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Abstract: A fully integrated photoacoustic nitrogen dioxide (NO2) sensor is developed and
demonstrated. In this sensor, an embedded photoacoustic cell was manufactured by using an
up-to-date 3D printing technique. A blue laser diode was used as a light source for excitation of
photoacoustic wave in the photoacoustic cell. The photoacoustic wave is detected by a sensitive
microelectromechanical system (MEMS) microphone. Homemade circuits are integrated into
the sensor for laser diode driving and signal processing. The sensor was calibrated by using a
chemiluminescence NO–NO2–NOX gas analyzer. And the performance of this sensor was evaluated.
The linear relationship between photoacoustic signals and NO2 concentrations was verified in a
range of below 202 ppb. The limit of detection was determined to 0.86 ppb with an integration time
of 1 s. The corresponding normalized noise equivalent absorption was 2.0 × 10−8 cm−1

·W·Hz−1/2.
The stability and the optimal integration time were evaluated with an Allan deviation analysis, from
which a detection limit of 0.25 ppb at the optimal integration time of 240 s was obtained. The sensor
was used to measure outdoor air and the results agree with that obtained from the NO–NO2–NOX

gas analyzer. The low-cost and portable photoacoustic NO2 sensor has a potential application for
atmospheric NO2 monitoring.
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1. Introduction

As one of the main air pollutants, nitrogen dioxide (NO2) is mainly produced in engine combustion
processes. High-concentration NO2 is toxic if inhaled, and a long-term exposure in low concentration
can also cause airway inflammation and other respiratory effects. In addition to delivering direct effects,
the existence of NO2 promotes the formation of acidic aerosols, which are strongly harmful to buildings
and pedestrians, and also leads to the rising of the ozone level near the ground [1]. The typical NO2

mixing ratio in the atmosphere is a few tens of ppb, but may be one or more magnitude higher near its
sources, such as rush-hour roads and airports [2,3]. The Ambient Air Quality Standards in P.R. China
sets the safety limit to average 40 µg·m−3 annually and average 200 µg·m−3 hourly. The equivalent
volume fraction is about 21 ppb and 106 ppb under 25 ◦C and standard ambient air pressure. To
monitor this level of NO2 and locating the sources of pollution, a compact, sensitive and low-cost
sensor is urgently needed to detect the concentration of NO2.

Methods to measure NO2 concentration have been widely studied. The techniques based on
chemiluminescence are routinely used to determine NO and NO2 concentration in gas mixtures [4].
Chemical sensors with electrical conductance responses [5] or color responses [6] are possible to measure
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the concentration of NO2 from tens of ppb to hundreds of ppm. Spectroscopic methods, such as cavity
ring-down spectroscopy [7,8], broadband cavity-enhanced absorption spectroscopy [9], laser-induced
fluorescence method [10], and multi-wavelength quantum cascade laser spectroscopy [11], usually
have detection limits of ppb or sub ppb levels, with sophisticated optical setup.

In recent years, trace gas detection using photoacoustic spectroscopy (PAS) receives wide attention
and research. PAS is an application of photoacoustic (PA) effect, i.e., the phenomenon that the
modulated or pulsed light illuminates materials to generate sound. This sound generation is caused by
heat release from the excited molecules that absorb incident photons. The sound wave can be amplified
acoustically by using a resonator and then transformed into electronic PA signals by a commercial
microphone or other sound-sensitive detectors. Through subsequent signal processing procedures,
an appropriate frequency component, usually at the same frequency as the resonance frequency of
the resonator, can be obtained. The amplitude of this frequency component is proportional to the
concentration of absorber under the circumstance of weak absorption.

Many researches on PAS were made to promote the performance of NO2 sensors. In 1996, R.L.
Pastel and R.C. Sause reported a detection limit of 400 ppb by using a dye laser operating near 454
nm [12]. In 2001, V. Slezak reported a pulsed photoacoustic spectroscopy setup for measuring NO2

concentration in Nitrogen (N2) [13]. Two years later, V. Slezak et al. presented their NO2 trace detection
using continuous and pulsed lasers at 532 nm, with a detection limit of 20 ppb and 15 ppb [14]. In the
same year, G. Santiago et al. used a sound card in a personal computer to sample the PA signals and
processed them on the PC, reaching a detection limit of 50 ppb. In 2006, M. Pushkarsky et al. reported
a sub-ppb level detection of NO2 by using a room-temperature quantum cascade laser (QCL) [15]. H.
Yi et al. introduced off-beam quartz-enhanced technique into PAS in 2011, obtaining the minimum
detectable concentration of about 18 ppb [16]. In 2015, J. Peltola et al. reported their research on
cantilever-enhanced PAS, with a detection limit of 50 ppt [17]. In 2017, X. Yin et al. [18] and T. Rück et
al. [19] reported their work for ppt-level NO2 detection by using a differential PA cell and a PA cell with
Brewster windows, respectively, both of which have a small size, but their commercial instruments
to process the PA signals are expensive and bulky. In 2019, J. Kapp et al. reported their work on
a ultraviolet light-emitting diode based photoacoustic sensor [20], which used their custom signal
processing circuits, and the PA cell was carefully designed to reduce the background noises. The sensor
has a noise equivalent concentration of 32 ppb, while the integration time is 1.14 s.

In this paper, we propose our work on building a fully integrated NO2 PA sensor. The structure
of this PA sensor was all 3D printed, including a cylinder resonator, gas buffer chambers, laser
case temperature controlling box, and other structural parts. A 3D printing technique has been
well-developed over recent years. It is also known as a kind of additive manufacturing (AM) technique,
because of its special process to synthesize objects. This unique synthesizing mechanism makes 3D
printing technique suitable for manufacturing some dimensionally small but structurally complex
objects. Since there are several kinds of structures assembled in the PA cell, it is much easier to build
prototypes of the PA cell with 3D printers. As to the selection of light sources, the broad absorption
spectrum of NO2 from 250 to 650 nm enables the application of a commercial blue laser diode in NO2

concentration measurement. This commercial high-power laser diode, driving circuits, home-made
signal processing circuits and a communication port, were integrated into the sensor to minimize its
size. The performance of this sensor was evaluated with experiments.

2. Sensor Design and Experimental Setup

2.1. Laser Source

The absorption cross-section of NO2 from 238 to 1000 nm has been measured with a Fourier
transform spectrometer by A.C. Vandaele et al. [21]. The maximum absorption cross-section of
7.4 × 10−19 cm2

·molecule−1 is located at 414 nm. However, photochemical dissociation of NO2 occurs
at the light wavelength of below 415 nm, which may induce a nonlinear PA effect when quantitatively
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detecting. Considering the cost and availability in the market, a blue laser diode (LD) whose emitting
wavelength is 450 nm at 25 ◦C (PL TB450B, Osram, Munich, Germany) was selected. The emission
spectrum of the LD, compared with the NO2 absorption cross-section, is shown in Figure 1. Since
the wavelength drift of the LD is about 0.067 nm·◦C−1, a temperature controlling system, including
a thermal electric cooler (TEC) (TEC1-031140, Pengnan Tech., Xiamen, China), a platinum resistor
(M222, Heraeus, Hanau, Germany) and a home-made controlling circuit, was used to stabilize the case
temperature of the LD at 25 ◦C. The maximum optical output power is 1.6 W, while the operating
current is 1.5 A. A home-made current source with modulation input supplies square-wave current to
the LD. The duty cycle of the square-wave current is 50%. A lens with anti-reflection coatings focuses
the beam at the center of the resonator.
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Figure 1. NO2 absorption cross-section in the range from 240 to 670 nm, compared with the laser
emission spectrum. The laser has a peak emitting power at 450 nm when the case temperature is 25 ◦C,
and the wavelength drift is about 0.067 nm·◦C−1.

2.2. PA Cell

To keep the sensor compact, a PA cell that has the same cross-section with the temperature
controlling box of the LD was designed. This PA cell has a dimension of 56 mm × 35 mm × 35 mm,
made with 3D printing technique. The resonator inside the PA cell has a length of 30 mm and an inner
diameter of 5 mm. In order to minimize flow noises, buffer chambers were designed at both ends of
the resonator. The cylinder buffer chambers have a radius of 14 mm, and the length is 11 mm. Each
buffer has a tube stick out from the wall as a gas inlet and outlet, and the inner diameters of the tubes
are 1 mm. A microphone with a sensitivity of 0.22 V·Pa−1 at 1 kHz (EK-23133-000, Knowles Electronics,
Itasca, USA) is installed at the midpoint of the resonator. A small hole connects the resonator and the
microphone for detecting the acoustic wave.

2.3. Signal Processing Circuits

Although the resonator amplifies sounds acoustically and the microphone has a fairly high
sensitivity, the PA signal obtained is too weak. So some circuits are designed carefully to promote
the signal to noise ratio (SNR). The power supply to the microphone is regulated and filtered with
an inductor-capacitor filter. And the pre-amplification circuit has a gain of 250 by using a 4-stage
amplifier. The microphone is directly soldered on the backside of the printed circuit board to avoid
extern coupled noise.

Another part of the signal processing circuit is a microcontroller-based digital lock-in amplifier
(DLIA), as shown in Figure 2. Recently, several kinds of DLIAs have been studied, which, however,
either use expensive and hard-to-develop integrated chips like Digital Signal Processor (DSP) [22] or
Field-Programmable Gate Array (FPGA) [23], or employ the microcontrollers (MCU) [24] for only low
frequency signal processing, with low precisions acquired, due to the limited computing power and
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lack of floating processing ability. As the rapid development of integrated circuits, a new MCU with a
floating processing unit and digital signal processing instructions now is available for the DLIA as the
sampling controller and computing core. Once a signal enters the DLIA, a 4-stage band-pass filter will
remove the out-of-band noises. Then the filtered PA signal is amplified to the level compatible with
the reference of an analog-to-digital converter (ADC) by a 4-stage amplifier whose gain is set to 1000.
Controlled by the MCU, the ADC samples and converts the signals at a sampling frequency of 20 times
the modulation frequency.
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to the laser driver. AMP: 4-stage amplifier; BPF: Band-pass filter; ADC: analog-to-digital converter;
SPI: Serial Peripheral Interface; DDS: Direct digital synthesize; LPF: low-pass filter; and CP: calibration
module and communication serial port.

At this sampling frequency, digitalized PA signals are processed by a software-based
phase-sensitive detector (PSD) in the MCU. A direct digital synthesizer (DDS), which is also
implemented by software, provides a pair of orthogonal reference sine waves to the PSD. Because
the ratio of sampling frequency to modulation frequency is fixed, this implementation is as simple
as building a look-up table storing a single cycle of phase biased sine waves. The demodulation
parameters, such as the roll-off slope and the integration time, can be adjusted in the software.
Considering the balance of processing power, signal-to-noise ratio and bandwidth of the sensor, these
parameters are set to 12 dB/Oct and 1 s. A two-stage infinite impulse response (IIR) filter with a
corresponding cut-off frequency of 125 mHz is implemented in the PSD. Theoretically, the output
of DLIA is proportional to the absorption, and hence also proportional to the concentration of NO2,
when the power of incident light is determined. The MCU can upload the signals onto a PC through a
serial port.

2.4. Laboratory Setup

The dimension of the assembled NO2 sensor (shown in Figure 3) is 120 mm × 65 mm × 35 mm.
To optimize the parameters and evaluate the performance, a laboratory setup is established for the
sensor. An optical power meter is used to measure the power of exit beam, and it can be replaced
by a beam dump (GCX-M02, Daheng Optics, Beijing, China) after the power is determined, to avoid
potential harm caused by the high-power laser. By using a gas mixing system (N-4000, Environics
Inc., Tolland, USA), NO2–N2 mixtures with different concentrations from pure N2 to the maximum
202 ppb are generated by diluting NO2 in N2. The gas flow fed into the sensor is controlled by a
gas flow controller (D07-19B, Beijing Sevenstar Electronics Co., Beijing, China). After going through
the sensor, the flow is fed into a chemiluminescence NOX analyzer (Model 42i NO–NO2–NOX Gas
Analyzer, Thermo Fisher Scientific Inc., Waltham, USA) to precisely determine the NO2 concentration.
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Figure 3. (a) A 3D model of the assembled sensor; (b) the entity. The dimension is
120 mm × 65 mm × 35 mm.

3. Results and Discussion

3.1. Resonance Characteristic

The modulation frequency needs to be determined first to optimize the acoustic signal amplitude.
Since the cross-section of the resonator is orderly smaller than the target acoustic wavelength, only
a one-dimensional acoustic field along the length of the resonator is generated [25]. The resonance
frequency of longitudinal modes can be obtained by:

fn =
nc

2(l + ∆l)
n = 1, 2, 3, . . . (1)

where n is the number of longitudinal modes, c is the speed of sound, l is the length of resonator, and
∆l is the so-called end correction, which can be approximately calculated by ∆l = 0.6r, in which r is the
inner radius of the resonator [25]. The sound speed in an ideal gas is given by:

c =
√
γRT (2)

where γ is the adiabatic gas constant, R is the ideal gas constant, M is the molecular mass of gas, and T
is the absolute temperature. Theoretically, the odd longitudinal modes are much stronger than the
even ones, and the first longitudinal mode is the strongest one. Thus, the modulation frequency is set
to this value. Under the condition of ~25 ◦C (~298.15 K) and low concentration of NO2 in N2 in the cell,
the resonance frequency of the first longitudinal mode, i.e., the modulation frequency fM = 5.24 kHz.

Experiments were conducted to verify this theoretical resonance frequency. NO2–N2 mixture with
a concentration of 202 ppb flows though the PA cell with a mass flow of 200 mL·min−1 to keep the PA
signal from any noteworthy flow noise. Modulation frequency was scanned from 2 to 9 kHz. The norm
of orthogonal output was calculated in PC, so that the variation of the signal phase can be ignored. As
shown in Figure 4, the resonance frequency of the resonator is 5.13 kHz, which was measured under
the ambient pressure, ∼25 ◦C. This value is slightly smaller than the theoretical value. The deviation
may be caused by the acoustic effect of buffers. The Q factor of the resonator is determined to 13.4
from the curve in Figure 4. The frequency is determined as the modulation frequency.
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3.2. Performance Evaluation

The relationship between the raw output of the DLIA and the concentration of NO2 was measured
in the range from pure N2 to 202 ppb. This range covers the safety limits and normal concentration in
the polluted area mentioned before. The raw output is the digitalized voltages by the ADC. The stable
output for NO2 with different concentrations is shown in Figure 5a.
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Figure 5. Calibration of the NO2 sensor. (a) The stable output of the sensor measuring the samples in a
concentration range from 0 to 202 ppb. (b) The linear dependence of the output of the sensor upon the
NO2 concentration.

Figure 5b shows a good linear relationship between the raw output and NO2 concentration, since
the coefficient of determination is 99.944%. Due to the low standard deviation of the raw output, error
bars are not illustrated in Figure 5b. Based on these results, the limit of detection (LoD) could be
calculated by:

LoD =
m
σ

(3)

where m is sensitivity, and σ is the standard deviation of the measured data. Here, m is the slope of the
red fitting line in Figure 5b, which is 69.40 ppb−1. And σ can be retrieved from the measurement of
pure N2, which is 59.97. So the LoD of this sensor could be determined to 0.86 ppb. The corresponding
1σ normalized noise equivalent absorption (NNEA) coefficient is defined as:

NNEA =
αminP0√

∆ f
(4)

where αmin is the noise equivalent absorption, P0 is the average laser power, and ∆ f is the bandwidth
of the sensor. Thus, the NNEA of this sensor could be determined to 2.0 × 10−8 cm−1

·W·Hz−1/2.
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A long-running test was carried out for further evaluation. 31.7 ppb NO2 was measured
12,000 times continuously with an interval of 1 s. The measurement results are shown in Figure 6a.
The Gaussian distribution of the measurement results, as shown in Figure 6b, has a half width at half
maximum (HWHM) of 1.6 ppb. The stability and potential lowest detectable limit were evaluated
with an Allan deviation analysis of the long-running test results, as illustrated in Figure 6c. The lowest
detectable limit is found to be 0.25 ppb, with an integration time of 240 s.
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The consistent results imply that the developed NO2 sensor is capable for practical application, such 
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Figure 6. (a) Continuous measurements of 31.7 ppb NO2; (b) Histogram plot obtained from the
measurements. The half width at half maximum (HWHM) of the Gaussian distribution curve is 1.6 ppb;
and (c) Allan deviation plot of the measurements.

For evaluating the practical performance of the sensor, outdoor air was filtered and fed into the
experimental setup instead of the NO2–N2 mixture. The calibrated output of the sensor is shown
in Figure 7, compared with the measurement results acquired from the Model 42i Gas Analyzer.
The standard deviation of the residual is 1.01 ppb, which is slightly higher than the LoD obtained
before. The consistent results imply that the developed NO2 sensor is capable for practical application,
such as atmosphere NO2 monitoring.Sensors 2020, 20, 1270 8 of 9 
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4. Conclusions

A compact, low-cost, and sensitive photoacoustic sensor for NO2 trace gas sensing was developed.
A 1.6 W blue LD, a 3D printed PA cell, and some homemade circuits for LD driving and signal processing,
are assembled to form a fully functional sensor. With a small shape of 120 mm × 65 mm × 35 mm, the
fully integrated sensor can measure NO2 concentration, getting power supply and communicating
with other devices through a four-wire port. The LoD was evaluated to be 0.86 ppb with an integration
time of 1 s. The corresponding NNEA is 2.0 × 10−8 cm−1

·W·Hz−1/2. The high linearity in the range
from pure N2 to 202 ppb was verified. The range covers the NO2 concentration in many polluted areas,
such as roads and airports. A comparison between the sensor and a NO–NO2–NOX gas analyzer in
measuring outdoor NO2 concentration shows that the sensor has a practical potential. The performance
evaluation indicates that the sensor can be employed to monitor environmental NO2 concentration or
make exhaust analyses.
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