 by recruiting a complex composed of the adapter protein. These mainly
include TNF receptor-associated factor 2 (TRAF2), TRAF2-associated proteins, and apoptosis-
related makers such as cIAP1/2. This process leads to the depletion of these compounds and affects
other functions of these molecules in tumor cells (4–6). For example, the depletion of the adapter
TRAF2-cIAP1/2 complexes in the cytoplasmic matrix can antagonize TNFR1-mediated the classical
NF-kB pathway (7). Interestingly, the depletion of these complexes can lead to the decrease of NF-
kB-related expression, causing the increase of NIK kinase expression and activating the alternative
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NF-kB pathway (8). TNFR2, through PI3K/Akt, can also induce
phosphorylation of IKKb and lead to the stimulation of the
canonical NF-kB pathway (2). However, only TNFR2 binding to
the cell membrane-bound TNF activates the NF-kB-induced
non-canonical pathway (2). Moreover, TNFR2 binds to the
non-receptor tyrosine kinase BMX constitutively, resulting in
the stimulation of Akt pathways and the regulation of TNFR2-
mediated NF-kB signaling (9, 10). Unlike TNFR1, which is
TRAF2-dependent, TNFR2 induces BMX activation
independent of TRAF2. BMX interacts with TNFR2 not
through ligand connection at first, but a direct connection with
different BMX domains at the C-terminal domain of TNFR2,
which doesn’t overlap with the TRAF2-binding sequence (9).

TNFR2 is not only expressed onmany different types of tumors
and malignant cells but is also enriched in the tumor
microenvironment (11–13). TNF regulates different signaling
pathways in the tumor microenvironment through TNFR2 and
participates in the occurrence and growth of tumors (Figure 1).
Intriguingly, mTNF can not only act as a ligand but also a receptor
and can transmit signals in both directions. Transmembrane TNF,
in some cells, can combine with sTNFR2 to deliver the reverse
signal to the target cell (14). In addition, the transmembrane TNF
can also be used as a receptor to deliver the signal back to the cell
after binding to its natural receptor (15, 16). TNFR2 can prevent
cancerous cells from DNA damage through the Akt signaling
pathway in breast cancer. At the same time, it activates NF-kB
through MAPK, leading to rapid tumor cell growth (17, 18).
mTNF/TNFR2 signaling stimulates reciprocal PI3K/Akt signaling,
thereby increasing the phosphorylation of STAT5, which impairs
Th17 differentiation (19). In angiogenesis, the PI3K/Akt pathway
is activated by TNFR2 and then Etk is recruited to form a complex
of TNFR2, Etk, and VEGFR2, which can influence cell growth and
proliferation (20, 21). In immune-mediated inflammatory bowel
disease models, TNFR2 can lead to tight junction dysregulation
through activation of MLCK, which leads to the decrease in cell
apoptosis-related defenses and the induction of colitis (22).
Moreover, TNFR2 mediates JNK signaling via AIP1 association,
an adaptor molecule specific for JNK signaling, independent of
TRAF2, regulating vascular endothelial cell function (23). TNFR2
can also induce BIRC3/cIAP2 transcripts dependent on TRAF1
and decrease the transcription and expression of NKp46/NCR1,
leading to tumor deterioration in mice and adverse outcomes in
patients with gastrointestinal stromal tumors (24). In
macrophages, TNFR2 sensitizes pro-inflammatory signals by
activating p38/MAPK and NF-kB signaling pathways and
triggering TRAF2 degradation signals (25). In gastric lymphoma,
miR-17 accelerates tumor development by influencing the HSP60/
TNFR2 pathway (26). Meng et al. found that TNFR2 activates
YAP signaling by regulating heterogeneous nuclear
ribonucleoprotein K (hnRNPK), which promotes primary liver
cancer development in hepatic progenitor cells (27).

TNF-a mediates distinct signaling pathways through two
structurally distinct receptors, TNFR1 and TNFR2, and thus
has distinct functions in the tumor environment. Since both
TNFR1 and TNFR2 bind cIAP1/2 and TRAF2 and the activation
order of TNFR1 and TNFR2 ultimately determines the life and
Frontiers in Oncology | www.frontiersin.org 2
death of tumor cells, the mechanism and complexity of its
signaling pathway obviously need to be further explored.
Previously, owing to the extensive non-specific effects of TNF,
this signaling pathway was abandoned as the main treatment
option during clinical anti-tumor therapy. Through the recent
increased attention to TNFR2, we found that whereas TNFR1
effectively promotes cancer cell death by activating NF-kB
signaling, the activation of TNFR2 on tumor cells and
immunosuppressive cells might be detrimental to anticancer
therapy. Therefore, we need more specific therapeutic regimens
to target TNFR1 and TNFR2, rather than TNF, which can
effectively avoid the treatment side effects caused by the non-
specific action of TNF and make cancer treatment more efficient.

Mechanisms of TNFR2 Activation
TNF is a type II protein that can be translocated from the
membrane (mTNF) and take a soluble form (sTNF) in the
cytoplasm after being sheared by the TNF-converting enzyme
(TACE) (1). The TNF homology domain (THD) exists in the
above-mentioned two forms of TNF to control trimer
constitution as well as receptor binding (1). The THD is the
key component of the TNF superfamily, while the cysteine-rich
domain (CRD) is an important structural feature (28, 29).
TNFR1 and TNFR2 are typical members of the TNF receptor
FIGURE 1 | TNF/TNFR2 participates in various processes of tumor
development by regulating different signaling pathways in the tumor and
tumor microenvironment. TRAF2 and TRAF2-related proteins, such as TRAF1
and cIAP1/2, are recruited to activate TNFR2. Then, TNFR2 activates NF-k B,
STAT5, YAP, and other transcription factors through different pathways to
induce the transcription of its target genes, thereby inhibiting tumor cell
apoptosis and promoting the development of tumor cells. TNFR2 also
participates in various changes in the tumor microenvironment through signal
transduction such as JUNK, MLCK, and EGFR2. P, Phosphorylation.
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superfamily, and they can be activated by mTNF. However,
sTNF can selectively activate TNFR1, and not TNFR2, to trigger
efficient receptor signaling despite high-affinity binding (30).
Therefore, the activation of TNFR2 is largely dependent on the
transmembrane TNF expressed on the neighboring cells. TNFR1
has a cytoplasmic death domain (DD) and it binds to the
proteins containing a DD, leading to pro-inflammatory
signaling, as well as cytotoxic-related signaling pathway
activation. However, TNFR2 possesses just one TRAF2 binding
site but no DD (31). Thus, TNFR2 recruits the TRAF1/TRAF2-
cIAP1/2 complex and activates an alternative NF-kB pathway, as
well as various kinases (1).

TNFR2 can auto-associate in the absence of TNF and locates
on the first N-terminal CRD position of the molecule that does
not bind to the ligand (32). This part of the TNF receptor is
called the pre-ligand binding assembly domain, which may play
a role during ligand binding. It also initiates the formation of the
active receptor (32). Studies have shown that TNFR2 dimers can
be formed closer to TNF rather than monomeric TNFR2 (33).
There are three molecules of TNFR2 that interact with a TNF
trimer in a parallel way (34). Notably, the TNF3-TNFR23
complex cannot independently and accurately activate TNFR2.
Therefore, more than one TNF3-TNFR23 complex interacts to
stimulate intracellular signaling cascades. Three homologous
TRAF2 adaptor proteins form a polymer, and each TRAF2
interacts with the C-terminus of TNFR2 (35). Because the
TRAF2 trimer only interacts with a single cIAP1 or cIAP2
molecule, it is necessary to form multiple (TNF-TNFR2-
TRAF2)3-cIAP1/2 complexes to ensure the activation of
cIAP1/2 molecules. It is important to the first step for TNFR2
to perform its function (36). In addition to the highly complex
binding to TRAF2, TNFR2 can also bind to other proteins, such
as adaptor proteins like BAX and AIP (9, 23). As the expression
of mTNF on adjacent cell membranes increases, the mTNF-
TNFR2 interaction strengthens, which further activates TNFR2.
Instead, sTNF can also stimulate TNFR2 activation when
physically linked sTNF trimers are bound by antibodies or co-
expressed with an oligomerizing domain (7, 37), although the
mechanism remains to be explored.

Compared with mTNF, sTNF can also interact with TNFR2
but fails to trigger effective receptor signaling. Therefore, how
TNF effectively activates TNFR2 or how TNF-based TNFR2-
stimulating drugs accurately distinguish between TNFR1 and
TNFR2 should be clarified in vitro. Rauert et al. found that
bacterially produced sTNF mutants contain large amounts of
integrated trimers of ligands that can activate TNFR2. However,
the corresponding eukaryotic trimeric variant of sTNF is unable
to activate TNFR2. Notably, they found that the monomeric TNF
variant, flag-TNC-scTNF(143N/145R), could stimulate TNFR2
specifically in the absence of oligomerization (7). In addition,
Rauert et al. introduced specific mutations into the binding site
of TNFR2 and mTNF with an intracellular YFP domain fusion
expression plasmid that can specifically activate TNFR2 (7).
Moreover, previous studies have demonstrated that mTNF-
containing exosomes are capable of stimulating TNFR2 in vitro
(38–40). Although the mechanism is not fully clear, TNFR2
Frontiers in Oncology | www.frontiersin.org 3
might stimulate cells that are not in direct contact with TNF-
expressing cells. Therefore, future research should focus on
improving the activity of sTNF towards TNFR2 and evaluate
the potential of TNF-based TNFR2-stimulating antibodies.

Soluble TNFR2
Membrane-bound TNFR2 can be cleaved to soluble TNFR2
(sTNFR2) by TACE enzymes when TNFR2 trimerizes with
TNF and forms a tightly clustered complex (41). Membrane-
bound TNFR2 is not only immunosuppressive on Tregs but is
also immunostimulatory on T effector cells (Teffs), which
depends on the cell type (42). However, the function of
sTNFR2 is consistently immunosuppressive (43).

Soluble TNFR2 is an indicator in the serum of patients with
cancer, and it also represents the level of active TNFR2 in the
TNF-stimulated cell culture medium (41). Studies have shown
that IL-2, TNF, or TNFR2 agonists can quickly stimulate CD4+ T
cells to produce abundant sTNFR2 in vitro (44). Furthermore,
activated Tregs can release high amounts of sTNFR2 (43). It has
also been reported that some pathogens can stimulate the
shedding of TNFR2 mediated by IL-10, thereby inhibiting the
secretion of TNF (45). At present, the neutralizing effect of
soluble TNFR2 ectodomain on TNF promotes TNFR2 to have
a shedding-protective function (46). In contrast, a TNFR2
antagonist can block TNF-TNFR2 binding, which may
maintain or decrease the expression of mTNFR2 on Tregs, and
also affect the expression of sTNFR2 cleaved from Tregs (47). In
addition, Torrey et al. found that pre-diagnosis plasma sTNFR2
levels are significantly related to increased overall mortality in
colorectal cancer (48). In malignant ovarian tumors, sTNFR2
affects tumor grade and differentiation (49). Thus, we can
speculate that TNFR2 antagonistic antibody therapy can be
applied to patients with cancer with bad survival and a high
level of serum sTNFR2.
THE FUNCTION OF TNFR2 IN THE TUMOR
MICROENVIRONMENT

Expression and Clinical Features of TNFR2
in Various Cancers
To elucidate the potential functions and the clinical relevance of
TNFR2 in various cancers better, we investigate the TNFR2
expression profiles in 30 kinds of human cancers. The research
methods included Gene Expression Profiling Interactive Analysis
(GEPIA: http://gepia.cancer-pku.cn/) and Tumor and Immune
System Interaction Database (TISIDB: http://cis.hku.hk/TISIDB/
index.php) (Figures 2, 3). As shown in Figure 2A, compared to
normal tissues, TNFR2 is expressed at a higher level in pancreatic
adenocarcinoma (PAAD), glioblastoma multiforme (GBM),
brain lower-grade glioma (LGG), kidney renal clear cell
carcinoma (KIRC), stomach adenocarcinoma, and testicular
germ cell tumors. Meanwhile, the expression of TNFR2 is
decreased in other tumors, including breast invasive
carcinoma, lung adenocarcinoma (LUAD), and lymphoid
neoplasm diffuse large B-cell lymphoma.
April 2022 | Volume 12 | Article 862154
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To further investigate the clinic correlation between TNFR2
and the terms of prognostic and pathological features and also
analyze the connection between TNFR2 level and overall survival
(OS), TNM stage, disease-free survival (DFS), and tumor grade,
TISIDB was used (Figures 2B–E, 3A–C). Intriguingly, the results
revealed a significant association between TNFR2 expression in
tumor tissues and prognostic outcome. For example, high
expression of TNFR2 is associated with a worse prognostic
outcome for UVM, LGG, and KIRC, whereas it leads to the
opposite result in HNSC, LIHC, and SKCM (Figures 2B, 3A).
Furthermore, TNFR2 expression was positively associated with
the TNM stage in KIRC and PAAD, but this relationship was
negatively associated with LIHC and LUAD (Figures 2D, 3B).
As for tumor grade, an increased level of TNFR2 is usually
related to a worse grade in HNSC, KIRC, and LGG (Figures 2E,
3C). In conclusion, the clinical results of the TCGA database
indicate that TNFR2 has a crucial function during the
development and progression of various cancers.
Frontiers in Oncology | www.frontiersin.org 4
The Role of TNFR2 in Immune Cells
TNFR1 is widely expressed in almost all kinds of cells, but
TNFR2 expression has limitations. TNFR2 is only expressed in
subgroups of the lymphatic system, such as Tregs, endothelial
cells, and myeloid-derived suppressor cells (MDSCs) (50).

TNFR2 was originally thought to be a stimulator of T cells, like
other receptors of TNFRSF (51). T cells have always been a crucial
target for cancer immunotherapy. Immunosuppressive tumor-
infiltrating regulatory T cells (Tregs) play a major role in the
stabilization of the immunosuppressive tumor microenvironment
(52, 53). Tregs can not only directly help tumor cells escape the
fate of apoptosis but can also make tumor cells survive by
inhibiting a subset of CD8+ Teffs (54). Reportedly, the TNFR2
expression on Treg cells is superlatively suppressive (55, 56) and is
related to the poor prognosis of patients (57). Moreover, activated
Tregs can release a large amount of sTNFR2, which enriches the
immunosuppressive mechanism of Tregs from another
perspective (43). Meanwhile, TNFR2 can increase the activities
A B

D E

C

FIGURE 2 | Predictions of TNFR2 function in various cancers. (A) The TNFR2 expression profile across all tumor samples and paired normal tissues from the TCGA
database through GEPIA. Each dot represents expression in samples. The red font represents the significantly high expression of TNFR2 in the tumor, and the green
font represents the significantly low expression (P < 0.05). (B) Analysis of the relationship between the expression of TNFR2 and the overall survival (OS) of various
cancer patients from the TCGA database through TISIDB. The red bar (longer) indicates a correlation between higher TNFR2 expression and better overall survival
rates for cancer patients; the green bar (shorter) indicates a correlation between higher TNFR2 expression and decreased cancer patient overall survival rates; the
blue bar (NS) indicates that the TNFR2 expression level is not correlated with the overall survival rate of cancer patients. (C) TNFR2 expression is related to patient
disease-free survival (DFS) in various cancers. Data were obtained from the TCGA database through GEPIA (P < 0.05). The red represents a positive correlation
between TNFR2 expression and disease-free survival in cancer patients, and the blue represents a negative correlation. (D, E) Using large-scale RNA-Seq data sets
of multiple cancer types from the TCGA database, we analyzed the relationship between TNFR2 expression and tumor stage and grade through TIBIS prediction.
The red bar (lower) indicates a correlation between higher TNFR2 expression and a lower stage or grade of cancer; the green bar (higher) indicates a correlation
between higher TNFR2 expression and an increased cancer stage or grade; the blue bar (NS) indicates that the TNFR2 expression level is not correlated with the
stage or grade of cancer.
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and phenotypic stability of Treg cells (58). Several studies have
shown that TNFR2+ Tregs promote the growth of primary tumors
and tumor metastasis (58, 59). Further, in the intracellular
pathway of human Tregs, TNFR2 enhances IL-2-induced
proliferation of Tregs and expansion of cell numbers through
the non-canonical NF-kB pathway (60). It has been reported that
CD8+ Tregs can also express TNFR2 and are involved in the
phenotypic stability, proliferation, activation, and inhibitory
activities of CD8+ Tregs (42, 61). Although CD8+ Tregs
contribute to tumor immune evasion in the tumor
microenvironment (62), the mechanism by which TNFR2
mediates the function of CD8+ Tregs in cancer immune evasion
remains to be further investigated. Interestingly, there more
TNFR2 is expressed on Treg cells under the tumor
microenvironment than that under healthy and normal
conditions (63). This also provides a favorable condition for
TNFR2 as a new tumor therapy target. Dadiani et al. showed
that TNFR2+ tumor-infiltrating lymphocytes (TILs) are closely
related to improvements in patient prognosis in triple-negative
breast cancer (TNBC). This might be due to the sensitivity of
Tregs to chemotherapy, leading to them being preferentially
reduced during treatment (64, 65). Moreover, TNFR2+ Tregs
can restrain pro-inflammatory processes in many malignancies,
which is closely related to increased tumor progression (66, 67).
Jiang et al. found that TNF-a can accelerate naive CD4+ T cell
differentiation into Th9 cells. Moreover, TNFR2 can enhance Th9
cell growth and survival through STAT5/NF-kB pathways and
increase the tumor-infiltrating capability in a mouse tumor model
(68). In addition, more immunosuppressive markers are expressed
in these TNFR2+ Tregs, including CTLA-4 and CD73. TNFR2+

Tregs can also express an increased amount of inhibitory immune
cytokines, such as IL-10 or TGF-b, which helps them exert a
stronger immunosuppressive effect (69). Therefore, we speculate
that targeting this group of highly suppressive TNFR2+ Treg cells
might result in the destruction of multiple immune regulatory
circuits in the tumor microenvironment (70).

TNFR2 is also present on other conventional T cells, where it
mostly acts as a costimulatory molecule (71, 72). Increased
Frontiers in Oncology | www.frontiersin.org 5
expression of TNFR2 on Teffs following T-cell receptor
stimulation is critical not only for Teff proliferation and
activation but also for the induction of activation-induced cell
death (AICD) (42, 73). AICD can terminate the Teff proliferative
response, which is mainly dependent on TRAF2, a downstream
mediator of TNFR2 (74). Similarly, knockdown of TNFR2
impairs the proliferative capacity of conventional CD4+ T and
CD8+ T cells and reduces their stimulated production of IL-2,
IFN-g, and TNFa (51, 75, 76). Furthermore, the increased release
of sTNFR2 can also inhibit the anti-tumor function of Teffs (43).
However, the proper chemotherapy-driven exposure of neo-
antigens, such as TNFR2, on Teffs may activate them against
the tumor cells (57, 77). Here, we speculate that TNFR2 may play
opposite roles in Tregs and Teffs, thereby regulating the immune
response in the tumor microenvironment. Therefore, we can
formulate an appropriate treatment plan based on its double-
sided properties to eliminate harmful immunosuppressive cells,
especially TNFR2+ Treg cells, and increase the number of
immune-stimulatory cells, such as TNFR2+ CD8+ T cells,
thereby activating anti-tumor reactions.

In addition to T cells, it has been reported that TNFR2 could
exert a suppressive or stimulatory effect in the tumor
microenvironment by influencing various immune cells
(Table 1), although published studies have mainly focused on
the immunological co-suppressive effect of TNFR2 through
immune cells. A previous study has found that TNFR2
suppresses the NK cell growth by activating the BIRC3/TRAF1
signaling pathway and promoting the immunosuppressive
function of NK cells in the tumor microenvironment (24).
Recent studies have shown that TNFR2 promotes MDSC
generation and accumulation via increasing the level of c-FLIP
and decreasing caspase-8 activity (79). Moreover, TNFR2
signaling can also affect the immunosuppressive function of
mesenchymal stem cells (MSCs) (81, 82). Hu et al. also found
that mTNF-a, but not sTNF-a, activates MDSCs through TNFR2,
increases the production and release of immunosuppressive
factors including NO, ROS, IL-10, and TGF-b, and reverses the
inhibitory effect of T cell proliferation (84). TNF/TNFR2 is also a
TABLE 1 | TNFR2-mediated signaling and TNFR2 function in immune cells.

TNFR2 function Signaling via TNFR2 Ref.

Effector T-
cells

Co-stimulation and cell death
induction

Elicit activation-induced cell death; upregulates the expression of the inhibitory receptor Tim3 (42)

Regulatory T-
cells

Proliferation, suppressive activity,
stability

Enhance cell proliferation and stability through signaling pathways such as IKK/NF-kB, mTOR, and MAPK (19,
56,
78)

MDSCs Cell survival, suppressive activity,
recruitment

Upregulation of cellular FLICE-inhibitory protein (c-FLIP) and inhibition of caspase-8 activity (79)

Regulatory
B-cells

Suppressive activity Characterizes TLR9-driven formation of IL-10-producing B cells (80)

Macrophages Production of pro-inflammatory
factors

Enhance activation of the p38 MAPK and NF-kB pathways (25)

NK cells Suppressive activity Activating the BIRC3/TRAF1 signaling pathway (24)
MSCs Proliferation, functional properties,

immunosuppressive activity
Promotes the expression of immunosuppressive proteins on MSCs (81,

82)
EPCs Survival, differentiation, and

immunosuppressive activity
Increases the expression of pro-angiogenic mediators such as VEGF, basic fibroblast growth factor, and
IL-8; production of different anti-inflammatory cytokines like IL-10, TGFb, and HLA-G.

(83)
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key signaling pathway that regulates the immunosuppressive
function of endothelial progenitor cells (EPCs) (83).
Furthermore, the activation of TNFR2 induces the p38MAPK-
NF-kB pathway and induces TRAF2 protein degradation in
macrophages (25). TNFR2 expressed on tumor-associated
macrophages is related to the malignancy of human TNBC and
participates in its metastasis (85). It is reported that TNFR2
expression coincides with the expression of IL-10, which is
produced by regulatory B cells. More importantly, selective
TNFR2 stimulation enhances the expression of IL-10 (80). T
cells play a central role in regulating tumor-specific immune
responses. Nevertheless, macrophages, MDSCs, MSCs, NK cells,
Frontiers in Oncology | www.frontiersin.org 6
EPCs, and B cells also contribute to immune regulation.
Interestingly, the suppression of these immune cells is
dependent on TNFR2. To fully clarify the association between
TNFR2 and TILs, we further analyzed the association between
TILs and the expression of TNFR2 in human cancers using the
TCGA database via TISIDB across 30 cancer types. We also found
that the expression of TNFR2 was significantly positively
correlated with the levels of many immune cells, including NK
cells, Tregs, CD8+ T cells, and MDSCs, in 30 types of cancers
(Figure 4A). Thus, TNFR2 plays an important role in the tumor
microenvironment through these cells. However, how TNFR2
affects the biological functions of these cells in the tumor
A

B

C

FIGURE 3 | Kaplan–Meier curves to demonstrate the clinic pathological significance of TNFR2. (A) Analysis of the relationship between the expression of TNFR2
and the overall survival (OS) of various cancer patients from TCGA database through TISIDB (P < 0.05). (B, C) Analysis of the relationship between TNFR2
expression and tumor stage and grade through TIBIS prediction (P < 0.05).
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microenvironment and the specific regulatory mechanisms
remain elusive and require further exploration.

Exploration of the Mechanism of TNFR2 in
the Tumor Immune Microenvironment
In tumor cells, TNFR2 promotes tumor progression directly or
indirectly by maintaining a favorable immune microenvironment
for tumors and via different signaling pathways. Moreover,
TNFR2 is expressed in some immune cells and various tumor
cells. It has been reported that TNFR2 is abnormally expressed on
various tumor cells such as those of breast cancer, ovarian cancer,
skin cancer, renal cell carcinoma, colon cancer, and multiple
myeloma (77, 86–91). How TNFR2 functions in the complex
tumor microenvironment has also been explored. In renal
carcinoma, TNFR2 on endothelial cells and renal tubular
epithelial cells, upon injury-inducing stimuli, activates
endothelial/epithelial tyrosine kinases, which in turn activate
vascular endothelial growth factor receptor 2 to promote cell
division and proliferation (89, 91). In a mouse model of lung
cancer, the knockdown of TNFR2 on tumor cells promotes
apoptosis and downregulates pro-angiogenic factors in
endothelial progenitor cells (92). A recent study showed that
TNF-a, produced by macrophages, can stabilize PD-L1 via
Frontiers in Oncology | www.frontiersin.org 7
activation of p65/CSN5 and enhance its interaction with PD-1
to elude T cell immune surveillance (93). However, in this process,
whether TNF-a stabilizes PD-L1 through TNFR1 or TNFR2
remains to be verified. Recently, our group found that TNF-a
regulates the transcriptional level of PD-L1 in pancreatic cancer
cells through TNFR2-p65 NF-kB signaling, promoting its
interaction with PD-1, thereby leading to CD8+ T cell immune
surveillance evasion. Meanwhile, anti-TNFR2 and PD-L1
antibody combination therapy inhibits tumor growth, reduces
Treg and tumor-associated macrophage infiltration, and induces
the activation of CD8+ T cells in the pancreatic cancer
microenvironment (94). Furthermore, in colon cancer (CT26)
model, TNFR2 overexpression on cancer cells promotes increased
TNFR2+ Tregs in draining lymph nodes and abundant sTNFR2
expression in peripheral blood (95). These studies suggest that
TNFR2 on tumor cells in the tumor microenvironment can affect
tumor growth by directly or indirectly regulating surrounding
cells. In turn, TNFR2 on other cells in the tumor
microenvironment also affects the expression of TNFR2 on
tumor cells. It has been reported that soluble TNFR2, which is
highly secreted by Tregs in the tumormicroenvironment, can bind
to membrane TNF on tumor cells to form a reverse transduction
signaling pathway to induce the NF-kB pathway, thereby
A B

DC

FIGURE 4 | The relationship between different immune cells and immunomodulators and the expression of TNFR2 in various cancers. (A) Bioinformatics analysis of
the correlation of TNFR2 expression and immune cell numbers. (B) The relationship between TNFR2 expression and immune inhibitors. (C, D) The correlation
between TNFR2 and the expression of chemokines and their receptors. All data were obtained from the TCGA database through TISIDB.
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promoting the survival of lymphoma cells (14). These findings
further enrich our understanding of the intricate roles of TNFR2
in regulating the tumor microenvironment. However, the key
signaling events associated with TNFR2 in the tumor immune
microenvironment and the mechanisms of TNFR2 interactions
between different cells remain elusive. Therefore, we still need a
more in-depth exploration of the characteristics and regulatory
mechanisms of TNFR2 in various cells to more accurately treat
TNFR2-related tumor diseases.

TNFR2 and Immune Checkpoint/Immune-
Modulatory Factors
Some changes that may occur in the treatment enhance the
tumor immunosuppressive effect and ultimately lead to
treatment failure. Therefore, immunosuppressive cells and
factors need to be taken into account during tumor treatment.
Tumor-infiltrating Tregs are considered one of the main
immunosuppressive cells regulating the tumor immune
response (53, 96, 97). However, finding a specific way to
diminish the host Tregs has remained particularly challenging,
particularly within the tumor microenvironment (98–100).

Immune checkpoint inhibitors are providing new ideas for
cancer immunotherapy, but their therapeutic effects are uneven.
Some autoimmune side effects or immune dysregulation may be
caused by anti-CTLA-4 or anti-PD-(L)1 antibody-targeted
treatment (101). TNFR2 is becoming a new immune checkpoint
molecule. It has better prospects than other immune checkpoint
molecules because its expression is limited to a small group of
effective Tregs and some immune cells. For example, the restricted
expression of TNFR2 may explain why no serious autoimmune
response was observed in Tnfr2-/- mice (102). Previous studies
have shown that antagonistic antibodies against TNFR2 restrain
the NF-kB pathway and inhibit Treg cell function, leading to
tumor cell death (47). Furthermore, these anti-TNFR2 antibodies
mostly affect tumor-infiltrating Treg cells because they exhibit
higher TNFR2 expression levels than normal Treg cells. Targeting
TNFR2 on Treg cells is well tolerated and clinically more
promising. The tumor microenvironment is altered to a huge
extent upon anti-TNFR2 therapy through the specific depletion of
Tregs and activation of Teffs, thus inducing immune responses
(103). Therefore, we believe that TNFR2 could be a promising
marker in tumor immunotherapy.

We examined that the expression of TNFR2 is frequently and
positively correlated with that of most immuno-inhibitors, such as
PD-L1, CTLA-4, and LAG3, using the TCGA database through
TISIDB (Figure 4B). Moreover, the expression of TNFR2, as well
as some chemokines and their receptors also showed a positive
correlation (Figures 4C, D). Therefore, we speculate a possibility
that the efficacy of some checkpoint inhibitors may be enhanced
upon combination therapies with anti-TNFR2 antibodies, for
example, anti-PD-1, anti-CTLA-4, and CXCR4 inhibitors.
Indications of this are also present in recent reports. Katherine
et al. found that the combination of anti-TNFR2 and anti-PD-1
could be helpful in the development of a new immunotherapy
method for the model of colon cancer (103). The combination of
anti-PD-1 and anti-TNFR2 will lead to the death of most
suppressive Tregs in the tumor microenvironment. It also
Frontiers in Oncology | www.frontiersin.org 8
increases the ratio of CD8+ T cells to Tregs compared with the
single therapy. Furthermore, if anti-TNFR2 therapy was used in
combination with anti-PD-1 therapy, or if anti-TNFR2 therapy is
used after anti-PD-1 therapy, the therapeutic effect could be
optimal. It is known that blocking the PD-1 checkpoint re-
activates specific markers on Teffs and repairs the cell viability
(78). Therefore, we speculate that PD-1 blockade might enhance
TNFR2 expression in Teffs. Interestingly, researchers have found
that anti-TNFR2 antibodies can notably decrease PD-1 expression
in CD8+ T cells (104). This is the reason behind the proposed
unique combination of anti-TNFR2 therapy and anti-PD-1
therapy. Dadiani reported that the appearance of TNFR2+ TILs
is beneficial for the prognosis of patients with TNBC (105).
However, there is no stable correlation between PD-1+ TILs and
survival rate. The active state of PD-L1+ TILs increases the
beneficial effect of TNFR2+ TILs. However, low or high levels of
PD-1+ TILs in tumors do not promote the beneficial effect of
TNFR2+ TILs. For the relationship between the subtype of
immune infiltration and prognosis, TNFR2+ TILs could be a
more stable immune target than PD-1+ TILs in TNBC.
Therefore, it may be better not to block TNFR2+ TILs during
TNBC treatment, which may enhance the immunotherapy
efficiency of anti-PD-1 regimens. It is believed that the anti-
TNFR2 antibody could be very helpful in a breast cancer mouse
model. However, this model could also achieve a better result
through combination with therapies like CpG or anti-CD25 (106).
The expression of CXCR4 is related to tumor progression (107).
Interestingly, the expression of CXCR4 on Tregs has a significant
positive correlation with the expression of TNFR2 in acute
myeloid leukemia (AML). Furthermore, the interaction and
expression of CXCR4/CXCL12 promote an increase in TNFR2+

Tregs in patients with AML (69). Therefore, we conclude that
blocking the TNFR2 checkpoint could be an attractive
immunotherapy method, the effects of which may increase if
combined with other checkpoint inhibitors.

TNFR2 and Cancer Immunotherapy
At present, the common methods of cancer immunotherapy
include blocking immunosuppressive Tregs and thereby
promoting the survival of tumor cells, as well as methods
related to immune response, such as T cell activation and
complement activation (108). Preventing the expansion of
Tregs is currently considered to be the primary means of many
cancer treatments (53).

It has been reported that TNFR2 can be triggered by agonists
or antagonists to bidirectionally regulate Treg activity in adult
CD4+ T cells. Antagonism causes Treg contraction, while
agonism leads to Tregs expansion in vitro (109). Consequently,
therapeutic targeting of TNFR2 may enable the decrease in the
Treg activity and eliminate the immune-related suppressing cells.
This would help the immune system to defend against the
tumors and improve the cancer treatment effect. Another
benefit of choosing TNFR2 as a novel target for tumor therapy
is that TNFR2 can be found on some malignant cells. Increased
levels of TNFR2 will improve the development of tumor cells
(110). Thus, blocking TNFR2 not only enhances the anti-tumor
immune response but may also directly kill tumor cells.
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TNFR2 agonism and antagonism play essential roles in
autoimmune and tumor microenvironments. Several anti-
TNFR2 agonist antibodies that can enhance the activity of
effector T cells have been reported previously (77), as well as
some antagonist antibodies that can block the binding of TNF to
TNFR2 and inhibit the cleavage of TNFR2 from mTNFR2 to
sTNFR2 (111, 112). Blocking the TNF-TNFR2 interaction
probably weakens TNFR2 surface expression on inhibitory
Tregs and then destabilizes Tregs because TNF can accelerate
TNFR2 expression on T cells. Torrey et al. found that the Tregs
in ovarian cancer were more susceptible to TNFR2 antagonist
treatment compared to Tregs in healthy tissues. The reason may
be the relatively high expression of TNFR2 on tumor-infiltrating
Tregs (113, 114). Thus, it is possible that TNFR2 antagonists
selectively inhibit the activity of Tregs in tumors. However, they
may not affect the function of regular Tregs around the tissues.
This is the key to maintaining a stable immune environment. It is
well known that highly suppressive Tregs and Teffs can express
TNFR2. Although elevated TNFR2 expression on Teffs can
promote Teffs development and enhance their ability to
suppress Treg-mediated inhibition, TNFR2 expression was
much higher on the tumor-invasive Tregs than that on Teffs
(58, 113). Thus, in immunotherapy with TNFR2 antagonists, the
lethality to Tregs may be greater than that to Teffs. The TNFR2
antagonist also inhibits TNFR2 cleavage from mTNFR2 to
sTNFR2 in Tregs (111). Overall, treatment with TNFR2
antagonists would favor the activation and amplification of
Teffs for a more potent antitumor immune response.

Recently, agonistic antibodies against TNFR2 have also been
studied. Tam et al. constructed a new type of anti-TNFR2
antibody in mice, named Y9, which can recognize the receptor
Frontiers in Oncology | www.frontiersin.org 9
outside the TNF-binding domain (104). Y9 antibody treatment,
mediated by CD8+ T cells and NK cells expands population and
enhances the functionality of CD8+ T cells while not altering the
suppressive function of Tregs and changing the ratio of CD8+ T
cells to Tregs in vitro. Interestingly, Y9 antibody treatment not
only contributes to short-term anti-tumor activity but also
maintains long-term immune memory in many tumor models
(104). A combination of the Y9 antibody with anti-PD-1 or -PD-
L1 antibodies could further improve the anti-tumor efficacy.
Moreover, this combination therapy results in a better effect than
the combination of anti-PD-1 with anti-CTLA-4 theraphy (104).
They also constructed anti-human TNFR2 antibodies Ab1 and
Ab2, which exhibit properties similar to the Y9 antibody (104).
These results show that the effect of the TNFR2 agonist antibody
Y9 is very encouraging in anti-tumor immunotherapy, justifying
the clinical development of human anti-TNFR2 antibodies. At
present, domestic and foreign biopharmaceutical companies
have begun to develop anti-TNFR2 antibodies, but most
related research is still in the early preclinical stage, and the
fastest progress has been the advancement of research to phase I
clinical trials (Table 2).

In current immunotherapies for cancer, the TNF/TNFR2
pathway is critical for the suppression of Tregs. Interestingly,
specific inhibition of IL-6, instead of TNF, downregulates the
population of TNFR2+ Tregs in advanced ovarian tumor ascites
(63), which indicates that IL-6 is involved in the accumulation of
TNFR2+ Tregs. During the treatment of acute myelocytic
leukemia, the decrease in the number of TNFR2+ Tregs and
the increase in the expression of IL-2 and IFN-g can explain the
combination of azacitidine and pabirestat can improve the
therapeutic effect (69). In colon cancer, a new murine
TABLE 2 | The clinical progress of TNFR2-Targeting Treatment antibody research and development.

Antibody Company
name

Country Character Clinicalphase Function Indication Ref.

BITR2101 BeiGene China McAb I TNFR2 Antagonist cancer/infection BeiGene
AN3025 Adlai Nortye

Biopharma
China McAb Preclinical TNFR2 antibody that exhibits immune activation and strong

anti-tumor activity in vivo and can enhance anti-tumor efficacy
of mPD-1 antibody in a combination study

Cancer AACR

SIM0235
(SIM1811-
03)

Simcere
Pharmaceutical

China McAb I This antibody can specifically recognize TNFR2 expressed on
the surfaces of tumor cells and directly kill tumors.

Advanced solid
cancer,
cutaneous T-
cell lymphoma

AACR

BITR2101 BITT Boston McAb I TNFR2 antagonist Cancer/infection BITT
BI-1808 BioInvent Sweden McAb I Ligand-blocking T reg depleting antibody Advanced

malignancies
Clinicaltrials
.gov

BI-1910 BioInvent Sweden McAb Preclinical TNFR2 agonist antibody Advanced
malignancies

AACR

HFB200301 HiFiBiO
Therapeutics

USA McAb I Anti-TNFR2 agonist antibody with Fc-independent agonist
activity that does not block TNFR2 interactions with TNFa

Cancer AACR

APX601 Apexigen USA McAb Preclinical TNFR2 antagonist; can inhibit Treg and myeloid suppressive
cells and reverse immune suppression in the TME and inhibit
tumor growth

Solid cancer AACR

MM-401 Merrimack
Pharmaceuticals

USA McAb Preclinical TNFR2 antibody that has agonistic activity and induces TNFR2
signaling and can also promote anti-tumor immunity by
mediating effects of ADCCs, as well as via direct co-stimulation
of T cell responses

Cancer AACR
April 2022
 | Volume 12 | Art
BITT, indicate as Boston Immune Technologies and Therapeutics; McAb, monoclonal antibody; ADCC, antibody-dependent cellular cytotoxicity; AACR, American Association for Cancer
Research; Clinicaltrials.gov, https://clinicaltrials.gov/.
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monoclonal anti-TNFR2 antibody (TY101) therapy combined
with R848 (a synthetic TLR7/8 agonist) and HMGN1 (N1, a
dendritic cell-activating TLR4 agonist) synergistically inhibits
murine colon cancer and is more effective when compared with
the single treatment with any of the above-mentioned drugs
(115). Treatment of patients with advanced lymphoma with
TNFR2 antagonists cause increased death of TNFR2+ Tregs
and tumor cells and maintains the normal level of CD26-

lymphocyte population (111). Additionally, immunotherapy
with TNFR2 antagonists promotes the rapid expansion of Teff
cells and stabilizes the normal ratio of Tregs to Teffs (111).
Besides, small molecules from natural products can also
specifically bind to TNFR2 and disrupt TNF-TNFR2
interactions (116). According to reports, Treg cells prevent
glycolysis by inhibiting the mTOR pathway (117–120), while
TNFR2 co-stimulation can allow thymus-derived Treg (tTreg)
cells to undergo glycolysis (121). Therefore, in addition to
antagonists, TNFR2 co-stimulation also induces metabolic
remodeling of human Treg cells, which may broaden the
applications of immunotherapy. In summary, TNFR2 targeted
therapy may be a new approach to improve the efficacy of anti-
tumor immunotherapy, as well as an adjuvant to improve the
efficacy of other immune checkpoint inhibitors.
CONCLUDING REMARKS AND
PERSPECTIVE

In tumor cells, TNFR2 promotes tumor progression directly or
indirectly by maintaining a favorfavorable immune
microenvironment for tumors and via different signaling
pathways. Unlike TNFR1, which induces cell apoptosis,
TNFR2 mainly promotes the growth and malignant
transformation of cancer cells. TNFR2 expression is restricted
to certain tumor cells and subpopulations of the lymphoid
system, especially immunosuppressive cells. These properties
make TNFR2 an ideal target for precise cancer treatment.
Existing studies have confirmed that TNFR2 has excellent
potential in tumor immunotherapy. Moreover, some antibody-
based TNFR2 agonists and TNF antagonists have been proposed
and have strong clinical practice potential. However, there are
still many unanswered questions that require extensive
preclinical verification. The development of the TNFR2
antibody, clinical development strategy, and selection of
indications are also facing severe challenges.

The key to Treg-related anti-tumor treatment strategies is
whether they can effectively and accurately regulate Tregs.
Remarkably, TNFR2 can selectively regulate Tregs, which are
more specific and safer than other immune checkpoints.
Although breakthroughs have been made in tumor immune
checkpoint therapy, relying on combination therapies has
become a trend to improve the therapeutic effect. We predict
that the therapeutic effect of TNFR2-treatment combined with
other targets has the potential to match the effect of PD-(L)1-
targeting therapies in the future. TNFR2 antibody has shown
good anti-tumor activity in a single administration test in an
Frontiers in Oncology | www.frontiersin.org 10
animal model, and the combined effect with PD-(L)1 antibody
was more significant. There is evidence that blocking TNF-
TNFR2 reduces the expression of PD-L1 by monocytes (122).
Moreover, PD-1 blockade can restore the expression of Teffs
activation markers, including TNFR2. These results may explain
why the combination of TNFR2 and PD-(L)1 antibody treatment
affects salience, but it is still necessary to continue to explore the
mechanism. As a new immunotherapy model, TNFR2 targeting
may be combined with well-established immune checkpoint
targets, including CTLA-4 and Tim3, in order to achieve the
best effect in tumor immunotherapy. This plan may be a more
effective and safer treatment and will be extensively investigated
in future studies. In addition, whether the combination of anti-
TNFR2 antibodies and TNF blockade will significantly improve
the therapeutic effect remains to be explored.

In the treatment of various tumors, targeted therapy based on
monoclonal antibodies shows significantly improved therapeutic
effects on patients. Nevertheless, the long-term efficacy of this
treatment is limited by its resistance mechanisms and other
conditions. It is well known that PD-(L)1 or CTLA-4 have
immunosuppressive functions in the tumor microenvironment, but
when the antibodies against CTLA-4 or PD-(L)1 regulate Tregs, they
can cause immune disorders and even serious autoimmune diseases
and other side effects. Therefore, the success of clinical studies of anti-
CTLA-4 or PD-L1 drugs has been limited. The design of bifunctional
or multifunctional antibodies as a single agent to target multiple
antigens has become a new immunotherapy strategy. The
bifunctional PD-L1/TGF-bRII antibody (bintrafusp alfa) can direct
the anti-TGF-b antibody to the tumor microenvironment via its
anti-PD-L1 component, thereby achieving simultaneous inhibition of
TGF-b and PD-L1 (123). The bifunctional PD-L1/TGF-bRII
antibody (bintrafusp alfa) can use the anti-PD-L1 antibody to
direct anti-TGF-b antibody to the tumor microenvironment,
thereby achieving simultaneous inhibition of TGF-b and PD-L1.
The bifunctional antibody-mediated inhibition of the
immunosuppressive TGF-b and PD-1/PD-L1 pathways can
improve the effect of tumor immunotherapy, which is a
characteristic immunotherapy regimen. TNFR2 antibody is more
specific and safer than other immunotherapies because it specifically
recognizes the tumor microenvironment. Therefore, the
development of bispecific functional antibodies or multifunctional
specific antibodies that simultaneously target TNFR2 and other
immune checkpoints will be more beneficial to tumor
immunotherapy. The TNFR2 antibody can carry other immune
target antibodies to directly target tumors or immunosuppressive
cells, which dramatically reduces drug resistance and severe adverse
reactions. These novel multifunctional antibodies demonstrate a
powerful potential in immunotherapy for different cancer types.

There has been accumulating evidence showing that TNFR2
is expressed and plays a crucial role in immune cells. Especially,
TNFR2+ Tregs, which are associated with elevated disease
progression, suggest that TNFR2 could be used as a potential
therapeutic target for cancer therapies (47, 52, 68, 124, 125).
However, understanding the relationship between TNF/TNFR2
and immune cell responses is elusive and controversial. For
example, the TNF/TNFR2 signaling pathway potentially
April 2022 | Volume 12 | Article 862154
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activates CD8+ Tregs and CD8+ Teffs simultaneously, which
have antagonistic relationships. Therefore, blocking the TNF/
TNFR2 pathway may suppress the protective Tregs or Teffs and
impair the treatment (42). Interestingly, another study
demonstrated that chemotherapy could reduce the content of
CD4+ TNFR2+ Tregs and increase the ratio of protective CD8+

TNFR2+ TILs in TNBC (115). Furthermore, another study
showed that TNFR2+ TILs have a strong association with
improved survival in patients with TNBC (105). Therefore,
therapeutics against TNFR2 may negatively affect patients with
TNBC, which is different from other tumors. Consequently,
targeting TNFR2 alone may not yield good results. To provide
a safer and more precise treatment approach for tumor
immunotherapy, we need to explore the specific mechanism of
TNFR2 in the tumor microenvironment and accurately
understand the expression level of TNFR2 and the ratio of
TNFR2+ T cells in various T cell subgroups.

Finally, TNFR2 has attracted attention for its ability to promote
tumor cell survival and proliferation, and this property provides a
strong rationale for TNFR2 as a potentially effective therapeutic
target. Since TNFR2 promotes tumorigenesis and progression,
most studies have also focused on cancers that express high levels
of TNFR2. As shown in Figure 2A, most tumor tissues show
higher levels of TNFR2 expression than normal tissues. However,
some tumor tissues express lower levels of TNFR2 than normal
tissues. In future clinical studies, appropriate protocols should be
designed according to the level of TNFR2 expressed in different
tumors. In addition, we can also see from Figure 2 that the
expression level of TNFR2 is not positively correlated with the
poor prognosis and disease-free survival of patients in all tumors.
Moreover, the clinical stage and pathological grade of different
tumors were not completely consistent with the expression level of
TNFR2. This inconsistency may be related to the tumor type and
the complexity of tumor progression. For example, in breast
cancer, the prognosis could be affected by different factors,
including age, menopausal status, clinical stage, pathological
grade, and receptors on the surface of tumor cells (126–128).
Studies have found that TNFR2 expression and menopausal status
might significantly affect the DFS rate of breast cancer patients
(129). This difference could also be related to cell types and
Frontiers in Oncology | www.frontiersin.org 11
proportions in different tumor environments. Although TNFR2+

Tregs represent the largest immunosuppressive subset in the
tumor immune microenvironment, anti-tumor cells in the TME
benefit from the activation of the TNFa/TNFR2 pathway
signaling, such as TNFR2+ Teff cells. In the intricate tumor
microenvironment, this dual function of TNFR2 can be out of
balance due to certain factors. Dadiani et al. demonstrated that
large numbers of TNFR2+ TILs can significantly improve survival
in TNBC patients, whereas unfavorable PD-1+ TIL levels
counteract the favorable effect of TNFR2+ TILs on disease
outcomes (105). Interestingly, PD-1 expression itself might
result from a dynamic process during T cell activation (130,
131), and thus, if we provide appropriate conditions, the effect
of PD-1+ TIL levels on TNFR2+ TILs could be improved.
Therefore, different tumor types and different disease stages
must be considered when targeting TNFR2 in therapy. A more
comprehensive assessment of the function of TNFR2 in different
tumors is required in future studies.
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GLOSSARY

TNF Tumor necrosis factor
TACE TNF-converting enzyme
TNFR2 TNF receptor type II
TNFR1 TNF receptor type I
mTNF Membrane TNF
sTNF Soluble TNF
mTNFR2 membrane TNFR2
sTNFR2 Soluble TNFR2
TNFRSF1B TNF receptor type II
TILs Tumor-infiltrating lymphocytes
THD TNF homology domain
CRD cysteine-rich domain
Tregs Regulatory T cells
Teffs Effector T cells
NK Natural killer
IL Interleukin
Th T Helper Type
Foxp3 Forkhead Box P3
DD Death domain
cIAP Cellular inhibitor of apoptosis pro ptosis protein
FADD Fas-associated DD
VEGFR2 vascular endothelial growth factor receptor 2
FLICE for FADD like ICE
c-FLIP Cellular FLICE-like inhibitory protein
TRAF TNFR-associated factor
NF-kB Nuclear factor kappa B
MDSCs Myeloid-derived suppressor cells
MAPK Mitogen-activated protein kinases
MSCs mesenchymal stem cells
BAX BCL2-associated X protein
JNK c-Jun N-terminal kinase
PI3K Phosphoinositide 3-kinase
IKKb IkB Kinase beta
Akt Protein Kinase B
BMX/Etk bone marrow-expressed kinase
NIK NF-kB-inducing kinase
TISIDB Tumor and Immune System Interaction Database
AIP1 apoptosis signal-regulating kinase 1 (ASK1)-interacting protein-1
BIRC3 cellular inhibitor of apoptosis 2
GEPIA Gene Expression Profiling Interactive Analysis
NCR1 Natural cytotoxicity receptor 1
hnRNPK heterogeneous nuclear ribonuclear protein K
YAP Yes-associated protein
MLCK myosin light-chain kinase
NKp46 natural killer cell p46
STAT signal transducer and activator of transcription
mTOR Mammalian Target of Rapamycin
c-FLIP Cellular FLICE-like inhibitory protein
CTLA-4 Cytotoxic T Lymphocyte Antigen-4
TGF-b transforming growth factor-b

(Continued)
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PD1 programmed death-1
PDL1 programmed cell death receptor ligand 1
Ki67 Tumor proliferation marker
LAG3 Lymphocyte-Activation Gene 3
Fc Fragment crystallisable
VEGF vascular endothelial growth factor
TCGA The Cancer Genome Atlas
C-Jun transcription factor AP-1-like
OS overall survival
MLCK myosin light-chain kinase
DFS disease-free survival
CXCR4 C-X-C chemokine receptor 4
IFN-g interferon-g
CXCL12 chemokine C-X-C motif ligand 12
p65 NF-kB subunit
CSN5 constitutive photomorphogenic-9 signalosome
ACC Adrenocortical Carcinoma
BLCA Bladder Urothelial Carcinoma
BRCA Breast invasive carcinoma
COAD Colon adenocarcinoma
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
CESC Cervical squamous cell carcinoma and endocervical

adenocarcinoma
CHOL Cholangiocarcinoma
HNSC Head and Neck squamous cell carcinoma
GBM Glioblastoma multiforme
ESCA Oesophageal carcinoma
KICH Kidney Chromophobe
KIRC Kidney renal clear cell carcinoma
KIRP Kidney renal papillary cell carcinoma
LAML/AML Acute Myeloid Leukaemia
LGG Brain Lower-Grade Glioma
LIHC Liver hepatocellular carcinoma
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
PAAD Pancreatic adenocarcinoma
OV Ovarian serous cystadenocarcinoma
PRAD Prostate adenocarcinoma
PCPG Pheochromocytoma and Paraganglioma
READ Rectum adenocarcinoma
SARC Sarcoma
SKCM Skin Cutaneous Melanoma
STAD Stomach adenocarcinoma
HLA-G human leucocyte antigen-G
THCA Thyroid carcinoma
THYM Thymoma
UCEC Uterine Corpus Endometrial Carcinoma

UCS Uterine Carcinosarcoma

TNBC triple-negative breast cancer

UVM Uveal Melanoma

AICD Activation-induced Cell Death

EPCs endothelial progenitor cell
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