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Diabetic cardiomyopathy is a result of diabetes-induced changes in the structure

and function of the heart. Hyperglycemia affects multiple pathways in the diabetic

heart, but excessive reactive oxygen species (ROS) generation and oxidative stress

represent common denominators associated with adverse tissue remodeling. Indeed,

key processes underlying cardiac remodeling in diabetes are redox sensitive, including

inflammation, organelle dysfunction, alteration in ion homeostasis, cardiomyocyte

hypertrophy, apoptosis, fibrosis, and contractile dysfunction. Extensive experimental

evidence supports the involvement of mitochondrial ROS formation in the alterations

characterizing the diabetic heart. In this review we will outline the central role of

mitochondrial ROS and alterations in the redox status contributing to the development of

diabetic cardiomyopathy. We will discuss the role of different sources of ROS involved in

this process, with a specific emphasis on mitochondrial ROS producing enzymes within

cardiomyocytes. Finally, the therapeutic potential of pharmacological inhibitors of ROS

sources within the mitochondria will be discussed.

Keywords: diabetic cardiomyopathy, reactive oxygen species, mitochondria, oxidative stress, diabetic

complication

INTRODUCTION

Chronic hyperglycemia, the major characteristic of type 1 diabetes (T1D), is a life-threatening
risk factor that results in organ and tissue damage in the long term. One of the acute metabolic
complications associated with mortality includes diabetic ketoacidosis occurring mainly in
T1D (1). Instead, type 2 diabetes (T2D) and obesity are characterized by insulin resistance,
hyperlipidemia and hyperinsulinemia that might occur before the onset of hyperglycemia. The
heart is an insulin-dependent tissue, since insulin promotes glucose utilization and suppresses
fatty acid utilization thereby conferring a certain level of metabolic flexibility, i.e., the ability
to adapt substrate oxidation rates to substrate availability, in support of cardiac function
(2). This metabolic flexibility is largely impaired in diabetic hearts, resulting in minimal
glucose utilization, shift to free fatty acid utilization and energetic inefficiency (3). Vascular
complications occurring in diabetes account for increased morbidity and mortality associated
with this disease. In the long term, diabetes may cause microvascular disease, resulting
from the damage of small blood vessels, and/or macrovascular disease, resulting from the
damage of the arteries (4). The latter includes coronary artery disease, peripheral arterial
disease, and stroke, while microvascular complications result in retinopathy, nephropathy and
neuropathy. Diabetic cardiomyopathy (DCM) is a pathology associated with alterations in the
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myocardial structure and function without the coexistence of
other cardiac risk factors such as coronary artery disease,
hypertension, valvular disease (5). DCM is one of the deadliest
complications associated with diabetes (1). The incidence of
heart failure is increased in diabetic patients compared with
age-matched individuals, independently of obesity, hypertension,
dyslipidemia, and coronary artery disease (6). In addition,
diabetes has also been associated with increased rates of
cancer, physical and cognitive disability, tuberculosis and
depression (7–12).

Reactive oxygen species (ROS) and oxidative stress have
been linked both to the onset of diabetes and development of
complications associated with this disease (13). Here, we will
review the pathophysiological features of DCM, the evidence
related to the contribution of ROS to DCM and the role
of different sources of ROS involved in this process. The
present review will focus on mitochondrial sources of ROS in
cardiac myocytes (rather than other cell types in the heart)
and will briefly discuss the advantages and disadvantages of
targeting mitochondrial enzymes to prevent oxidant damage and
postpone or prevent the development of cardiac complications
in diabetes.

DIABETIC CARDIOMYOPATHY

DCM is a result of diabetes-induced changes in the structure and
function of the heart and is diagnosed only if there is cardiac
dysfunction not associated with coronary artery disease (14).
The clinical outcomes associated with ischemic heart disease,
hypertension or heart failure are worse for patients with diabetes
and indeed, cardiovascular complications are the leading cause
of mortality and morbidity in diabetic patients (5, 15, 16). Thus,
a better understanding of DCM-associated pathophysiology and
underlying mechanisms is necessary in order to develop tools for
early diagnosis and treatment strategies.

As an early complication of diabetes, DCM is characterized
by a long latent phase during which the disease progresses, but
is completely asymptomatic. This subclinical period includes an
increase in the left ventricle (LV) mass, fibrosis, abnormalities
in cell signaling and diastolic dysfunction (3, 5). Studies using
magnetic resonance imaging demonstrated that hyperglycemia
and insulin resistance are associated with an increase in LV
mass (3, 17). The increase in cardiac stiffness and fibrosis
detected in diabetic patients frequently evolves to heart failure
with preserved ejection fraction (HFpEF) (18, 19). In some
patients, diastolic dysfunction may progress to pump failure
and impairment in systolic function resulting in heart failure
with reduced ejection fraction (20, 21). Nevertheless, not all
cardiac anomalies observed in T2D are recapitulated in T1D
(22, 23). While T2D is characterized by both morphological
and functional cardiac abnormalities in patients (i.e., LV
hypertrophy, diastolic, and systolic dysfunction), T1D patients
show intact systolic function and impairment in diastolic
function (23). Moreover, not all studies conducted in T1D
patients evidenced an impairment in diastolic function. This
may be explained by the fact that T1D patients are normally
treated with insulin that normalizes insulin-dependent metabolic

processes and therefore likely renders T1D-induced alterations
in the heart less evident (23). Regardless of these differences,
clinical trials showed that the prevalence of heart failure in
diabetic patients ranges from 19 to 26% (24–27), while the
mortality rate is 15–20% in diabetic patients with systolic
dysfunction (21).

Although the exact mechanism of diabetes-associated LV
dysfunction is not known, it appears that hyperglycemia,
hyperinsulinemia, and/or lipotoxicity initiate a series of adaptive
and maladaptive processes contributing to the development
of heart failure. Factors underlying pathological changes
in the diabetic heart are multiple. Metabolic alterations
such as hyperglycemia, insulin resistance and increased free
fatty acid levels, result in the oxidative stress, organelle
dysfunction, inflammation, advanced glycation end products
(AGEs) formation, activation of protein kinase C (PKC),
abnormalities in ion homeostasis, alterations in structural
proteins, apoptosis and fibrosis, changes that eventually result in
diabetes-induced cardiac dysfunction (Figure 1) (28, 29). Despite
a myriad of factors has been shown to collectively contribute to
the development and progression of DCM, causal relationships
and the exact sequence of events among these cellular and
molecular mechanisms are still not entirely clear. Moreover, these
factors frequently interact with each other, making DCM a very
complex disease to treat.

ROS: A COMMON DENOMINATOR IN
DIABETES-INDUCED COMPLICATIONS

ROS formation has gained significant experimental and
clinical evaluation amongst the various mechanisms proposed
(13, 20, 30). Notably, the aforementioned pathogenic factors
and changes either induce or result from oxidative stress. ROS
can be dangerous for biological systems for their capacity to
interact with numerous macromolecules, such as proteins,
lipids and DNA. ROS-induced modification of DNA can be
mutagenic, especially if DNA damage cannot be repaired (31).
ROS may lead to DNA strand breakage and formation of
8-hydroxydeoxyguanosine, a prominent feature in diabetic
hearts (32, 33). While protein oxidation can be reversible
and serve for signaling purposes, oxidative stress may lead to
protein carbonylation that cannot be reversed and results in
toxic aggregate accumulation if carbonylated molecules are
not promptly degraded (34, 35). Membrane lipids are rich in
polyunsaturated fatty acids that can easily be oxidized by ROS, a
process that is also involved in the generation of atherosclerotic
plaques (36). Lipid oxidation results in excess formation of
carbonyl compounds, such as prostanoids and aldehydes,
toxic metabolites that can promote numerous pathologies
(37). In addition to direct macromolecule targeting, high ROS
formation can also decrease the antioxidant capacity of the
diabetic myocardium, contributing thereby to oxidative stress
and resulting myocardial damage. This concept is further
supported by studies demonstrating that overexpression
of antioxidant defense proteins, such as metallothionein
or catalase, could prevent oxidative stress and maladaptive
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FIGURE 1 | A schematic diagram depicting different factors involved in the onset and development of diabetic cardiomyopathy. AGEs, advanced glycation end

products; ECM, extracellular matrix; ER, endoplasmic reticulum; FAO, fatty acid oxidation; RAAS, renin-angiotensin-aldosterone system; ROS, reactive oxygen

species.

remodeling of the diabetic hearts (22, 38–41). Mitochondrial
ROS production underlies several hyperglycemia-induced
pathogenic mechanisms, such as GAPDH inhibition, activation
of polyol pathway, formation of AGEs, activation of PKC, glucose
auto-oxidation, and activation of the 12/15-lipoxygenases
pathway (13, 30, 42, 43). Activation of these pathways can, in
turn, exacerbate oxidative stress. For instance, the polyol pathway
utilizes NAPDH which is required for GSH regeneration, while
binding of AGEs to their receptor results in ROS formation (44).
Inhibition of AGE formation or AGE receptor gene knock-down
attenuates the development of DCM (45). Moreover, activation
of p53 signaling in T1D and T2D mouse models by an initial
oxidative trigger leads to the upregulation of cytochrome c
oxidase assembly protein, mitochondrial respiration, fatty acid
oxidation, and mitochondrial ROS generation (46). However,
hyperglycemia is not the only factor responsible for cardiac
complications in diabetes, as mentioned before. Lipotoxicity and
increased oxidation of free fatty acids also lead to oxidative stress,
mitochondrial and ER stress, and activation of pro-inflammatory
signals (47–51). Damage to mitochondria results in enhanced
ROS generation and activation of the NLRP3 inflammasome

(52) which, in turn, may promote or exacerbate cardiac
fibrosis. Moreover, high glucose and inflammation provide a
synergistic effect and further enhance ROS formation and all
the downstream events leading to cell dysfunction (53, 54).
Inflammation, angiogenesis, cardiomyocyte hypertrophy and
apoptosis, fibrosis and contractile dysfunction, are processes
susceptible to ROS-dependent modulation in the diabetic heart
(55). Diastolic abnormalities observed in HFpEF are largely
due to increased collagen and cardiomyocyte stiffness (56).
ROS are well-known to target sarcomere proteins thereby
inducing oxidative changes that may impact on sarcomere
and cardiomyocyte stiffness (57, 58). While oxidation of
the proteins forming the thick and thin filaments is mostly
associated with impaired contractility, post-translational
modifications of the elastic filament protein titin are tightly
related to changes in LV stiffness (59). The passive stiffness of
cardiac muscle was shown to be redox-dependent through titin
oxidation and disulfide bridge formation that lead to increased
cardiac stiffness (60). In addition to direct mechanisms,
ROS can modulate sarcomere function also by affecting key
protein kinases or phosphatases to induce post-translational
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modifications (57). In that regard, reduced titin phosphorylation
is an important determinant of diastolic stiffness in HFpEF
(59, 61, 62). This is particularly relevant in diabetic and obese
patients in which oxidative stress impairs NO/cGMP/PKG
signaling and leads to titin hypophosphorylation (59, 63) and
increased cardiomyocyte stiffness along with collagen and
AGEs deposition (59). Thus, enhanced ROS formation and
alteration in the redox status are deeply intertwined with
numerous alterations observed in diabetic hearts, suggesting
that targeting ROS formation/elimination may represent an
attractive therapeutic strategy for the treatment of DCM. Several
cellular and subcellular sources that may account for enhanced
ROS production were described in diabetic cardiovascular
system and other tissues. Enzymes involved in deleterious
ROS generation associated with diabetic complications
include nicotinamide adenine dinucleotide phosphate
oxidases (NOXs) (64–66), xanthine oxidase/oxidoreductase
(XO) (67, 68), arachidonic acid cascade and microsomal
enzymes, uncoupled nitric oxide synthase (NOS) (69), and
mitochondria (13, 70–72).

NOX is a family of membrane-bound enzyme complexes
composed of plasma membrane spanning and cytosolic
components (73, 74). The active NOX complex allows for the
transfer of electrons to molecular oxygen to generate superoxide
(75). NOXs are considered to be one of the major cellular
ROS sources and prominent players in several pathological
conditions (74, 76, 77). NOX2, located in the cell membrane,
and NOX4, localized in perinuclear ER and/or mitochondria,
are expressed in the heart (78, 79). Increased cardiac NOX2
expression/activity has been described both in T1D and T2D,
and contributes to hyperglycemia-induced ROS production (64–
66, 80). NOX4 expression and NOX4-derived ROS are increased
∼14 days after the induction of T1D in rats and contribute to
the development of cardiomyopathy (81). Importantly, reducing
either NOX2 or NOX4 activity in streptozotocin-induced
diabetic hearts blunts myocardial oxidative stress, remodeling
and improves cardiac function (81–83). ROS formation through
NOX following high glucose administration has been associated
with pathways involving sodium/glucose co-transporter 1
(SGLT1), PKCβ, and calcium/calmodulin dependent kinase II
(CaMKII) (84). SGLT1-mediated glucose transport is responsible
for NOX2 activation, since its inhibition efficiently abolished
ROS production induced by exposure to high glucose (85).
Importantly, PKCβ activation by RhoA/Rho kinase pathway
activates Rac1 that, in turn, determines p47phox translocation to
the membrane, event required for NOX2 activation (86). Indeed,
PKCβ inhibition by ruboxistaurin prevented NOX2 activation
and subsequent ROS formation in cardiomyocytes treated with
high glucose (87). An additional mechanism responsible for
NOX activation in hyperglycemic conditions involves CaMKII
activation. High glucose causes an increase in intracellular
levels of Ca2+ that leads to CaMKII hyperphosphorylation
and activation (32). Activated CaMKII is likely responsible
for activation of PKCβ and downstream cascade of events
(86). In that regard, inhibition of CaMKII prevented both
the upregulation of p47phox and p67phox as well as oxidative
stress in streptozotocin-induced model of T1D (32), suggesting

that CaMKII may indeed play a major role in NOX-induced
ROS formation.

XO is a cytoplasmic enzyme that catalyzes the oxidation of
hypoxanthine to xanthine and further converts xanthine to uric
acid (88). It uses oxygen as electron acceptor and produces
superoxide and hydrogen peroxide (H2O2). In addition to their
role in cardiac damage induced by ischemia/reperfusion injury
or pacing-induced heart failure in dogs (89), hypoxanthine and
XO activity are also increased in diabetic subjects (90). The role
of XO in hyperglycemia-induced oxidative stress is documented
by increased ROS formation in the muscle and development of
fibrosis of hyperglycemic streptozotocin-induced diabetic mice
(68, 91, 92). Some investigators reported evidence for beneficial
vascular effects of XO inhibitors in hypercholesterolemic and
diabetic patients (72, 93). Indeed, in T1D patients XO inhibition
reduced the degree of oxidative stress, whereas in T2D patients
it led to significant improvements in peripheral endothelium-
dependent vasorelaxation (67, 90, 93).

NOS uncoupling results in superoxide formation, oxidative
stress and decreased NO bioavailability that may have important
vascular effects in diabetic subjects (94). Indeed, a decrease in the
dimer to monomer ratio, indicative of the enzyme uncoupling,
has been reported within the myocardium of diabetic animals
(95). Consequently, inhibition of NOS activity and uncoupling
by L-NAME, insulin-like growth factor, sepiapterin, ascorbic
acid or N-acetyl-cysteine improved LV function in the diabetic
heart (66, 96–100). In addition to uncoupling, NOS expression
may also be increased in the diabetic hearts (33, 64, 101) and
this is associated with an increase in lipid peroxidation and
peroxynitrite generation (72). Peroxynitrite in turn may also lead
to NOS uncoupling (102). Taken together, these studies suggest
that the increased production of superoxide and peroxynitrite
through NOS uncoupling is a major contributor to suppressed
contractile performance in diabetes (72, 99, 100).

For detailed discussion related to XO, NOX or uncoupled
NOS involvement in DCM, readers are referred to other excellent
reviews (67, 72, 74, 84).

MITOCHONDRIAL ROS FORMATION IN
DCM

The role of mitochondrial ROS formation and dysfunction
in the pathogenesis of diabetes and its complications is
well-established (13, 20, 28). Indeed, cardiac mitochondria
from diabetic patients are dysfunctional, displaying increased
mitochondrial H2O2 emission, impaired mitochondrial
respiratory capacity and increased levels of oxidized or
hydroxynonenal-modified proteins (103–105). Several
mechanisms are likely responsible for mitochondrial dysfunction
in diabetic hearts, including fatty acid-induced mitochondrial
uncoupling, changes in mitochondrial morphology, increased
ROS formation, mitochondrial proteome remodeling, impaired
mitochondrial calcium handling and altered mitochondrial
turnover (20, 28, 106–108). All these events might lead to
compromised cardiac ATP generation and ultimately to cardiac
dysfunction. Impairment in the activity of ATP synthase also
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affects mitochondrial function in the diabetic heart. A recent
study very elegantly showed that hyperglycemia-induced
calpain-1 upregulation in the mitochondria cleaves the ATP
synthase α subunit, resulting in the reduction in the ATP
synthase activity and increased mitochondrial ROS formation
(109) that eventually contribute to the development of DCM.
In addition, excessive mitochondrial ROS formation results
in the increased propensity to permeability transition pore
(PTP) opening that eventually leads to cell death (110). A tight
relationship also exists between alterations in mitochondrial
morphology and ROS formation that may reciprocally modulate
each other. Cardiomyocytes from animal models of T1D, T2D,
and from diabetic patients show increased levels of ROS and
altered mitochondrial morphology, including mitochondrial
fragmentation, cristae disruption and swelling (107, 108). Of
interest, mitochondrial fragmentation induced by chronic
hyperglycemia can be reversed with antioxidants, suggesting
that ROS are causally related to this pro-fission phenotype
and that controlling mitochondrial morphology and dynamics
might represent a therapeutic strategy for the treatment of
DCM (107, 111). Altered mitochondrial function may inhibit
insulin signaling by interfering with oxidation of fatty acyl-
CoA, accumulation of intracellular lipid and diacylglycerol,
PKC activation and through generation of ROS (112). Both
processes lead to insulin receptor substrate 1 phosphorylation
and interference with insulin signal transduction. Reduction in
mitochondrial ROS formation obtained either through cardiac-
specific Mn-SOD overexpression or following stimulation of
AMPK activity, prevented mitochondrial damage and many
fatty acid- or hyperglycemia-induced events, both in vitro and
in vivo (113–116).

Given the tight relationship between mitochondrial
ROS formation, structure/function, and diabetes-induced
complications, it is crucial to dissect and identify sites responsible
for ROS formation in mitochondria exposed to diabetic milieu.
Electron transport chain (ETC), p66Shc, and monoamine
oxidase (MAO) are the major sources of ROS formation in
mitochondria (Figure 2).

Electron Transport Chain
ETC is by far the major site of ATP production in mitochondria
inside any given cell, and especially in cardiomyocytes (more
than 90%). At the inner mitochondrial membrane (IMM),
electrons from NADH and FADH2 are transferred across the
respiratory chain to oxygen, which is reduced to water at the
level of complex IV (117). This process powers the movement
of protons into the intermembrane space and generates a
proton gradient that drives the synthesis of ATP by the ATP
synthase. A small amount of electrons (about 0.1%) can leak
from the ETC and cause superoxide formation due to the
partial reduction of oxygen (118). Superoxide generation may
occur under conditions that decrease the flow of electrons,
particularly at the level of the first three complexes where flavins
or quinones are able to act as single electron donors (117, 119,
120). Notably, ROS formation can also result from the reverse
electron flow through complex I (121). A recent study supported
this pathophysiological concept demonstrating that succinate

accumulates during cardiac ischemia in vivo (121, 122). Upon
reperfusion, accumulated succinate is oxidized by complex II
leading to dramatic ROS formation that is likely attributable to
the reverse electron flow through complex I (122).

Seminal discoveries implicating ETC superoxide production
as the central event in hyperglycemia-induced pathogenic
mechanisms were provided by Brownlee’s group back in 2000
using endothelial cells (123, 124). High intracellular glucose levels
and glucose-derived pyruvate promotemitochondrial respiration
by increasing the availability of reducing equivalents for the ETC
and resulting in mitochondrial membrane hyperpolarization and
superoxide production (123, 125). Furthermore, hyperglycemia-
induced ROS formation is prevented by several interventions,
such as via inhibition of ETC complex II activity, uncoupling
of oxidative phosphorylation, by overexpression of uncoupling
protein-1 and/or Mn-SOD (123). Normalizing levels of
mitochondrial ROS with each of these agents prevents glucose-
induced activation of PKC, hexosamine pathway, formation of
AGEs, sorbitol accumulation, and NFκB activation. A further
confirmation that ETC superoxide production is responsible
for these events comes from experiments performed in Rho
zero (ρ0) endothelial cells lacking mitochondrial ETC function
(30). When exposed to high glucose, ρ0 cells do not display an
increase in ROS production. Similar mechanism has also been
shown to be at play in cardiomyocytes exposed to high glucose.
Indeed, ROS formation is reduced in cardiomyocytes isolated
from diabetic animals in which complex I and II activity is
inhibited or which overexpress catalase, further denoting the
crucial role of ETC in ROS generation in diabetes (41, 86, 126).
Interestingly, the protective effect afforded by complex I or II
inhibition suggests that ETC superoxide production upon high
glucose exposure likely occurs through the reverse electron
transport. It remains to be elucidated whether succinate
accumulation occurs at some point during the development of
cardiovascular complications in diabetes. Cardiac lipotoxicity
is also mediated by mitochondrial ROS formation. Indeed,
exposure to palmitate enhances mitochondrial ROS generation
and leads to increased mitochondrial fission by modulating
DRP1 phosphorylation levels and proteolytic processing
of OPA1 (47).

An initial ROS trigger produced by ETC can promote
activation of processes that eventually amplify the signal
and lead to oxidative stress. Such processes involve the
occurrence of post-translational modifications, such as (but
not limited to) diabetes–induced defects caused by oxidation,
increased methylglyoxal adduct formation and increased
O-GlcNAcylation, that contribute to the impairment in
mitochondrial and systolic function (127–129). Hyperglycemia
alters the function of respiratory chain in mitochondria via
dysregulation of O-GlcNAcylation (130, 131). O-GlcNAc
transferase (OGT) enzyme is located in the IMM and interacts
with complex IV of the respiratory chain in normal conditions.
In streptozotocin-treated rats this enzyme is improperly
localized to the mitochondrial matrix and the impairment
in the OGT-complex IV interaction results in the loss of
complex IV activity and reduced mitochondrial membrane
potential (130). O-GlcNAcylation of proteins involved in
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FIGURE 2 | Mitochondrial sources of ROS in diabetic cardiomyopathy. Diabetic milieu, characterized by hyperglycemia, hyperlipidemia, and inflammation, results in

the up-regulation in the activity of mitochondrial ROS-producing enzymes. Superoxide can be produced by the respiratory chain through forward or reverse electron

transport. In addition, calpain-1 translocates to the mitochondrial matrix in the diabetic heart and cleaves the α subunit of the ATP synthase, leading therefore to the

reduction in its activity and mitochondrial dysfunction. On the other hand, in situations of stress, p66Shc is phosphorylated and translocates to the IMS where it

catalyzes the electron transfer from cytochrome c to oxygen (O2) leading to the formation of hydrogen peroxide (H2O2). Finally, up-regulation of MAO activity upon

exposure to high glucose and pro-inflammatory stimuli results in enhanced formation of H2O2 that can directly increase the susceptibility of mitochondria to undergo

permeability transition. Post-translational modifications, such as oxidation or O-GlcNAcylation of respiratory chain complexes, can impair mitochondrial bioenergetics

and function. All these events are implicated in the pathogenesis of diabetic cardiomyopathy by promoting mitochondrial and ER stress, leading to protein oxidation

and Ca2+ homeostasis impairment, as well as sarcomere and ECM stiffness. AGEs, advanced glycation end products; ECM, extracellular matrix; ER, endoplasmic

reticulum; FAO, fatty acid oxidation; IMM, inner mitochondrial membrane; IMS, intermembrane space; MAO, monoamine oxidase; MnSOD, manganese superoxide

dismutase; OMM, outer mitochondrial membrane; O-GlcNAc, β-linked N-acetylglucosamine; ox, oxidation.

mitochondrial dynamics, such as DRP-1 and OPA1, also
contributes to mitochondrial fragmentation that further
exacerbates organelle dysfunction (132, 133). On the other
hand, methylglyoxal-induced modifications affect Ca2+

homeostasis and indirectly affect mitochondrial function.
Indeed, in the diabetic heart methylglyoxal preferentially
forms adducts with proteins involved in the intracellular
calcium handling such as ryanodine receptor 2 and SERCA2a
(134, 135). Ryanodine receptor glycation is associated with
impaired Ca2+ cycling, increased mitochondrial Ca2+ levels
and mitochondrial dysfunction (136). Collectively, these
studies underline the importance of ETC-derived superoxide

in diabetic conditions and mitochondria as their source
and target.

p66Shc

p66Shc is another important source of ROS in mitochondria.
p66Shc is a cytosolic adaptor protein and, along with p46Shc and
p52Shc, is encoded by the ShcA gene (137, 138). p46Shc and p52Shc

isoforms are formed through alternative translation start sites
(137, 139). While p46Shc and p52Shc isoforms are ubiquitously
expressed, p66Shc promoter may bear epigenetic modifications
resulting in cell type- or specific condition-restricted expression
(140). Under stress conditions, PKCβ phosphorylates p66Shc at
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Ser-36, event required for its translocation tomitochondria (141).
Once in the intermembrane space, p66Shc catalyzes the electron
transfer from cytochrome c to oxygen resulting in the formation
of H2O2 (142). In addition to this mechanism, p66Shc can
promote oxidative stress by activating membrane-bound NOX
or through down-regulation of antioxidant enzymes synthesis
(143). Accordingly, cells and mice lacking p66Shc show reduction
in markers of oxidative stress (139, 144).

A number of studies characterized the pathophysiological
role of p66Shc in cardiovascular diseases, such as maladaptive
hypertrophy, heart failure and ischemia/reperfusion injury (137–
139, 145). Importantly, excessive ROS generation is a major
contributing factor to those cardiac pathologies (146). Since
PKC activation plays a major role in the intracellular signaling
leading to oxidative stress, cell dysfunction and tissue damage
in hyperglycemia, and is required for p66Shc translocation to
mitochondria in response to stress (70), it is tempting to
hypothesize that p66Shc may play a role in cardiovascular
complications induced by hyperglycemia acting as a downstream
target following high glucose-induced PKCβ activation. Indeed,
p66Shc−/− mice have an increased resistance to ROS (70),
less atherosclerosis and preserved aortic endothelium-dependent
vasorelaxation following high-fat diet and in a model of
streptozotocin-induced T1D (147, 148). Moreover, lack of p66Shc

prevented oxidative damage in cardiac progenitor cells and
cardiomyocytes in streptozotocin-induced DCM (149). Unlike
diabetic wild type animals characterized by cardiomyocyte loss,
diabetic p66Shc−/− hearts displayed preserved cardiac progenitor
cell replication and turnover, along with unaltered wall thickness,
chamber volume, LV end-diastolic pressure and diastolic wall
stress (149).

Monoamine Oxidases
Monoamine oxidases (MAOs) are flavoenzymes localized at
the level of the outer mitochondrial membrane. MAOs exist
in two isoforms, A and B, differing in structure, substrate
preference, inhibitor specificity and tissue distribution (150–
153). The physiological role of MAOs consists in the catalysis of
the oxidative deamination of its substrates (i.e., endogenous and
exogenous amines, neurotransmitters). MAOs generate H2O2,
ammonia and corresponding aldehydes as products of catalysis
(154, 155). Over the last decade, several studies have shown
that alterations in redox balance cause by enhanced MAO
activity play a prominent role in promoting the development
of cardiovascular disorders and causing oxidative damage to
cardiomyocytes (37, 146, 156–158). Indeed, MAO contributes
to ischemia/reperfusion injury, maladaptive hypertrophy, heart
failure and vascular dysfunction (37, 139, 159–162). Of note,
evidence for MAO involvement in cardiac disease has also been
demonstrated in patients. Up-regulation of MAO activity and
consequent ROS formation has been identified as a prominent
contributor to the impaired myocardial redox balance in patients
and a major risk factor and predictor for the postoperative atrial
fibrillation (163). In addition, MAO activity was shown to be
increased in left and right ventricles from patients with ischemic
heart disease (164). With regard to the possible involvement of
MAO in diabetes, one study showed an improvement in blood

glucose levels and systolic and diastolic pressures in a patient
with T1D administered with theMAO inhibitor tranylcypromine
(165). Unexpectedly, it has been demonstrated that pioglitazione,
used as an antidiabetic drug in T2D patients, is a specific and
reversible MAO-B inhibitor (166). These findings support a
possible MAO involvement in diabetes-induced complications.

A clear and undeniable evidence for the role of MAO
in the pathogenesis and progression of DCM came from
animal models of T1D showing that MAO inhibition prevents
cardiac dysfunction, death and fibrosis in diabetic mice and
rats (71, 167). Data from our laboratory indicates that MAO
activity is responsible for diastolic stiffness and dysfunction,
some of the earliest signs of DCM in diabetic mice (71).
Indeed, administration of MAO inhibitors is able to prevent
oxidative changes, diastolic dysfunction and myocardial fibrosis
in streptozotocin-treated hearts. In addition, MAO inhibition
prevented mast cell degranulation in diabetic hearts, event that
can contribute to fibrotic remodeling of the myocardial tissue.
This evidence suggests that MAO-generated ROS are at the
basis of diabetes-induced cardiovascular complications and, in
addition to cardiomyocytes, affect also other cell types present in
the heart. Oxidative stress induced by enhancedMAOactivity has
also been implicated in cardiomyocyte andmesenchymal stromal
cell senescence (168–170). It remains to be elucidated whether
ROS produced byMAOmay also promote cardiac progenitor cell
senescence during remodeling induced by diabetes, as is the case
with p66Shc.

Up to date, the mechanisms underlying MAO toxicity
have mostly been attributed to excessive H2O2 and aldehyde
formation that leads to impaired mitochondrial function
(146). Our recent work showed that incubation of primary
cardiomyocytes with high glucose and pro-inflammatory
cytokine IL-1β leads to a MAO-dependent increase in ROS
that, in addition to causing PTP opening and mitochondrial
dysfunction, also results in the endoplasmic reticulum (ER)
stress (71). This evidence indicates that, in addition to
mitochondrial ROS being a trigger for inflammasome activation,
inflammatory processes can also promote mitochondrial ROS
formation by up-regulating MAO activity. MAO inhibition
prevented mitochondrial dysfunction and ER stress, factors that
eventually contribute to the progression of DCM, suggesting that
cardiomyocyte targeting of pro-inflammatory stimuli occurs in
a MAO-dependent manner (71). Given that MAO is localized
at the outer mitochondrial membrane and faces the cytosol, it
is conceivable to imagine that H2O2 produced by MAO can
also affect the function of neighboring organelles. Notably, ER
and mitochondria are adjacent organelles, connected both at
structural and functional level (171). Although our data suggests
that MAO-induced mitochondrial dysfunction occurs upstream
of ER stress, it is tempting to hypothesize that MAOmay directly
modulate ER function also through physical interaction with ER-
resident proteins (mitochondria associated membrane proteins,
for instance). Finally, it cannot be excluded that other products
of MAO activity, such as aldehydes, may also contribute to
diabetes-induced alterations. MAO-dependent oxidative stress
may lead to the inhibition of aldehyde dehydrogenase 2 (ALDH2)
resulting in further accumulation of toxic and reactive aldehydes
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(37). In that regard, it has been demonstrated that stimulation
of ALDH2 activity protects from streptozotocin-induced cardiac
damage (172), suggesting that accumulation of aldehydes may
promote cardiac remodeling in diabetes independently or in
concert with high ROS levels (173).

FEED-FORWARD/AMPLIFICATION LOOP
FOR ROS FORMATION

An intense cross-talk between different cellular ROS sources
is likely to exist since many papers report that inhibition of
a single ROS source prevents the development of cardiac
pathology triggered by oxidative stress (146). For instance,
hyperglycemia does not induce ROS formation in the
ρ0 cells in which the respiratory chain is disrupted, as
well as upon NOX or MAO inhibition (30). In addition,
mitochondrial superoxide scavenging using mitochondria-
targeted antioxidants is able to reduce NOX2 expression and
activity in diabetic myocardium (174), while genetic inhibition
of NOX2 and consequent reduction in superoxide formation
at the mitochondrial level suggest that mitochondrial ROS
formation in hyperglycemic hearts might be NOX2-dependent
(82–84). Such evidence strongly supports the existence of
an “amplification mechanism,” whereby an initial stress (i.e.,
hyperglycemia and/or inflammation), induces the formation of
ROS that, in turn, activates other ROS producing enzymes to start
producing free radicals thus amplifying the original oxidative
trigger (146). The hypothesis of the feed-forward/amplification
mechanism is also supported by the characterization of the
so-called ROS-induced ROS release mechanism, whereby an
initial ROS trigger induces PTP opening that leads to further
ROS formation, instituting thereby a positive feedback loop
for the ROS-induced ROS release (175, 176). This is indeed
the case in adult cardiomyocytes that, when exposed to high
glucose and pro-inflammatory stimuli, display an increase in
MAO-dependent ROS formation that causes PTP opening and
mitochondrial and ER stress (71). Moreover, other processes
may participate in such amplification loop, such as for instance
impairment in autophagy. While low/moderate ROS levels are
required for autophagy initiation, excessive oxidative damage
can impair autophagy resulting in the aberrant clearance of
damaged proteins and/or organelles (177–180). For instance,
AGE accumulation in an experimental model of diabetes
inhibits autophagy, induces ER stress and promotes ROS
formation (181). Either autophagy stimulation with rapamycin
or inhibition of ER stress due to ER chaperone administration
alleviate AGEs-induced deleterious effects on cardiomyocytes,
suggesting that these processes are involved in diabetes-
induced cardiac remodeling. Impairment in the elimination
of damaged and dysfunctional mitochondria in diabetic hearts
results in the accumulation of ROS-producing fragmented
mitochondria (182, 183). Either inhibition of mitochondrial
fragmentation during exposure to high glucose or stimulation
of organelle removal through mitophagy in high-fat diet fed
animals prevents oxidative stress as well as mitochondrial and
cardiac dysfunction (182, 184, 185). However, it appears that

autophagy and mitophagy are independently controlled in
T2D, since autophagy flux was attenuated following 6 weeks
of high-fat diet while mitophagy continued to increase even
after 2 months (184). This suggests that mitophagy may occur
through a non-canonical, alternative autophagy pathway.
In this regard, it has been previously shown that Rab9 is
mobilized to the mitochondria in early stages of diabetes where
it induces activation of alternative autophagy for mitophagy
(186, 187). The mechanisms controlling the activation of
canonical vs. non-canonical autophagy remain unknown to
date. Mitochondrial ROS are implicated in the activation of
the canonical autophagy (178), but on the other hand excessive
mitochondrial ROS formation impairs lysosomal biogenesis,
function and the autophagy process in the cardiac myocytes
(156, 168). Whether alterations in the redox status may represent
the switch for autophagy to become maladaptive, and/or for the
activation of canonical vs. non-canonical autophagy remains to
be defined.

INTERVENTIONS AIMED AT REDUCING
ROS BURDEN IN DCM

Given the large body of evidence linking aberrant ROS formation
and oxidative stress to the development of cardiac diseases,
it is quite straightforward to hypothesize that reducing redox
burden would protect the heart against deleterious changes
induced by diabetes or other pathologies. Nevertheless, large
scale clinical trials using antioxidant therapies have not produced
the desired results (188, 189). Whether this is a consequence
of particular antioxidant molecules used in clinical trials, their
limited absorption and/or reduced cardiac availability, or it can
be explained by the fact that a certain level of ROS is beneficial
and required for signaling and physiological processes, including
the response to insulinmediated by p66Shc-dependent ROS (190),
remains to be elucidated. Another attractive explanation is that
interfering with the complex redox network might result in
compensatory changes (191). Currently, there are no efficient
therapies to treat HFpEF in patients with diabetes. In that regard,
antidiabetic SGLT2 inhibitors (such as empagliflozin) afforded
cardioprotective effects in patients with diabetes (192). SGLT2
inhibitors lead to the reduction in plasma volume and reduced
preload, events that have a favorable effect on cardiac function
and structure (193, 194). Importantly, human and rodent hearts
do not express SGLT2 (195–197), suggesting that the direct
cardioprotective effects of SGLT2 inhibitors are independent
of their action on SGLT2. Indeed, it has been demonstrated
that SGLT2 inhibitors can directly affect cardiomyocytes by
targeting Na+/H+ exchanger 1, reducing intracellular Na+ and
Ca2+ levels, improving mitochondrial function and reducing
inflammation and AMPK activity (197, 198). In addition, SGLT2
inhibitors are able to reduce oxidative stress through Nrf2/ARE
signaling activation and it is likely that these off-target effects
contribute to the cardioprotection observed in clinical trials
(198–200). Another strategy to modulate an oxidative stress-
related pathway is the use of the soluble guanylate cyclase
stimulator vericiguat that targets the cGMP pathway in an
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ROS/NO-independent manner (201). HFpEF is associated with
excessive ROS formation by the coronary microvasculature that
limits NO bioavailability, reduces cGMP levels and therefore
lowers PKG activity (as discussed in section 3). A recent clinical
trial demonstrated an improvement in quality of life in patients
with HFpEF receiving vericiguat for 12 weeks, suggesting that
it could be a promising therapeutic agent in HFpEF (201). To
foster the development of a specific and successful therapy, future
studies should aim either at identifying themolecular ROS targets
(191), the pathways of redox signaling or the specific sources of
ROS that are responsible for deleterious changes in the diseased
heart. While the first two options are just beginning to become
accessible and are still far from being conclusively elucidated,
inhibition of specific ROS sources might prove to be a useful
strategy to prevent alterations in the redox status, andmyocardial
structure and function.

In this regard, inhibitors for some of the ROS sources outlined
in this review are being developed and/or tested in the clinic.
Data obtained in experimental models of diabetes identified
NOX4 as a therapeutic target (81). Indeed, NOX4 inhibitors
are currently being tested for various cardiovascular indications
(76, 202). For instance, GKT-831 is a NOX1/4 dual inhibitor
and the only NOX inhibitor that has reached the clinical trial
stage; in fact, it is currently being tested in clinical trial phase II
for diabetic nephropathy. It remains to be established whether
NOX inhibitors would be effective in limiting cardiovascular
complications in diabetic patients.

In line with the concept of mitochondria as major ROS
producers, employment of mitochondria-targeted antioxidants
such as MitoTEMPO proved to be cardioprotective in
experimental models of DCM (203). On the other hand,
MitoQ was never tested in such setting and neither of the
compounds was ever tested in clinical trials. The paucity of
studies concerning the use of mitochondrial antioxidants in
DCM urges for studies adopting strategies that target specific
mitochondrial ROS sources or their downstream targets (204).
In that regard, it is not possible to inhibit the respiratory
chain in humans in the long term without jeopardizing a
wide array of vital functions. Although genetic inhibition
of p66Shc has proven protective in many cardiovascular

pathologies, pharmacological inhibitors of p66Shc are not
yet available. On the contrary, MAO inhibitors are clinically
available and employed for the treatment of depression and
neurodegenerative diseases (76, 164, 205–207). As mentioned
before, administration of a non-selective MAO inhibitor to a
patient with T1D led to several improvements, including those
at the cardiovascular level (165). Side-effects associated with the
“old” irreversible MAO-A inhibitors have been eliminated since
reversible MAO-A inhibitors or selective MAO-B inhibitors
have been developed (207). Taking into consideration recent
findings obtained in experimental models of DCM, it is
worth assessing whether molecules such as moclobemide or
safinamide could be repurposed for the treatment of patients
with DCM.

CONCLUSIONS

Current consensus is that exacerbated ROS generation
due to hyperglycemia and/or fatty acid oxidation causes
oxidative stress, that in turn promotes the development and
progression of diabetes and its complications. In addition to
the cytosolic sources of ROS, it is now well-documented that
mitochondrial sources represent the major ROS burden in
multiple tissues in both animal and human diabetic subjects.
Pharmacological targeting of specific ROS sources may prove
as a successful therapeutic strategy for the treatment of
DCM. Alternatively, identification of processes and targets
downstream of mitochondrial ROS may hold more promise in
correcting cellular structural and functional derangements in
diabetic individuals.
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