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Abstract: The application of natural plant extracts in UV-protection is popular and intensively
studied. Silymarin (from Silibum marianum), a naturally occurring polyphenol, has recently received
attention due to its antioxidant, anti-inflammatory and anti-apoptotic effects. However, its role in
the UV-mediated keratinocyte cell response is still controversial. In this study, we investigated the
effects of Silibum marianum extracts with different origins and formulations on UVA-exposed HaCaT
keratinocytes in vitro. Our results show, that silymarin treatment caused an inverse dose-dependent
photosensitivity relationship (at higher doses, a decrease in cell viability and ROS production) after
UVA exposure. The attenuation of the UVA-induced ROS generation after silymarin treatment
was also observed. Moreover, silymarin pre-treatment increased the cyclobutane pyrimidine dimer
photolesions in keratinocytes after UVA exposure. These results indicated the dual role of silymarin
in UVA-exposed keratinocytes. It scavenges ROS but still induces phototoxicity. Based on our results
dermatological applications of silymarin and related compounds should be considered very carefully.
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1. Introduction

More than 90% of solar ultraviolet (UV) radiation reaching the Earth’s surface falls within the
315 nm to 400 nm (UVA) wavelength range [1]. Although the shorter-wavelength (320–290 nm) UVB
is considered to be the main carcinogenic component of the solar UV spectrum, the impact of UVA
radiation on sunburn, photoaging and carcinogenesis of the human skin cannot be underestimated [1–3].

Accumulating evidence suggests that the main cause of the UVA-induced cytotoxicity
and mutagenesis can be attributed to the production of intracellular reactive oxygen species
(ROS) [1–4], which are generated by the direct excitation of endogenous chromophore molecules
including tryptophan, porphyrins, melanin [4]. These reactive oxygen species can interact with
intracellular macromolecules leading to lipid peroxidation [5], protein oxidation [6] and DNA base
modifications [7–9].

7,8-Ddihydro-8-oxoguanine (8-oxoG) lesions are the most common and intensively studied
UVA-induced DNA alteration, which are generated by singlet oxygen molecules interacting with
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guanine bases and causing G-T transversion during DNA replication [1,10]. However, recent studies
have found that a significant amount of cyclobutane pyrimidine dimer (CPD) photolesions are
also produced by UVA radiation [9,11,12]. CPDs are formed from two covalently linked, adjacent
pyrimidine bases, which can cause replication failures, single-base mismatches and DNA double
strand breaks [13], leading to cell-cycle arrest [14], apoptosis [15] and the accumulation of DNA
mutations [16,17]. Although UVB radiation is predominantly responsible for CPD formation, several
studies show that UVA can also substantially contribute to the generation of these photolesions
by a different mechanism. While UVB induces CPD formation via direct absorption of the UVB
photons on the DNA [11], UVA radiation produces CPDs indirectly by triplet energy transfer from a
recently unknown endogenous chromophore excited by UVA photons [11,12]. Nevertheless, the exact
mechanism of UVA-induced CPD formation remains unclear.

A wide range of naturally occurring phytochemicals are intensively studied for their ROS
scavenging ability to prevent the deleterious effect of UVA on human skin [18–22]. Silymarin is a
flavonoid complex extracted from the seeds of milk thistle (Silibum marianum). It contains numerous
bioactive components (e.g., silibinin, silychristin, silydianine and taxifolin), many of which have
shown strong antioxidant [23,24], anti-inflammatory [24,25] and immunomodulatory [26] potential.
Through these mechanisms, silymarin was found to protect against the UVA-induced apoptosis and
carcinogenesis [27,28]. UVB-protecting properties of the components were also shown [29–31].

Nonetheless, some studies showed that silymarin enhances the UVA-induced cell death and
thus serves as a photosensitizer [32,33]. Katiyar et al. found that silymarin induced apoptosis
via modulation of the p53 and NFκB pathways [34], but the exact mode of action of silymarin
is still unclear. Photosensitization is a widely known phenomenon in the field of photobiology,
when endo-or exogenous chromophore molecules absorb the energy of the irradiating light with a
specific wavelength [4,35]. The excited chromophores interact with other molecules, such as cellular
lipids, proteins or nucleic acids. In Type I. photosensitization reaction there is a direct electron
transfer between the photosensitizer and the substrate molecules, which can act as free radicals
and produce oxidized products in the presence of molecular oxygen. These oxidized molecules
can react further with other substrates and induce changes in their structure and function [1,3,35].
In Type II. photosensitization reaction there is an energy transfer from the excited photosensitizer
to molecular oxygen, and the generated singlet oxygen interacts with biological substrates [1,3,35].
Oxygen-independent, type III and IV. photosensitization reactions also exist, but their mechanisms of
action are poorly understood [35].

In summary, the effects of silymarin on the cellular UV-damage is fairly controversial. Studies
showing silymarin’s positive and negative effects on UV-induced cytotoxicity also exist. The molecular
mechanisms behind the potential photosensitizer effect of silymarin are little understood.

To understand the photobiological effect of silymarin, we investigated the effects of three silymarin
compounds with different origin and composition on UVA-irradiated HaCaT keratinocyte cell line.
We found that silymarin had dual effect on UVA-irradiated keratinocytes: it enhanced the UVA-induced
cell death but decreased the intracellular ROS level after a high-dose of UVA irradiation. Furthermore,
we found that silymarin increased the amount of CPD photolesions in the cells after UVA-exposure.
Our results suggest that silymarin shows versatile effects on UVA-exposed HaCaT keratinocytes.
Therefore, dermatological applications of silymarin should be considered very carefully due to its
possible adverse impacts.

2. Results

2.1. Silymarin Pre-Treatment Enhances the UVA-Induced Cytotoxicity

To determine the effects of UVA radiation and silymarin treatment on cell viability, HaCaT
keratinocytes were exposed to a single-dose of 10 or 20 J/cm2 UVA or left sham-irradiated. Silymarin
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treatments were performed for 30 min immediately before UVA irradiation in different doses and
composition. We applied:

(1) A silymarin extract (Sigma-Aldrich, St. Louis, MO, USA) dissolved in ethanol.
(2) A commercially available silymarin compound (Silegon, Teva Pharmaceutical Industries Ltd.,

Petach Tikva, Israel).
(3) Four different topical formulations of silymarin containing 250 µg/mL herbal extract dissolved

in Transcutol HP (TC) and different sucrose-esters as penetration enhancers (see Table 1 at
Materials for details). We have previously shown the efficacy of these enhancers on cell and skin
penetration [36].

Table 1. Preparation of compositions containing silymarin powder with penetration enhancers.

Preparations

Ingredients (g) 1 2 3 4

Silymarin powder 0.25 0.25 0.25 0.25

Transcutol —- —– 0.71 0.71

Sucrose ester SP50 0.15 —- 0.15 —

Sucrose ester SP70 — 0.15 — 0.15

Propylene Glycol 0.25 0.25 0.25 0.25

Cell culture media ad 100 ad 100 ad 100 ad 100

Twenty four h after the UV-exposure, the relative cytotoxic effects of the treatments were measured
by 3-[4–dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. We found that UVA
radiation caused a dose-dependent decrease in cell viability. The UVA-induced cytotoxicity was
strongly increased by silymarin pre-treatment. Decrease in cell viability was dependent on silymarin
concentration: 10 J/cm2 UVA resulted in 30–40% apoptosis, whereas 50 and 100 µg/mL silymarin
dissolved in ethanol augmented cell death of UVA-irradiated cells to 40–60%. More than 90% of the
UV-exposed cells were dead after 250 µg/mL silymarin pre-treatment. Silymarin and Silegon had
similar effects on cell survival (Figure 1A,B, respectively). Silymarin dissolved in penetration enhancers
showed the same effect, the extent of phototoxicity varied based on the composition of the different
formulations (Figure 1C).

The results of the MTT assays were confirmed with Annexin V and propidium iodide dual staining
followed by flow cytometry. We chose the two most cytotoxic concentrations of silymarin (Sigma) for
assessing apoptosis. The UVA-dose was 10 J/cm2. Silymarin also showed marked photosensitizing
potential with this assay, while 10 J/cm2 UVA irradiation alone caused a moderate decrease in cell
viability (Figure 2).

2.2. Silymarin Treatment Reduces Intracellular ROS Production after UVA Irradiation

According to several studies [23,24,27,28], silymarin may have a strong antioxidant potential.
To test the influence of silymarin compounds on ROS production after UVA exposure, we stained cells
with dihydroethidium (DHE) and fluorescence intensity was analyzed by flow cytometry.

We found that silymarin pre-treatment reduced ROS production of skin keratinocytes after
high-dose (20 J/cm2) UVA irradiation in a dose-dependent manner. 250 µg/mL silymarin caused a 30%
decrease in DHE intensity (Figure 3A,B).
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Figure 1. UVA photosensitizing effect of different silymarin preparations. Cell viability after
UVA exposure and pretreatment with (A) silymarin mixture (Sigma) (B) a commercially available
silymarin compound (Silegon, Teva), and (C) 250 µg/mL silymarin dissolved in four different
penetration-enhancers. The results are the mean of four independent experiments. Error bars
represent SD; * and *** indicate statistically significant difference at p < 0.05 and p < 0.001, respectively.
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Figure 2. UVA photosensitizing effect of silymarin. (A) Effect of 10 J/cm2 UVA radiation and silymarin
+ UVA co-treatment was measured by Annexin V and propidium iodide dual staining. (B) Live
percentage as a mean of three independent experiments after silymarin treatment. Error bars represent
SD; *** indicates statistically significant difference at p < 0.001.

Two silymarin compounds supplemented with penetration enhancers (compositions 3 and 4)
had the same effect. The compound with the greatest ROS scavenger activity reduced ROS level
by 40% (Figure 3C). Earlier this composition was found to be the most phototoxic, too. Although a
trend towards decreased ROS was observed the antioxidant activity of the silymarin compounds after
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low-dose (10 J/cm2) of UVA radiation was not significant. Baseline ROS levels were not affected by
silymarin treatment.
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Figure 3. Antioxidant effect of silymarin after UVA-irradiation. Cellular ROS levels after UVA
exposure following pretreatment with (A) silymarin mixture (Sigma) (B) a commercially available
silymarin compound (Silegon, Teva), and (C) 250 µg/mL silymarin dissolved in four different
penetration-enhancers. The bars represent the mean of three independent experiments. Error bars depict
SD; *, ** and *** indicate statistically significant difference at p < 0.05, p < 0.01 and p < 0.001, respectively.

2.3. Silymarin Pre-Treatment Enhances the UVA-Induced CPD-Generation

The mechanism underlying silymarin induced phototoxicity is not well understood.
Other photosensitizing chemicals were found to contribute to CPD formation after UV radiation [37,38].
To test whether CPD induction may contribute to silymarin phototoxicity, we measured the UV-induced
CPD formation in silymarin treated keratinocytes after UVA-exposure. We found, that UVA and
silymarin co-treated cells showed a significantly higher amount of CPDs compared to the UVA-exposed
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cells (10 J/ cm2). As earlier, we used the two most cytotoxic concentrations of the silymarin (Sigma)
(Figure 4).
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3. Discussion

Naturally occurring plant extracts are often used in scientific investigations aiming to prevent the
detrimental biologic effects of UV-radiation on the human skin [18–22]. Silymarin is a mixture of different
bioactive flavonoid components derived from the seeds of milk thistle (Silibum marianum). The protective
effects of silymarin and its components on UVA-damage of the human skin cells were demonstrated
in several scientific works. This positive effect is mostly attributed to the antioxidant properties
of silymarin, thereby the reduction of the UVA-induced ROS production [23,24,27]. Nonetheless,
other studies found that silymarin acts as a strong photosensitizer by significantly reducing the
cell survival after UVA irradiation. The exact mechanism of this photosensitivity reaction is mostly
unknown [32,33]. Based on these conflicting results, currently the use of silymarin in UV-protection
is controversial.

In the present study we demonstrated that the antioxidant and phototoxic properties of silymarin
may appear simultaneously. Silymarin enhanced the UVA-induced cell death in HaCaT keratinocytes
but reduced intracellular ROS level, suggesting that it acts as a photosensitizer and a ROS scavenger
at the same time. We hypothesized that the reason of this dual effect is derived from the variety of
the components. Silymarin is a mixture containing a large number of flavonolignans with different
structures [39], which likely differ in their UVA interactions and post-UVA biological properties.
Some individual silymarin components were defined as photosensitizers, although their role is still
contradictory [32–34]. The ultimate biological effect of silymarin may depend on the concentration
of the components in the mixture, the penetration of the components across the cell membrane and
other experimental circumstances. Dhanalakshmi et al. found that silibinin, a main component of
silymarin can enhance or decrease the UVB-induced cytotoxicity depending on the UVB-dose [40]
further underlining the complexity of silymarin UV-phototoxicity. Silymarin components were not
investigated in this study individually.

We found, that silymarin pre-treatment increased the detectable amount of potentially highly
mutagenic CPD photolesions after UVA irradiation. Kunisada et al. and Robinson et al. found a similar
increase in UVA-induced CPDs after hydrochlorothiazide (HCT) [37] and carprofen pre-treatment [38],
however, phytoflavonoid-mediated UVA-dependent CPD induction has not previously been described.
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Further investigations are needed to understand the exact mechanism of CPD increase. As UVA
induces limited CPDs in cell culture in the absence of melanin [41], silymarin treatment more likely
enhances CPD-induction via an unknown mechanism that suppresses DNA repair. The underlying
CPD generation likely contributes to the observed photosensitizing effect of the silymarin.

In conclusion, the utility of currently available silymarin mixtures in UV-protection is questionable.
Future studies need to examine the effects of individual silymarin components for identification of
potential mutagenic, cytotoxic and possibly photoprotective molecules. Our results suggest that
dermatological applications of natural flavonoids require careful testing and thoughtful assessment of
their potential UV interaction to limit and avoid possible adverse effects.

4. Materials and Methods

4.1. Cell Culture

Human immortalized keratinocyte-derived (HaCaT) cell line was cultured in T75 flasks as
previously described [42]. An established HaCaT cell line was maintained in high glucose DMEM with
L-209 glutamine and sodium pyruvate (Biosera, Nuaille, France) supplemented with 10% fetal bovine
serum (Biosera) and 0.5% antibiotic/antimycotic (penicillin-streptomycin-amphotericin B solution,
Biosera) and maintained at 37 ◦C with a 5% CO2 atmosphere.

4.2. Preparation of Silymarin Formulations

4.2.1. Materials

We applied three silymarin sources at our experiments. The first was a gift from Ákos Kuki
(Department of Applied Chemistry, University of Debrecen, Debrecen, Hungary). Silymarin powder
from Silibum marianum seeds was prepared according to Kahol et al. [43]. The silymarin powder
did not contain any solvent residue. The same bioactive flavonolignans were determined as in the
standards with the help of HPLC-MS method. The exact composition of the silymarin powder was
published in the previous work of Kuki et al. [44]. The second source of silymarin was silymarin
flavonolignans ordered from Sigma-Aldrich (St. (Louis, MO, USA). The third origin of silymarin was
Silegon (Teva Pharmaceutical Industries Ltd., Petach Tikva, Israel) a commercially available dragée
containing silymarin.

Transcutol was a kind gift from Gattefossé (Saint-Priest, France). Sucrose esters (SP50, SP70)
were kind gifts from Sisterna (Roosendaal, The Netherlands) Propylene glycol was supplied by
Hungaropharma Ltd., (Budapest, Hungary). Human keratinocyte (HaCaT) cells were obtained from
Cell Lines Service (CLS, Heidelberg, Germany).

4.2.2. Preparation of Compositions Containing Silymarin Powder

For all compositions 1–4 (see Table 1 for details) the propylene glycol and the emulsifying agent
(sucrose ester SP50 or SP70) was dissolved in the cell culture media at 37 ◦C and then cooled down to
25 ◦C. Finally silymarin powder was added to the compositions. For compositions 3 and 4 silymarin
powder was previously dissolved in Transcutol.

Silymarin flavonolignans and pulverized Silegon tablets were dissolved in 96% ethanol and
diluted in complete DMEM to a final concentration of 10, 50, 100 or 250 µg/mL.

4.3. Silymarin Treatments

HaCaT cells were seeded into 96-well (for MTT assay) or 24-well plates (for other measurements)
and grown near to confluence. Cells were treated with 10–250 µg/mL silymarin (Sigma or Teva),
the final concentration of ethanol in the culture medium did not exceed 0.5%. The extracts dissolved
in the penetration enhancers were used at a concentration of 250 µg/mL for cell treatment. HaCaT
keratinocytes were incubated 30 min with the silymarin extracts at 37 ◦C prior to UV irradiation.
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4.4. UVA Irradiation

Immediately after silymarin treatment, cells were washed twice with DPBS (Biosera) and
irradiated with a single-dose of 10 or 20 J/cm2 UVA (PUVA 800, H. Waldmann GmbH & Co. KG,
Villingen-Schwenningen, Germany) under a thin layer of PBS complemented with d-glucose (Duchefa
Biochemie B.V. Haarlem, The Netherlands). Proper dosage of UVA was determined by a UVX Digital
Radiometer (UVP Inc., San Gabriel, CA, USA). UVA irradiation was performed on ice to avoid heat
shock. Control cells were also placed on ice during the irradiation time, but covered to be protected
from UVA. After UVA-exposure, complete DMEM (without silymarin) was added.

4.5. MTT (3-[4–dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) Assay

The viability of HaCaT cells were measured by MTT (3-[4–dimethylthiazol-2-yl]-2,5 diphenyl
tetrazolium bromide) assay 24 h after UVA irradiation. Cells were washed with PBS, then 100 µL/well
DMEM without phenol red (HyClone; GE Healthcare Life Sciences, Logan, UT, USA) containing
200 µg/mL MTT (ThermoFisher Scientific, Waltham, MA, USA) were added. Cells were incubated for
3 h at 37 ◦C in 5% CO2 atmosphere. At the end of the incubation period, media was removed and
0.04 M HCl in isopropanol was added to solubilize the formazan crystals. Absorbance was measured
at 590 nm with background subtraction at 620 nm by an Epoch Microplate Spectrophotometer (BioTek,
Winooski, VT, USA).

4.6. Annexin V/Propidium Iodide Staining (Apoptosis Assay)

After 24 h post-UVA irradiation, detached cells were collected by aspirating the media and
adherent cells were collected by 1x trypsin-EDTA solution and added to the supernatant. 0.1 µL/mL
Alexa Fluor 488 annexin V and 1 µg/mL propidium iodine (PI) were dissolved in 1X annexin-binding
buffer (Alexa Fluor 488 Annexin V/Dead Cell Apoptosis Kit, ThermoFisher, Waltham, MA, USA),
and 100 µL working solution were added to each sample. Stained cells were analyzed by FACSCalibur
flow cytometer (BD Biosciences, San Jose, CA, USA) using CellQuestPro software (BD Biosciences) and
fluorescence intensity was measured in FL1 (for Annexin V) and FL3 (for PI) channel, respectively.

4.7. ROS (Reactive Oxygen Species) Production Measurements

Intracellular ROS detection was carried out by dihydroethidium (DHE) staining followed by
flow cytometry analysis. Immediately after UVA irradiation, cells were washed with PBS and 200 nM
DHE (ThermoFisher) in PBS was added to each well. Cells were incubated 30 min at 37 ◦C and
trypsinized. 500 µL complete DMEM was added to neutralize the trypsin-EDTA solution (Biosera).
Samples were analyzed by a FACSCalibur flow cytometer (BD Biosciences) using CellQuestPro software
(BD Biosciences), and fluorescent signal was measured in FL3.

4.8. Enzyme-Linked Immunosorbent Assay (ELISA)

CPD-specific ELISA was established by Boros et al. in our previous work [45]. 24 h after the
UVA irradiation, genomic DNA was extracted by an Invitrogen™ PureLink™ Genomic DNA Mini
Kit (ThermoFisher), according to the manufacturer’s instruction. Flat-bottom 96-well plates were
coated with 0.003% protamine-sulfate (Sigma-Aldrich) and incubated at 37 ◦C by drying completely.
DNA was denaturated at 100 ◦C for 10 min, then immediately chilled on ice for 15 min. Denaturated
DNA was distributed to wells in triplicate (15 ng DNA to each well), and incubated at 37 ◦C overnight.
Plates were washed with PBS containing 0.05% Tween-20 (VWR, Radnor, PA, USA) and incubated with
150 µL/well 5% FBS at 37 ◦C for 30 min to prevent non-specific antibody binding. Plates were washed
three times with PBS-T, then anti-CPD monoclonal antibody (clone TDM-2, dilution 1:1500, Cosmo
Bio Co., Ltd., Tokyo, Japan) was added to each well and plates were incubated at 37 ◦C for 60 min.
Plates were washed three times, and incubated with HRP-conjµgated anti-mouse IgG secondary
antibody (dilution 1:3000, Bio-Rad, Hercules, CA, USA) at 37 ◦C for 30 min. Plates were washed three
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times with PBS-T and once with 150 µL/well citrate-phosphate buffer (0.51% C6H8O7.H2O (Sigma) and
0.73% Na2HPO4 (Sigma) in distilled water; pH 5.0), then substrate solution (0.04% o-phenylenediamine
(Sigma-Aldrich) and 0.006% H2O2 in citrate-phosphate buffer) was added to each well and incubated
until the appropriate color intensity appear. To stop the enzyme reaction, 50 µL/well 2N H2SO4 was
added. Absorbance was measured at 492 nm using an Epoch Microplate Spectrophotometer (BioTek).

4.9. Statistical Analysis

The distribution of data was analyzed by Kolmogorov–Smirnov test. If the distribution was
normal, we used ANOVA followed by Dunnett’s post-hoc test to determine significance between
the control and different treatment groups. In case the data did not show a normal distribution,
Kruskal-Wallis test were applied complemented by Dunn’s post-hoc test. The significance level was
set at 0.05.
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