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Abstract: The positions of enhancers and promoters on genomic DNA remain poorly understood.
Chromosomes cannot be observed during the cell division cycle because the genome forms a chro-
matin structure and spreads within the nucleus. However, high-throughput chromosome confor-
mation capture (Hi-C) measures the physical interactions of genomes. In previous studies, DNA
extrusion loops were directly derived from Hi-C heat maps. Multidimensional Scaling (MDS) is
used in this assessment to more precisely locate enhancers and promoters. MDS is a multivariate
analysis method that reproduces the original coordinates from the distance matrix between elements.
We used Hi-C data of cultured osteosarcoma cells and applied MDS as the distance matrix of the
genome. In addition, we selected columns 2 and 3 of the orthogonal matrix U as the desired structure.
Overall, the DNA loops from the reconstructed genome structure contained bioprocesses involved in
transcription, such as the pre-transcriptional initiation complex and RNA polymerase II initiation
complex, and transcription factors involved in cancer, such as Foxm1 and CREB3. Therefore, our
results are consistent with the biological findings. Our method is suitable for identifying enhancers
and promoters in the genome.

Keywords: multidimensional scaling; high-throughput chromosome conformation capture; enhancer;
promoter

1. Introduction

For cells to utilize genetic information, many genes must be expressed in a coordinated
manner. The accessibility of genomic information depends on how DNA is packed into
the chromatin. Chromatin is the basis of various biological processes, including cell cycle
regulation and, DNA replication, repair, and maintenance [1]. Euchromatin is a genome
region consisting of DNA with a relatively loose structure. The open structure allows RNA
polymerase and other proteins to access the genome for DNA transcription. Enhancers
and promoters also approach the euchromatin region to form DNA loops. Gene expression
is controlled by promoters near the gene as well as by gene regulatory sites named as
enhancers that are distant from the gene. However, how promoters and enhancers interact
with each other to regulate gene expression is not well understood. High-throughput
chromosome conformation capture (Hi-C) can be used to analyze the 3D structure of a
genome by detecting genomic regions that are spatially close to each other using next-
generation sequencing [2]. This conventional method led to an approximation of the
genome structure from the Hi-C heat map [3]. We demonstrated the potential of using
this method for identifying enhancers and promoters by applying multi-dimensional
scaling (MDS).

Genes 2021, 12, 1671. https://doi.org/10.3390/genes12111671 https://www.mdpi.com/journal/genes

https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0003-3262-8022
https://orcid.org/0000-0003-0867-8986
https://doi.org/10.3390/genes12111671
https://doi.org/10.3390/genes12111671
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/genes12111671
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes12111671?type=check_update&version=4


Genes 2021, 12, 1671 2 of 11

2. Materials and Methods
2.1. Hi-C Data

The Hi-C dataset is valuable for understanding how chromatin is organized in the
nucleus to effectively perform its biological functions; that is, it enables examination of the
physical interactions of DNA loops. We downloaded eight Hi-C data during the cell cycle:
0 min (metaphase) and 35 min (anaphase/telophase); 60 min (cytokinesis); and 90, 120,
180, 240, and 360 min (G1) from Series GSE141067 [2]. In this study, we analyzed Hi-C data
with a resolution of 50 kbp and found that long-range genomic interactions were reshaped
from 60 min and completed within 90–120 min [2]. We assigned the average number of
Hi-C detections for each distance between genomic coordinates to the missing values. In
addition, the Hi-C data showed a significant difference between the number of detections
with a far distance between coordinates and the number of detections with a close distance.
Equation (1) is a function that does not affect the number of detections when the distance
between the coordinates is close but increases the number of detections when the distance
between the coordinates is large. As the purpose of this study was to identify enhancers
and promoters, we evaluated those with a large number of Hi-C detections, although the
distance between coordinates was large. Therefore, the following steps were performed
according to the distance between nucleotides (Supplementary Tables S1–S4).

dijnew =

{
dij , | i− j |≤ 5
dij × log | i− j | , | i− j |> 5

(1)

where i and j are coordinates, and dij is the number of Hi-C detections (Figures 1 and 2).
We processed the Hi-C data with various weights. For example, we multiplied the number
of detections by the distance between each coordinate.

dijnew =

{
dij , | i− j |≤ 5
dij × a | i− j | , | i− j |> 5

(2)

where a is a constant. We then averaged the number of detections per coordinate distance
and multiplied the number of detections greater than the average by a constant.

dijnew =

dij , dii+j ≤
ΣN−j

i=0 dii+j
N−j , (j = 0, 1, ..., N)

dij × a , dii+j >
ΣN−j

i=0 dii+j
N−j , (j = 0, 1, ..., N)

(3)

where N is the length of the base. However, the results of enrichment analysis obtained
using methods (2) and (3) were unsatisfactory.

Figure 3 shows the heat map of the Hi-C data, where the genomes are close to each
other when the number of Hi-C detections was large. To apply the multidimensional scale
construction method, the Hi-C data were transformed as follows:

Dij =
1

dijnew
(4)

The inverse of the Hi-C data was used as the distance data because the multidimen-
sional scale construction method was used for similarity matrices.
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Figure 1. Distance between coordinates versus logarithm of Hi-C detections before adding weighting.

Figure 2. Distance between coordinates versus logarithm of Hi-C detections after adding weighting.

1 
 

 

Figure 3. Heat map of Hi-C data after adding weighting.
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2.2. Multidimensional Scaling

MDS (Appendix A) is a method that reproduces the original location of objects based
on the distance data between objects [4] according to the following principle. Consider an
N × P data matrix X = (xij), N data oi = (xi1, xi2, ...., xiP). Then, we consider the N × N
matrix B = XX t and the N × N distance matrix D = (||oi − oj||) created from X. We
define D(2) as the matrix of all components of the distance matrix D squared, and multiply
D(2) by the N × N centralization matrix J(= E− 1

N 1) from both sides.

−1
2

JD(2) Jt = −1
2

J{diag(XX t)1− 2XX t + 1 diag(XX t)}Jt

= JXX tX t = JX(JX)t

= X∗X∗t = Bcen

(5)

X∗ is the centered data matrix and Bcen is the inner product matrix obtained from the
centered data matrix.

GtBcenG =



λ1
λ2 0

. . .
λP

0

0
. . .

0


(6)

Bcen = Gt



√
λ1 √

λ2 0
. . . √

λP
0

0
. . .

0



×



√
λ1 √

λ2 0
. . . √

λP
0

0
. . .

0


G

(7)

G is the orthogonal matrix of the inner matrix Bcen. From (5) and (7),

X∗ = Gt



√
λ1 √

λ2 0
. . . √

λP
0

0
. . .

0


(8)

From the above equations, the original coordinates can be derived.

2.3. Applying MDS to the Hi-C data

We applied MDS to the distance matrix D

D = ULU t (9)
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It is unclear which column of the orthogonal matrix U presents the desired structure.
However, in many cases, it is thought that the second and third columns of the orthogonal
matrix U present the desired structure. Accordingly, the second and third columns of the
orthogonal matrix U were selected as the desired structures. We refer to the structure of
the second and third columns of the orthogonal matrix U a hypothetical chromosome. It then
acquired the euchromatin region where the enhancer and promoter are predicted to be
located. Moreover, the distance between the coordinates of the hypothetical chromosomes
based on the Euclidean distance was determined.

Ei =
√
(Ui+1,1 −Ui1)2 + (Ui+1,2 −Ui2)2 (10)

The length of the DNA loop in the euchromatin region is only partially understood.
In this study, we averaged Ei every 50 kbp and used this value as the distance between
the coordinates, the number of coordinates is reduced because it is averaged every 50 kbp.
Accordingly, we included averages taken every 45, 40, and 35 kbp from both sides.

Einew =


Σk

j=1Ei+j

k , i = 0, k = 5, 6, ..., 9
Σ9

j=0Ei+j

10 , i = 1, 2, ..., N − 1
Σk

j=0Ei+j

k+1 , i = N − 9, k = 8, 7, ..., 4

(11)

We proceeded to show the criteria for acquiring the coordinates as DNA loops. Five
times the average distance between these genomic coordinates was set as the threshold.
We focused on coordinates above the threshold value, which are considered to form DNA
loops. However, because enhancers and promoters are at the ends of DNA loops, we
also focused on coordinates below the threshold. In this study, the following criteria were
established: E0 was set as the threshold value and Ei is the distance between coordinates.
nk is the coordinate such that Enk − Enk−1 < 0, and Enk+1 − Enk > 0 is satisfied. Then, in
arbitrary i, nk of nk < i < nk+1, where i satisfying Ei > E0 is defined as n′k. Finally, we
acquired n′k−1 to n′k+1 as a DNA loop. Thus, we considered that coordinates from the blue
point to the next blue point in Figure 4 form a DNA loop.

2.4. Enrichment Analysis

BiomaRt was used to retrieve a list of genes from the obtained coordinates. The gene
list obtained by BiomaRt was uploaded to g: Profiler [5] to identify functions, processes,
and transcription factors related to enhancers and promoters. The coordinates acquired as
euchromatin regions were subjected to enrichment analysis using g: Profiler. Enrichment
analysis can reveal the functions of differentially expressed genes.

3. Results
3.1. Hypothetical Chromosomes

The heat map of the Hi-C data after organizing these data by (1) is shown in Figure 3.
Pairs with large values in the matrix indicate region pairs with a high contact probability.
MDS was applied to the Hi-C data, and the resulting hypothetical chromosomes are shown
in Figure 5. The euchromatin region was identified (Figure 4). The acquired euchromatin
regions were summarized in Table S1 (Biological replicate 1) and Table S2 (Biological
replicate 2).



Genes 2021, 12, 1671 6 of 11

Figure 4. Distance plot between coordinates (The red line is the threshold and blue points are roots).

Figure 5. The hypothetical chromosomes 18 (0 bp–86,000 kbp).

3.2. Enrichment Analysis

We used BiomaRt [6] in R to retrieve genes from the obtained coordinates. Finally, the
obtained euchromatin regions were subjected to enrichment analysis using g: Profiler [5].
The results are presented in Tables 1 and 2. The functions and processes involved in
transcription were also determined. The results of 0–360 min enrichment analysis were
summarized in Table S3 (Biological replicate 1) and Table S4 (Biological replicate 2).
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Table 1. Results of enrichment analysis of 90 min Hi-C data by g:Profiler.

Term_Name Term_ID Adjusted_p_Value

transcription preinitiation complex assembly GO:0070897 9.67× 10−5

RNA polymerase II preinitiation complex assembly GO:0051123 5.90× 10−3

immunoglobulin complex GO:0019814 6.72× 10−49

immunoglobulin complex, circulating GO:0042571 3.97× 10−8

DNA packaging complex GO:0044815 3.75× 10−7

protein-DNA complex GO:0032993 5.36× 10−4

transcription factor TFIID complex GO:0005669 9.22× 10−3

RNA Polymerase I Promoter Opening REAC:R-HSA-73728 2.04× 10−8

Transcriptional regulation by small RNAs REAC:R-HSA-5578749 5.98× 10−7

Factor: ER-alpha; motif: TGACCYN TF:M03547 5.59× 10−4

Factor: Foxm1; motif: NTGTTTRT TF:M07255 5.79× 10−3

Factor: MafG; motif: CMATGACTCAGCAGA; match class: 1 TF:M07048_1 1.04× 10−2

Factor: AML2; motif: TGTGGTNNN TF:M07372 1.39× 10−2

Factor: PR; motif: NNNNNNRGNACNNKNTGTTCTNNNNNN TF:M00957_1 2.66× 10−2

Table 2. Results of enrichment analysis of 120 min Hi-C data by g:Profiler.

Term_Name Term_ID Adjusted_p_Value

transcription preinitiation complex assembly GO:0070897 2.93× 10−4

RNA polymerase II preinitiation complex assembly GO:0051123 3.00× 10−3

immunoglobulin complex GO:0019814 1.91× 10−41

immunoglobulin complex, circulating GO:0042571 1.32× 10−8

transcription factor TFIID complex GO:0005669 5.16× 10−3

Factor: ER-alpha; motif: TGACCYN; match class: 1 TF:M03547_1 1.15× 10−4

Factor: RARA; motif: GAGGTCAAAAGGTCAAKK TF:M08018 2.84× 10−3

Factor: AML2; motif: TGTGGTNNN TF:M07372 5.68× 10−3

Factor: MafG; motif: CMATGACTCAGCAGA; match class: 1 TF:M07048_1 8.21× 10−3

Factor: CREB3; motif: NTGCCACGTCAYCN TF:M04207 4.57× 10−2

The DNA loops obtained from the reconstructed genome structure contained biopro-
cesses involved in transcription, such as the pre-transcriptional initiation complex and
RNA polymerase II initiation complex, and transcription factors involved in cancer, such
as CAMP responsive element binding protein 3 (CREB3) and forkhead box M1 (FOXM1).
Estrogen receptor 1 (ER-alpha) is involved in regulating gene expression, and is associ-
ated with breast cancer [7]. FOXM1 plays an essential role in cell cycle progression; its
expression peaks in the S and G2/M phases. FOXM1 upregulation occurs in most solid
human cancers [8]. MAF BZIP transcription factor G (MafG) interacts with methionine
adenosyltransferase a1 to regulate transcription; MafG is overexpressed in cancer cells [9].
RUNX family transcription factor 3 (AML2) forms a heterodimeric complex core-binding
factor (CBF) with CBFB and functions as a tumor suppressor. The gene is frequently deleted
or transcriptionally silenced in cancer cells [10]. Progesterone receptor (PR) is involved in
regulating gene expression and is associated with breast cancer [7]. Retinoic acid receptor
alpha (RARA) regulates transcription in a ligand-dependent manner; diseases associated
with acute promyelocytic leukemia [11]. CREB3 encodes a transcription factor that is a
member of the leucine zipper family of DNA-binding proteins. This protein binds to
the CAMP-responsive element and regulates cell proliferation. The mRNA expression of
CREB3 is higher in OS tissues than in normal tissues [12].
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4. Discussion
4.1. Comparison with Previous Studies

Previous studies have focused on identifying euchromatin regions or DNA loops in
Hi-C maps [3]. The chromosome forms a topologically associating domain (TAD), and each
TAD (A/B) compartment is organized with an average of 880 kb. The A compartment is
loosely structured and serves as the transcriptionally active region, whereas compartment
B is narrowly structured and serves as the transcriptionally inactive region. At the TAD
level, loops and stripes/tracks were formed as sub-TADs (average size 185 kbp). Therefore,
the TAD compartment is a rectangle that is approximately 880× 880 kbp in size in the Hi-C
map, and the A compartment is a rectangle that is approximately 185 × 185 kbp in the
Hi-C map, where enhancers, promoters, and insulators form DNA loops. Figure 6 shows
the existence of DNA loops of such sizes. As described above, previous studies identified
these DNA loops. If only a rough TAD compartment must be identified, the method used
in the previous study may be sufficient. However, detecting sub-TADs and DNA loops
is markedly more complicated and will become more difficult as the resolution of Hi-C
is improved.

Figure 6. Heat map of 90 min Hi-C data of chromosomes 18 (0 bp–5000 kbp).

In addition, several studies have used MDS to analyze Hi-C data for accurately
reproducing 3D genome structures. For example, miniMDS [13] involves splitting high-
resolution Hi-C data into several parts to which MDS is applied to low-resolution Hi-C
data, and then the split high-resolution Hi-C data are reconstructed. The framework
HiCRep evaluates the reproducibility of Hi-C data [14] using the stratum-coordinated
correlation coefficient as a similarity measure to quantify differences between Hi-C contact
matrices. Furthermore, it has been found that HiCRep/MDS method, which combines
HiCRep with MDS, is robust to low per-cell sequence depths and that this robustness is
further improved when high and low coverage cells are projected together [15]. Another
framework for predicting 3D genomic structures using t-distributed stochastic neighbor
embedding (t-SNE) is named as StoHi-C [16]. MDS has inherent problems with very sparse
high-dimensional Hi-C datasets, whereas tSNE overcomes these limitations. This method
can reproduce the characteristics of chromosome 3D structures more clearly than MDS
in yeast Hi-C data, which are considered as suitable for recreating the 3D structure of
chromosomes. The distances between the coordinates obtained from the 3D structure
reproduced by the StoHi-C method are shown in Figure 7. As shown in Figure 7, attempts
to precisely reproduce the 3D structure resulted in no significant difference in the distance
between coordinates, even when acquiring DNA loops with a threshold value. Therefore,
the enhancers and promoters cannot be precisely identified. We focused on the ones with
a large number of Hi-C detections, although the distance between coordinates is large
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because the goal of this study was to identify enhancers and promoters. Therefore, we
added weights as shown in Equation (1).

Based on our results, it is useful to obtain DNA loops by automatically visualizing the
chromosome structure using MDS, as performed in this study.

Figure 7. Distance plot between coordinates by StoHi-C.

4.2. Identification of Eigenvectors in MDS Representing the Actual Structure

We sought to identify the eigenvectors in MDS that represent the actual structure. The
column of the orthogonal matrix U presenting the desired structure is unclear. However,
in many cases, the second and third columns of the orthogonal matrix U are thought to
present the considering structure. Herein, we performed a simple simulation, considering
a circle with errors, such as xi1 = cos (2π i

N ) + g(λ),xi2 = sin (2π i
N ) + g(λ). Here, the

function g is the error function and is defined as follows:

g(λ) = λ , 0 ≤ λ ≤ 0.5 (12)

We used MDS to recover the original circle from the distance matrix; however, the
second and third eigenvectors were found to represent the original circle. In such complex
data with random numbers, the second and third eigenvectors typically represent the
original structure (Figure 8).

Figure 8. Simulation to identify the eigenvector with the original structure using sample data.
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Appendix A

Listing A1. Sample code of the MDS simulation.

> set.seed (1)

> theta <- seq(0,2*pi ,length =100)

> x <- cbind(cos(theta )+runif (100 ,0,0.5),sin(theta )+runif (100 ,0 ,0.5))

> plot(x)

> old <- svd(x)

> new <- data.matrix(dist(x))

> new <- svd(new^2)

> gc_old=c(mean(old$u[,1]),mean(old$u [ ,2]))

> gc_new=c(mean(new$u[,2]),mean(new$u [ ,3]))

> old_z=old$u [,1:2]- gc_old

> new_z=new$u [,2:3]- gc_new

> A=t(new_z )%*% old_z

> rotsvd=svd(A)

> M=rotsvd$u %*% rotsvd$v

> V=gc_new -M%*% gc_old

> xy=cbind(old$u [,1]*M[1,1]+ old$u [,2]*M[1 ,2]+V[1,],

+ old$u [,1]*M[2,1]+ old$u [,2]*M[2,2]+V[2,])

> plot(new$u[,2],new$u[,3],xlab=’SVD$u[,2]’, ylab=’SVD$u[,3]’)

> points(xy[,1],xy[,2],col=2)
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