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Analysis of cell proliferation and tissue remodelling uncovers a
KLF4 activity score associated with poor prognosis in

colorectal cancer

Silvia Halim’, Elke K. Markert? and Alexei Vazquez1’2

BACKGROUND: Human cancers can be classified based on gene signatures quantifying the degree of cell proliferation and tissue
remodelling (PR). However, the specific factors that drive the increased tissue remodelling in tumours are not fully understood. Here

we address this question using colorectal cancer as a case study.

METHODS: We reanalysed a reported cohort of colorectal cancer patients. The patients were stratified based on gene signatures of
cell proliferation and tissue remodelling. Putative transcription factors activity was inferred using gene expression profiles and

annotations of transcription factor targets as input.

RESULTS: We demonstrate that the PR classification performs better than the currently adopted consensus molecular subtyping
(CMS). Although CMS classification differentiates patients with a mesenchymal signature, it cannot distinguish the remaining
patients based on survival. We demonstrate that the missing factor is cell proliferation, which is indicative of good prognosis. We
also uncover a KLF4 transcription factor activity score associated with the tissue remodelling gene signature. We further show that
the KLF4 activity score is significantly higher in colorectal tumours with predicted infiltration of cells from the myeloid lineage.
CONCLUSION: The KLF4 activity score is associated with tissue remodelling, myeloid cell infiltration and poor prognosis in

colorectal cancer.

British Journal of Cancer (2018) 119:855-863; https://doi.org/10.1038/541416-018-0253-0

BACKGROUND

There have been several attempts to classify colorectal cancer
patients into subtypes based on the analysis of gene expression
signatures and prognosis. Anjomshoaa et al.' developed a colon-
specific gene proliferation signature and reported that patients
with a low proliferative signature had shorter disease-free survival.
Loboda et al.? reported that a signature of epithelial-mesenchymal
transition (EMT) was predictive of poor outcome in colorectal
cancer. Later on, Markert et al® unified these two previous
approaches and demonstrated that human cancers, including
colorectal cancer, can be classified based on gene expression
signatures quantifying the degree of cell proliferation and tissue
remodelling (PR). More recently, a colorectal cancer subtyping
consortium (CRCSC) adopted an unsupervised clustering approach
to stratify colorectal cancers based on their gene expression
profiles.* This consensus method resulted in a classification of
colorectal cancer into four subtypes: CMS1, CMS2, CMS3 and
CMS4, where CMS stands for consensus molecular subtypes. The
CMS4 subtype was enriched for gene signatures of EMT, indicating
that this subtype is characterized by a high degree of tissue
remodelling.

These studies unanimously identified gene signatures of EMT or
tissue remodelling as a major indicator of poor prognosis in
colorectal cancer. Yet, the cell proliferation gene signature is
missing in the CMS scheme and it is not clear how this affects the

CMS ability to stratify colorectal cancer patients beyond the EMT
subtype (CMS4). More importantly, the molecular pathways
driving tissue remodelling in colorectal cancer are not fully
understood. Here we address these two issues using a systems
biology approach. First, we present a side-by-side comparison of
the CMS and PR classifications of colorectal cancer. We show that
the cell proliferation gene signature can significantly differentiate
patients of the EMT subtype based on survival. Second, we identify
transcription factor (TF) activity scores that correlate with the PR
gene signatures. Among them, we follow up on KLF4 activity that
we predict to be a driver of tissue remodelling in colorectal cancer.
We validate the KLF4 activity score by showing its increased
expression in immune cells of the myeloid lineage, which are
known to be regulated by KLF4> We further show that, in
colorectal cancer samples, the KLF4 activity score is associated
with myeloid cell infiltration. These findings indicate that the TF
KLF4 is associated with tissue remodelling in colorectal cancer via
myeloid cell infiltration.

METHODS

CRCSC gene expression data

Normalised gene expression datasets of colorectal cancer tumour
samples were obtained from Synapse (Synapse ID syn2634742).
The data hosted under this Synapse ID consists of datasets from
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Gene Expression Omnibus (GEO): GSE13067, GSE13294, GSE14333,
GSE17536, GSE20916, GSE2109, GSE23878, GSE33113, GSE37892
and GSE39582; and The Cancer Genome Atlas (TCGA). Gene
expression data normalisation, outlier sample detection and other
pre-processing steps can be found in the original research article.*
For each GEO dataset, only probes that have gene annotation were
included for subsequent analyses. The most variable probe (a
probe with largest interquartile range) was then selected for each
gene. Subsequently, all GEO and TCGA gene expression datasets
were corrected for mean-centering for each gene. For a given
gene, mean-centering was performed by subtracting the expres-
sion values of all samples from the mean expression value across
all samples and it was performed for all genes in the dataset.

Human immune cell types gene expression data

Human immune cell transcriptome data with accession number
GSE3982 was downloaded from GEO. The gene expression data
were quantile-normalised based on ‘preprocessCore’ bioconduc-
tor package and then log2 transformed. Only probes that had
gene annotation were included for subsequent analyses. The most
variable probe (a probe with largest interquartile range) was then
selected for each gene. Subsequently, the expression data were
mean-centered for each gene.

Gene signatures of PR
Gene signatures for cell proliferation (P) and tissue remodelling (R)
were obtained from ref. 3

Gene set enrichment analysis (GSEA)

Given the gene expression values of n genes across tumour
samples and a gene set L containing m genes as input, we
estimated the enrichment of L genes within the tail of low or high
expression values using GSEA.” To this end, we determined the
sample-dependent rank vector g, denoting the i-th gene with
largest expression value in the sample k. Then the running

1
enrichment score Ey = Zhgjk was calculated, where hy =1/m if
j=1
g€l and hy= —1/(n—m) otherwise. The enrichment of L genes
within the tail of low and high expression values is quantified by
Ex— = min Ey and Ex = max E, respectively.6 A permutation test
1 1

was used as a non-parametric estimate of the statistical
significance of the signature scores. Specifically, np= 100,000
permutations of the gene expression values were generated and
their corresponding signature scores E; (I=1,...,np) were calcu-
lated. The least bias estimate of the statistical significance of E,_
and Eg. being high are pi = (1+%g<¢ 1)/(1+np) and
per = (1+ Zjgsg, 1)/(1 4+ np).” Finally, when py_ < py, we report
the signature score E, = Ex_ or Ex = Ex, otherwise.

Inference of TF activity scores

The TF activity scores were inferred using the linear least squares
model, Gy = Zj T;Ajxk where A is the activity of TF j in sample &,
Gy is the expression of gene i in sample k, and T;=—1,0,1 if TF j
negatively regulates, does not regulate or positively regulates
gene i, respectively. The matrix T was constructed using the
Transcriptional Regulatory Relationships Unravelled by Sentence-
based Text-mining (TTRUST) database® as input. At the time of
download, this database contained annotations for 748 human
TFs, 2374 unique target genes and 8015 transcriptional regulatory
relationships. It is a manually curated database with experimen-
tally validated interactions and it provides information on the
mode of regulation, i.e., activating or repressing. The database
contains unknown interactions but only activating and repressing
interactions were included for analysis. Using the gene expression
matrix G reported for the colorectal tumour samples and the
transcription regulation matrix T derived from the TTRUST

database as input, we inferred the TF activity matrix A. The
inference was carried out by solving the system of linear
equations reported above in the least squares sense, using the R
function Isfit. The R function to perform the TF activity estimation
is provided in the Supplementary information, inferTFactivity-
Scores.r (Dataset 4). Only TFs with standard deviation of activity
scores across tumour samples not equal to zero were retained for
further analyses. A permutation test was used as a non-parametric
estimate of the statistical significance of the observed activity
score xjo of TF j being high on a given sample of the CRCSC cohort.
To this end we generated 100 permutations of each of the 2423
gene expression samples in the CRCSC cohort and inferred the TF
activity scores for these permuted samples, resulting in x; (k=1,
...,n =242,300) reference scores for the activity of each TF j. The
least bias estimate of the statistical significance of s;, being high is
pi=0+ ZS,k>S,o 1)/(1+n) A gene expression sample was
called positive for high TF j activity score if p;< 0.05, and negative
otherwise.

Multiple testing correction

When performing multiple testing, the statistical significance was
corrected following Benjamini-Hochberg (BH) procedure to
control the false discovery rate (FDR).

Estimation of immune cell types abundance from gene expression
data

All gene expression datasets from the CRCSC were combined. The
composition of immune cell types in all of the samples was
estimated using CIBERSORT.® For running ‘CIBERSORT’ function,
LM22 signature genes file provided by CIBERSORT was used as
‘sig_matrix’ variable and the combined gene expression data was
used as the mixture file. The function was run with 1000
permutations and quantile normalisation. The resulted composi-
tions of each immune cell for all samples were then correlated
with KLF4 activity of all samples using Spearman'’s rank correlation
coefficient. To identify which immune cells that are significantly
correlated with the level of KLF4 activity, p-values were calculated
for the correlations following the least bias estimate of the
statistical significance. To assess the abundance of immune cells in
each PK subtypes, all samples that belong to a PK subtype were
grouped together and the compositions of the immune cell of
interest in these samples were then visualised.

Univariate survival analysis

Cox proportional hazards regression model was fitted for survival
analysis. It was performed using overall survival or relapse-free
survival information and PR or PK or CMS sample membership for
analysis based on PR or PK or CMS classification, respectively. P-
value from log-rank test was reported as the significance of the
classification in predicting an event occurring, i.e., death or relapse
in overall survival or relapse-free survival data, respectively. P-
value < 0.05 was reported as a significant result in all cases.

Multivariate survival analysis

Cox proportional hazards regression model was fitted for survival
analysis and it was performed using overall survival or relapse-free
survival information, stage, age, gender, and P and R enrichment
scores. P-value from Wald test was reported as the significance of
each covariate (P or R enrichment scores, stage, age or gender) in
predicting an event occurring, i.e., death or relapse, while taking
into account all other covariates. P-value < 0.05 was reported as a
significant result in all cases.

RESULTS

CMS versus PR classifications of colorectal cancer

We started with a side-by-side comparison of the performance of
the colorectal cancer unsupervised and supervised classifications
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CMS vs PR classifications of colorectal cancer. a Flow diagrams of the unsupervised clustering approach and the reductionist supervised

approach to patient stratification. b The hallmarks of cancer drive two major features of cancer: cell proliferation and tissue remodelling. c
Mapping between the CMS and PR subtypes. The lines connecting the circles show the largest and second largest overlaps among subtypes
from both approaches. d Scatter plot of the Spearman’s rank correlation between gene expression and the tissue remodelling signature (Y-
axis) as a function of the Spearman’s rank correlation between the gene expression and the cell proliferation signature (X-axis). Each symbol
represents a gene and the Spearman’s rank correlations were calculated across colorectal cancer patients

(Fig. 1a). The unsupervised classification is represented by CMS.
The CMS scheme does not use previous biological knowledge as
input and, in this sense it is not biased or supervised. The
supervised classification is represented by the PR scheme. The PR
scheme is based on our observation that the hallmarks of cancer
can be conceptually arranged into two groups representing
processes that promote proliferation or tissue remodelling (Fig. 1b,
ref. 3). In this sense, it is biased and fully based on previous
biological knowledge.

We performed a meta-analysis of the same cohort of colorectal
cancer patients used to develop the CMS scheme.* This cohort
brings together gene expression and survival data reported in
multiple studies. These samples had been previously stratified
according to the CMS scheme, resulting in four subtypes, namely
CMS1,2,3,4* We reclassified all patients using our PR approach
(Fig. 1b). To this end, we quantified the degree of PR in each
patient sample. When the cell proliferation signature was
significantly up-regulated, the sample was classified as P+, and

P— if otherwise. When the tissue remodelling signature was
significantly up-regulated, the sample was classified as R+, and R
— if otherwise. By construction, this classification results in four
subtypes, namely P—/R—, P—/R+, P+/R— and P-+/R+. The
assignment of each patient to the PR subtypes is reported in
the Supporting Information, Dataset 1.

Although these two classifications were carried out indepen-
dently, the resulting subtypes manifest some overlap (Fig. 1c). The
CMS2 subtype maps to a great extent to the P+/R— subtype
(statistical significance p=23%x10""* one-tailed Fisher's exact
test) and the CMS4 subtype maps to a great extent to the P—/R+
subtype (statistical significance p=28.9 x 10~ '**, one-tailed Fish-
er's exact test). This overlap between the unbiased CMS
classification and the PR classification can be explained by the
strong correlation between several genes and the gene signature
of tissue remodelling (Fig. 1d). A high percentage of the expressed
genome is significantly correlated with the tissue remodelling
enrichment score (34.25%, p<0.05 in permutation test for
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Fig. 2 Survival analysis based on the CMS or PR classifications. Kaplan-Meier plots of colorectal cancer subtypes survival, based on the CMS
and PR classification schemes. P-values report statistical significance based on log-rank test. a CMS stratification, overall survival. b CMS
stratification, relapse-free survival. ¢ PR stratification, overall survival. d PR stratification, relapse-free survival. e, f Overall survival (e) and

relapse-free survival (f) of CMS4 patients stratified by the P signature

Spearman correlation). Therefore, it is expected that any unbiased
clustering method will reflect this strong signal. To analyse this
whole genome biases more systematically, we calculated the
Spearman correlation coefficients S(G,P) and S(G,R), quantifying
the correlation between the expression of a given gene G and the
P and R enrichment scores across the tumour samples. We
observed that S(G,P) and S(G,R) are significantly and negatively
correlated across genes (Fig. 1d, S= —0.70, p =1 X 107, permuta-
tion test). In other words, there is a large group of genes whose
expression is highly and positively correlated with the R
enrichment score, but negatively correlated with the P enrichment
score. Vice versa, there is a large group of genes whose expression
is highly and positively correlated with the P enrichment score,
but negatively correlated with the R enrichment score.

Next, we compared the performance of the CMS and PR
approaches in stratifying patients based on overall and relapse-
free survival (Fig. 2a-d). In terms of splitting of the survival
curves, both approaches achieve statistical significance for these
outcomes. The CMS4 subtype in the unsupervised scheme and
the corresponding P—/R+ group in the supervised scheme

exhibit the worst prognosis. However, the unsupervised
approach cannot distinguish the rest of the patients based on
survival. In other words, the CMS classification differentiates the
patients with tissue remodelling but it fails to distinguish the
remaining patients based on survival. In contrast, the two
features of the PR classification associate with outcome. In
addition to distinguishing the tissue remodelling group (P—/R
+), it shows that the P4+/R— subtype exhibits significantly better
prognosis than the P—/R— group. The relevance of the cell
proliferation gene signature is further demonstrated when we
split the CMS4 group into patients with significant cell
proliferation gene signature (CMS4/P+) and the remaining
(CMS4/P—). The patients in the CMS4/P+ exhibit a significantly
better overall survival (Fig. 2e, p=0.01, log-rank test) and a
trend towards better relapse-free survival (Fig. 2f, p =0.14, log-
rank test) than the CMS4/P— group. Therefore, the PR
classification correctly highlights the additional observation
that cell proliferation is indicative of good prognosis in the
context of colorectal cancer, as a second prognostic factor
besides a tissue remodelling signature.
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Table 1. Multivariate survival analysis
Overall survival Relapse-free survival
Variable Hazard ratio 95% Confidence interval P-value Hazard ratio 95% Confidence interval P-value
(@) P &R
P scores 0.32 0.1028-0.988 0.05 0.41 0.1322-1.260 0.12
R scores 1.32 0.3697-4.703 0.67 4.60 1.1443-18.516 0.03
Stage 1.98 1.6686-2.338 2.6E-15 2.86 2.3485-3.488 <2e-16
Age 1.03 1.0209-1.042 4.6E-09 1.00 0.9931-1.013 0.56
Gender 1.26 0.9854-1.612 0.07 1.36 1.0488-1.773 0.02
(b) P
P scores 0.28 0.1052-0.7598 1.2E-02 0.23 0.08452-0.6208 3.8E-03
Stage 1.98 1.6708-2.3399 2.1E-15 2.87 2.35931-3.4884 <2e-16
Age 1.03 1.0209-1.0423 4.8E-09 1.00 0.99296-1.0126 0.58
Gender 1.26 0.9823-1.6047 0.07 1.34 1.03201-1.7422 0.03
()R
R scores 2.46 0.8085-7.454 1.1E-01 7.76 2.2706-26.494 1.1E-03
Stage 2.00 1.6887-2.365 7.8E-16 2.90 2.3834-3.539 <2e-16
Age 1.03 1.0202-1.041 8.4E-09 1.00 0.9926-1.012 0.63
Gender 1.28 0.9979-1.632 0.05 1.38 1.0621-1.794 0.02
Multivariate survival analysis considering the clinical variables stage, age and gender together with the enrichment scores for a) P and R, b) P only and c) R only

Finally, we conducted a multivariate analysis to determine
whether the P and R enrichment scores are independent
prognostic factors after correcting for clinical variables. The
information about whether patients received treatment and what
type of treatment was given was not reported and, therefore, we
could not include treatment options as a variable in the
multivariate analysis. Yet, age and stage were reported, two
clinical variables that are often used to make treatment decisions.
In summary, the multivariate analysis includes the P and R
enrichment scores together with the clinical variables age, stage
and gender. As expected, stage is significantly associated with an
increased risk of death and relapse (Table 1a). The P enrichment
score exhibits a significant association with reduced risk of death,
while the R enrichment score exhibits a significant association
with increased risk of relapse (Table 1a). When we excluded the R
enrichment score, the P enrichment score exhibited a significant
association with reduced risk of both death and relapse (Table 1b).
Similarly, when we excluded the P enrichment score, then the R
enrichment score exhibited a significant association with
increased risk of both death and relapse. This analysis indicates
that the P and R enrichment scores are not independent as
prognostic factors when considered as real value variables (as
oppose to categorical +/—). Indeed, the P and R enrichment
scores are strongly negatively correlated (S=—044, p=1x10"",
permutation test).

Putative TFs driving the PR subtypes

The PR gene expression signatures could be driven by multiple
factors. Cell proliferation could reflect an enrichment of epithelial
cell types at expenses of depletion of stromal cell types. In turn,
tissue remodelling could be the consequence of multiple
processes such as wound healing or immune cell infiltration. To
address the latter we determined the correlation between the R
enrichment scores and the enrichment scores for multiple gene
signatures associated with tissue remodelling (Supporting Infor-
mation, Dataset 2). We found the R enrichment scores to be highly
correlated with gene signatures for “Response to wounding”
(GO:0009611, S=0.95, p=1x 10"°), “Stromal tissue” (ref. '°, S =
090, p=1x 1072), “Immune cell infiltration” (ref. '°, S =0.74, p=

1x107°), “Mesenchyme development” (GO:0060485, S=0.72, p
=1x10"°) and “Epithelial Mensechymal Transition” (GO:0001837,
$=0.65p=1x10""), where GO denotes a Gene Ontology gene
set. From these associations we cannot determine which process
or combinations of processes is driving tissue remodelling.

TF activities control the maintenance of cell types and the
transition between them. However, quantifying the activity of TFs
in tumour samples is challenging. TFs are often regulated at the
post-transcriptional level and, therefore, their gene expression is
not sufficient to predict its activity. Measuring TF protein
expression levels would be more accurate, but is not measured
on a regular basis at the proteome-wide scale. To tackle this
problem, we developed a linear regression method to infer TF
activities. The method uses gene expression profiles and
annotations of TF targets with their specific actions as input, i.e.,
activation or repression of target genes (Fig. 3a). The outcome is a
putative transcriptional activity for every annotated TF, herein
referred to as TF activity score. Using this approach, we inferred
the TF activity score for each annotated TF on each patient in the
same cohort of colorectal cancer patients.

First, we focused on associations between the inferred TF
activities and the gene signatures for PR. To this end, for a
transcription factor TF, we calculated the Spearman correlation
coefficients S(TF,P) and S(TF,R) between the TF activity score and
the P and R enrichment scores across the colorectal tumour
samples. We observed that TFs manifesting high S(TF,P) exhibit a
high but negative S(TF,R) and vice versa (Fig. 3b). There is indeed a
strong negative correlation between S(TF,P) and S(TF,R) across TFs
(Fig. 3b, S=—0.56, p=1x 10>, permutation test). This indicates
that PR biases in gene expression (Fig. 1d) are driven by biases in
the transcriptional gene expression programmes.

Next, we aimed to uncover TFs whose putative activity is
correlated with the cell proliferation or tissue remodelling
enrichment scores and at the same time, the expression of their
annotated targets is associated with these enrichment scores as
well (Fig. 3c). This analysis can yield different patterns of
regulation depending on the association of the TF activity scores
and the P or R enrichment scores, the type of regulation of its
target genes (activation/repression) and the association of the
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expression of target genes with the P or R gene signatures. From
the biological point of view, we are more interested in patterns of
regulation that aim to sustain one specific transcriptional
programme. That includes the case where a TF activity score is
correlated with the cell proliferation enrichment score and the
expression of its target genes is also correlated with the cell
proliferation enrichment score (P—P) and the equivalent

relationship for tissue remodelling (R—R). Following this rationale,
we identified the TFs PROX1, RUNX3, SOX2 and TP53 as
candidates for sustaining the cell proliferation programme in
colorectal cancer (Fig. 3c and Table S1, P—P). In turn, we identified
the TFs BRCA1, CEBPB, CLOCK, CREB1, ERG, ESR1, ETS2, ETV4,
FOXO03, GATA3, JUN, KLF4, NFE2L2, NR5A2, PML, PPARD, RELA,
SNAI2, SPIT and STAT1 as candidates for sustaining the tissue-
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plot are mast cells (resting), B-cells (naive), neutrophils and macrophages (MO0). ¢, d Tail distribution of the enrichment of ¢ neutrophils and d
macrophages MO across colorectal tumours divided according to their P and K status

remodelling programme (Fig. 3¢ and Table S1, R—R). The full list of
TFs together with the association of their activity scores with the P
and R enrichment scores is reported in the Supporting Informa-
tion, Dataset 3.

KLF4 activity score is associated with myeloid cell infiltration
From the analysis of TF activity scores we identified KLF4 as a
putative TF promoting tissue remodelling. Specifically, the KLF4
activity score is significantly and positively correlated with the R
enrichment score (S=0.59, p=1x10"°, permutation test) and
the KLF4 targets are enriched for genes whose expression is
significantly and positively correlated with the tissue remodelling
signature (S=0.18, p=1x10">, Gene set enrichment analysis
(GSEA) test). KLF4 has been linked to pluripotency”’ 2 and to
myeloid subtypes of the immune system. Both of these features
contribute to poor prognosis in colorectal cancer. We therefore
decided to investigate this TF in further detail.

First, we took a closer look at the genes annotated as KLF4
targets. About 50% of the KLF4 targets exhibit a significant
correlation between their expression and the KLF4 activity scores
(Fig. 3d, Table S2), indicating that not all KLF4 targets contribute to
the inferred KLF4 activity score. We note that discrepancies
between activity score of a TF and the expression of one or more
of its targets are expected, because TFs have multiple targets and
genes can be regulated by multiple TFs. Furthermore, the genes
whose expression is significantly correlated with the KLF4 activity
score, exhibit a small correlation coefficient, indicating that no
single KLF4 target can replace the other genes in deriving at the

KLF4 activity score. This is as illustrated in Fig. 3e—-g for the three
most correlated genes. The average expression of these genes
increases from patient groups having low to high KLF4 activity
scores but the fluctuation within each group is high. In summary,
the KLF4 activity score is an aggregate signal taking into account
the concomitant expression of several KLF4 targets.

As mentioned above KLF4 has been reported for its role in
myelopoiesis,® suggesting the hypothesis that the tissue remodel-
ling signature is in part associated with immune cell infiltration. In
line with these observations, the two KLF4 targets with the highest
correlation with the KLF4 activity score are the ILT1B and IL6 genes
encoding for cytokines secreted by cells of the immune system
(Fig. 3d). Based on this evidence we hypothesised that the KLF4
activity may derive from immune cells penetrating the tumour.

To start addressing the relationship between KLF4 and the
immune system, we first determined whether the TF activity score
approach was valid in the context of pure immune cell
populations. To this end, we used a reported transcriptome
dataset quantifgying genome-wide expression in sorted immune
cell types (ref. 3 GEO accession code GSE3982). To this dataset we
applied our TF activity inference approach, obtaining a quantifica-
tion of the KLF4 activity score for each sample. The predicted KLF4
activity score was found to be significantly up-regulated in the
phagocytes (myeloid) versus lymphoid cell types (p=2.8x 1073,
one tail T-test) but not in the other immune cell types (Fig. 4a). The
observation of a high KLF4 activity score in the myeloid cell
compartments is both a confirmation of the expectation of KLF4
as a master regulator of myelopoiesis® and a validation of our KLF4
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activity score in a controlled scenario. We also noted that, among
the TFs associated with tissue remodelling (Fig. 3¢, R—R), KLF4 is
the TF with the most significant evidence for high activity scores in
myeloid relative to lymphoid cells (Table S3).

Next we investigated whether the KLF4 activity score is
associated with immune cell infiltration in colorectal cancer
samples. Patients were classified as K+ if they had a significant
high KLF4 activity score and K— otherwise. Subsequently, we
estimated the composition of immune cell types in same cohort of
colorectal cancer patients using the computational inference
approach CIBERSORT.? This approach estimates the composition
of immune cell types in complex tissues using gene expression
profile as input.” We observed a significant positive correlation
between the KLF4 activity score and the estimated percentage of
myeloid cell types: neutrophils, macrophages (MO, M1), mast cells
(activated) and dendritic cells (activated) (Fig. 4b, Table S4). In
contrast, we observed a significant negative correlation or no
correlation between the KLF4 activity and a high percentage of
lymphoid cell types: B-cells and T-cells (Fig. 4b). The tail
distribution of the estimated myeloid cell fractions is shown in
Fig. 4c and d for neutrophils and macrophages (M0), the two
myeloid subtypes with higher positive correlation with the KLF4
activity score. The distribution of neutrophils enrichment across K
+ patients exhibits a longer tail than for K— patients, indepen-
dently of the P status. (Fig. 4c, p=3.23x10""", two-sided
Kolmogorov-Smirnov test). Similarly, the distribution of MO0
macrophages enrichment across K+ patients also exhibits a
longer tail than for K— patients (Fig. 4d, p=5.22x 10", two-
sided Kolmogorov-Smirnov test). These findings support the
hypothesis that the odds of having a high KLF4 activity score
increase with having a higher composition of neutrophils and M0
macrophages in a tumour sample. In other words, the model
suggests that a high KLF4 activity score is a reflection of the
myeloid cell infiltration.

DISCUSSION

We have compared the performance of patient stratification based
on an unsupervised clustering (CMS, ref. %) versus the cell
proliferation and tissue remodelling reductionism approach (PR,
ref. 3) in the context of colorectal cancer. Both approaches
achieved statistical significances in splitting survival curves. The
CMS4 and P—/R+ subtypes have the worst prognosis when using
either the unsupervised clustering CMS or the reductionism PR
approach, respectively. However, the unsupervised clustering
cannot distinguish the rest of the patients in the remaining three
subtypes (CMS1,2,3) with respect to survival. In contrast, the
classification based on the supervised PR approach is richer. It
identified a P+/R— subtype that exhibits significantly better
prognosis than P—/R— subtype. In other words, patient classifica-
tion based on PR contributes an additional prediction that cell
proliferation is indicative of good prognosis in colorectal cancer,
on top of the current knowledge that tissue remodelling manifests
worst prognosis.

At this point we have no clear argument of why increased cell
proliferation is an indicator of good prognosis in colorectal cancer.
We could speculate that current treatments are better at targeting
proliferating cancer cells and, as a consequence, patients
harbouring tumours with increased cell proliferation exhibit a
better response to therapy. An alternative hypothesis is that
increased tissue remodelling is the tumour characteristic causally
linked to poor prognosis, while the association of cell proliferation
with good prognosis is just a correlation. Since the P and R
enrichment scores are negatively correlated, the tumours with low
R enrichment scores will generally have high P enrichment scores.
However, we should bear in mind that in other cancer types, such
as breast and prostate cancer, increased cell proliferation is a
marker of poor prognosis.'*'® As a matter of fact, there is a

dichotomy in the role of cell proliferation in prognosis
when looking at different cancer types.® In colorectal and ovarian
cancer, increased cell proliferation is indicative of good prognosis
but, in brain, breast, lung and prostate cancer it is the other way
round.

In the second part of this work, we aimed to identify
transcriptional programs that drive the gene expression signatures
of PR in colorectal cancer. Among the candidates, we identified
KLF4 as a TF whose activity score is significantly correlated with
the tissue remodelling enrichment score, which is indicative of
poor prognosis in colorectal cancer. We focused on KLF4 because
it is one of the reprogramming factors in induced pluripotent stem
cells"" '? and it has a documented role in myelopoiesis.” Both of
these features could potentially contribute to the malignancy and
poor outcome associated with tissue remodeling. We validated
the KLF4 signature to be significantly expressed in the myeloid
versus lymphoid types of immune cells, in agreement with its role
in myelopoiesis.” Furthermore, the KLF4 activity score was found
to be positively correlated with the presence of myeloid cells in
the colorectal cancer samples. Taken together this analysis
indicates that the tissue remodelling signature in colorectal
tumours is in part due to the infiltration of myeloid cells and
the KLF4 is the TF sustaining the myeloid state in the infiltrating
immune cells.

The implication of these observations for the treatment of
colorectal cancer with a high degree of tissue remodelling remains
to be elucidated. Future work is required to identify what factors
drive the enrichment for myeloid types of immune cells in
colorectal cancers. A recent study highlighted a role of TGF
signalling in the exclusion of T-cells (lymphoid lineage) from
colorectal tumours in genetically engineered mouse models.'”
TGFB is a well known driver of tissue remodelling,'® but it is not
clear how the exclusion of T-cells influences the abundance of
myeloid cell types in colorectal cancers with increased tissue
remodelling.
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