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Copy number variation is a class of structural genomic modifications that includes the gain and loss of a specific genomic region,
which may include an entire gene. Many studies have used low-resolution techniques to identify regions that are frequently lost
or amplified in cancer. Usually, researchers choose to use proprietary or non-open-source software to detect these regions because
the graphical interface tends to be easier to use. In this study, we combined two different open-source packages into an innovative
strategy to identify novel copy number variations and pathways associated with cancer. We used amesothelioma and ependymoma
published datasets to assess our tool. We detected previously described and novel copy number variations that are associated with
cancer chemotherapy resistance. We also identified altered pathways associated with these diseases, like cell adhesion in patients
with mesothelioma and negative regulation of glutamatergic synaptic transmission in ependymoma patients. In conclusion, we
present a novel strategy using open-source software to identify copy number variations and altered pathways associated with cancer.

1. Introduction

Many research groups have studied human genomic diversity,
including various types of DNA sequence alterations, such as
copy number variation [1]. Among other possible definitions,
DNA copy number variation (CNV) can be described as “a
copy number change involving a DNA fragment that is ∼1
kilobase (kb) or larger” [1]. Here, we use CNV in the context
of structural changes inDNA copy number variation. Despite
the constant improvements in the high-throughput sequenc-
ing (HTS) technology, it is still challenging to use SNP array
data to search for novel structural CNVs [1].

Array-based Comparative Genomic Hybridization
(aCGH) is a technique developed exclusively to detect ampli-
fications and losses. On the other hand, researchers currently

use microarrays targeting millions of Single Nucleotide
Polymorphisms (SNPs) to perform both genotyping and
copy number analyses [2]. The allele-specific probes present
in SNP chips allow the researchers to quantify not only
the relative allelic abundance through the computation of
log-ratios [3] but also the total locus-specific abundance [4].
These statistics are then used to obtain genotypes and a higher
resolution CNV landscape, if compared to aCGH data.

Affymetrix designed a number of arrays suitable for copy
number analysis. These designs differ essentially in their
densities, ranging from 10 thousand to 2.7 million markers.
Researchers use the genome-wide SNP 6.0 (1.8 million mark-
ers) and the CytoScan HD (2.7 million markers) arrays for
current copy number studies [5]. However, it is not uncom-
mon to identify a significant number of investigations that
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used the 500K chipset, comprised of two 250K designs based,
respectively, on the Nsp and Sty restriction enzymes.

One tool used for analysis of CNV data using Affymetrix
arrays is the Copy Number Analysis Tool (CNAT) [6].
CNAT uses an extension of a Robust Linear Model with the
Mahalanobis distance classifier algorithm (RLMM) known as
BRLMM. This algorithm adds a Bayesian step that provides
an improved estimate of cluster centers and variances [7].
A noncommercial option usually used is the Copy Number
Analyzer for Affymetrix GeneChipMapping arrays (CNAG).
However, the source codes for CNAT and CNAG are not
available.Therefore, the scientific community cannot suggest
modifications that would make the software suitable for
specific requirements of each research project.

Novel analyses of CNV using publicly available microar-
ray data from tumor samples are sparse. One such study
analyzed data from expression arrays from hepatocellular
carcinoma patients and identified newly coexpressed genes
in tumor and adjacent normal tissues using unsupervised
clustering [8]. Another study identified chromothripsis-like
patterns from 918 published microarray cancer samples [9].
These examples demonstrate the potential in developing
innovative strategies to analyze published datasets, culminat-
ing in novel findings to the scientific community.

In this paper, we present a novel strategy to identify
structural CNVs using Affymetrix Nsp 250k data. We exam-
ined two published cancer datasets using two complementary
Bioconductor alternatives for CNV data analysis: DNAcopy
[10] and CGHcall [11].We identified novel regions, genes, and
pathways associated with mesothelioma and ependymoma,
corroborating the original findings [12, 13].

2. Materials and Methods

2.1. Samples. Weanalyzed two different cancer datasets based
on Affymetrix Nsp 250k SNP array, distributed through
the NCBI Gene Expression Omnibus (GEO) [14] service.
Both datasets refer to matched-pair DNA samples (tumor
and peripheral blood). One group studies 23 mesothe-
lioma patients (GEO accession GSE20989) [12], while the
other investigates 40 ependymoma patients (GEO accession
GSE32101) [13].

2.2. Data Analysis. We analyzed the data using the statistical
analysis software R (version 2.14.0) [15] and Bioconductor
(version 2.11) [16] packages. We used the oligo package
(version 1.18.1) [17] to import, preprocess, and genotype CEL
files via the Corrected Robust Linear Model with Maximum
Likelihood Distance (CRLMM) algorithm [3]. CRLMM uses
SNPRMA, an adapted version of the Robust Multiarray
Average (RMA) algorithm, to preprocess SNP data.We anno-
tated the genotyped probe sets using information from the
pd.mapping250k.nsp package, based on the human genome
(hg18) reference.

To remove the biological noise, we used the following
expression:

𝐹𝐶 = log( 𝑇
𝑁

) , (1)

where 𝐹𝐶 corresponds to the log-ratio for each probe set, 𝑇
represents the signal of the tumoral sample, and𝑁 indicates
the signal for the paired peripheral blood sample.

We segmented the log-ratio data using the Circular
Binary Segmentation (CBS) algorithm, distributed through
the Bioconductor DNAcopy package (version 1.28) [10].
These segments represent numerically regions that share the
same relative copy number. We used the thresholds set by
Christensen and colleagues [12] and Kilday and colleagues
[13] to call gains and losses: at least 0.5 for amplified regions
and at most −0.5 for a lost region. We also combined the seg-
mentation results with the CGHcall Bioconductor package
(version 2.14) [11]. This allowed us to estimate the probability
of a given segment being classified as an amplification or a
loss. With CGHcall, we only considered segments with a
probability higher than 80% to classify it as an amplified or
lost region.

We used theMGSA package (version 1.13) [18] to perform
gene set enrichment analysis (GSEA) and search for enriched
pathways. We used two different databases for GSEA: Gene
Ontology (GO) [19] andKEGG [20].WeusedCytoscape (ver-
sion 3.1.1) [21] and the Reactome database [22] to build the
functional interaction networks of genes participating in GO
pathways.

3. Results

3.1. Mesothelioma Dataset. Christensen and colleagues [12]
used CNAT to identify CNVs on the 23 mesothelioma
patients. They grouped their results by chromosomal arms
and we used the same strategy to compare our results to
theirs (Tables 1 and 2). We used both DNAcopy and CGHcall
to identify altered copy number segments within regions
reported by Christensen et al. For example, we identified
CTNND2 amplification in 2 patients within the 5p amplified
region using CGHcall (Table 1). Another example is the
identification, using DNAcopy, of 10 patients with losses in
the 9p chromosomal arm, which includes the CDKN2A and
CDKN2B tumor suppressor genes (43% of cases). Within the
16q region, we identified the loss of both copies of CDH8
(found in 6 patients using both packages), CDH11, JAM3, and
NCAM genes (all three found in 4 patients using both pack-
ages). We were also able to identify novel undetected regions
that had been amplified: 10p and 6q. The lost 10p region
includes the gene FZD8 (Figure 1(a)). Regarding the lost
regions, we ascertained that our approach detected the chro-
mosomal arm 16q with high frequency. Our strategy detected
all 10 lost regions identified by Christensen and colleagues
[12], using bothDNAcopy andCGHcall packages. Using their
findings as reference, our approach allowed us to identify
novel CNVs (Table 2 and Figure 1(b)).

We also conducted an analysis to detect alteredmetabolic
pathways in this mesothelioma dataset. We identified cell
adhesionmolecules (CAMs) (KO:04514) (Figure 2) as altered
with a probability of 76% and 93% of adherens junction
organization (GO:0034332) as affected. We observed that the
following pathways were altered with high probability: MHC
class II protein complex (96%) (GO:0042613) and the Fanconi
anemia pathway (86%) (KO:03460) (Table 3).
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Table 1: Comparison of SNP array data of mesothelioma [12] analyzed by DNAcopy and CGHcall with amplifications.

DNAcopy CGHcall Christensen et al. [12]
Chromosome arm Patients Chromosome arm Patients Chromosome arm Patients
1q 6 1q 5 1q 7
15q 7 15q 5 15q 4
8q 4 8q 3 8q 9
7p 3 7p 4 7p 5
8p 4 5p 3 5p 5
10p 4 10p 4 10p 0
9p 0 9p 4 9p 0
6q 3 6q 3 6q 0
6p 0 6p 4 6p 0

Table 2: Comparison of SNP array data of mesothelioma [12] analyzed by DNAcopy and CGHcall with lost regions.

DNAcopy CGHcall Christensen et al. [12]
Chromosome arm Patients Chromosome arm Patients Chromosome arm Patients
1p 18 1p 16 1p 15
6q 15 6q 8 6q 15
22q 6 22q 10 22q 10
14q 9 14q 11 14q 9
9p 10 9p 11 9p 9
4q 8 4q 9 4q 7
4p 7 4p 6 4p 6
13q 4 13q 5 13q 4
18q 2 18q 13 18q 3
10p 2 10p 2 10p 2
16q 15 16q 6 16q 0

Table 3: Gene set enrichment analysis using MGSA package with
posterior probability ≥0.5 for the mesothelioma dataset.

ID Pathway Posterior
probability

KO:04740 Olfactory transduction 0.98
GO:0042613 MHC class II protein complex 0.97
GO:0034332 Adherens junction organization 0.93
KO:03460 Fanconi anemia pathway 0.86
KO:00350 Tyrosine metabolism 0.79
KO:00565 Ether lipid metabolism 0.76
KO:04514 Cell adhesion molecules (CAMs) 0.69
KO:00650 Butanoate metabolism 0.53
KO:05416 Viral myocarditis 0.53
KO IDs are from the KEGG database and GO IDs are from the Gene
Ontology database.

3.2. Ependymoma Dataset. Kilday and colleagues [13] used
the CNAG [23] to identify CNVs grouped in the chro-
mosomal arms using 40 intracranial ependymoma samples.
Applying the same approach, we used chromosomal arms as
a reference to compare the results (Tables 3 and 4). We iden-
tified 35 amplified regions. The 1q region was the most fre-
quently amplified, found in 22.5%of patients usingDNAcopy.
The ADORA1 gene was present in extra copies in 87% of

the patients who presented amplifications at the 1q region.We
also identified 12 lost regions with DNAcopy. The chromoso-
mal arm 2q was lost in 27.5% of the patients.

Using the CGHcall package, we detected 35 amplified
regions. Regions with the highest amplification rates were
1p (15 patients), 18q and 20q (13 patients), 18p, 19p, and 20p
(12 patients), and 21q (11 patients). In the 20q region, we
identified the amplification of the cadherin gene CDH22 in
13 patients (when using CGHcall) and 4 patients (while using
DNAcopy).

Considering only the 17 lost regions identified by CGH-
call, the most frequently lost chromosomal arms were 1p (14
patients) and 2q and 6q (11 patients). Among all 33 amplified
regions identified by Kilday and colleagues [13], we identified
29 of themwith both packages. However, we could not detect
the region 14p nor the region 21p. We identified all of the 5
lost regions identified byKilday and colleagues [13]. Using the
DNAcopy package, we observed that 5 patients lost copies of
the PLA2G6 gene (22q region). This number increases to 7
patients when analyzing the data with the CGHcall package,
as shown by Tables 4 and 5 and Figure 3.

Our GSEA of this dataset identified statistically signifi-
cant altered pathways, as follows: (1) calcium-dependent cell-
cell adhesion pathway (GO:0016339), probability of 73%; (2)
protein digestion and absorption (KO:04974), probability of
66%; and (3) negative regulation of synaptic transmission,
glutamatergic (GO:0051967), probability of 55% (Table 6 and
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Figure 1: Venn diagram comparing the number of chromosomal regions in which gained (a) or lost (b) regions were identified by DNAcopy
and CGHcall and by Christensen and colleagues [12].
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Figure 2: KO:04514 from KEGG: colored if genes were identified in at least one patient with amplification (green), lost (red), both (yellow),
and with probe with no hybridization (gray).
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Figure 3: Venn diagram comparing the number of chromosomal regions in which gained (a) or lost (b) regions were identified by DNAcopy
and CGHcall and by Kilday and colleagues [13].
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Table 4: Comparison of SNP array data of ependymoma [13] analyzed by DNAcopy and CGHcall with amplifications.

DNAcopy CGHcall Kilday et al. [13]
Chromosome arm Patients Chromosome arm Patients Chromosome arm Patients
1q 9 1q 15 1q 14
2q 7 2q 9 2q 11
2p 4 2p 10 2p 11
19p 4 19p 12 19p 10
5p 5 5p 9 5p 10
17q 4 17q 7 17q 5
18p 3 18p 12 18p 10
17p 2 17p 7 17p 5
19q 3 19q 10 19q 9
15q 4 15q 13 15q 8
6q 5 6q 10 6q 8
6p 5 6p 9 6p 8
12q 5 12q 8 12q 6
21q 5 21q 11 21q 6
22q 6 22q 12 22q 7
7q 4 7q 9 7q 7
7p 4 7p 8 7p 7
9p 5 9p 9 9p 7
9q 5 9q 9 9q 7
20p 4 20p 12 20p 6
20q 4 20q 13 20q 6
11q 5 11q 5 11q 7
12p 5 12p 8 12p 6
8p 4 8p 6 8p 6
8q 5 8q 6 8q 6
4p 4 4p 9 4p 6
4q 5 4q 9 4q 6
14q 6 14q 9 14q 8
13q 7 13q 7 13q 0
3q 6 3q 7 3q 0
3p 4 3p 7 3p 0
11p 0 11p 11 11p 7
5q 0 5q 10 5q 10
10q 6 10q 10 10q 0
10p 4 10p 9 10p 0
18q 4 18q 0 18q 10

Figure 4). We used Cytoscape to evaluate which genes would
be affected by the impact of the genes with CNVs in the
negative regulation of synaptic transmission, glutamatergic
pathway and we found three clusters (Figure 4). We noticed
that two groups were characterized by the interaction ofmore
than 15 protein-coding genes: theGRIK gene familymembers
(GRIK1, GRIK2, and GRIK3) (Figure 4(a)) and the ADORA1,
HTR1B, HTR2A, and DRD2 (Figure 4(c)).

4. Discussion

Storing and distributing published datasets through public
databases allows researchers to reanalyze the data using

up-to-date methodological strategies. This approach can
reveal novel findings, aggregating value to the scientific
knowledgebase at lower costs.

On the mesothelioma microarray dataset, we identified
five of the 6 amplified regions detected by Christensen and
colleagues [12] applying the CGHcall package and four using
the DNAcopy package. We observed four undetected ampli-
fied chromosome arms when our approach was combined
with the CGHcall package. We also detected the FDZ8 gene
associated with the lost chromosomal arm 10p; this gene has
been previously associated with resistance to chemotherapy
in breast cancer patients [24]. When we used the CGHcall
package, we also identified two patients with extra copies of
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Figure 4: Functional interaction of genes with amplifications (yellow) in the “negative regulation of synaptic transmission, glutamatergic”
GO pathway (GO:0051967).
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Table 5: Comparison of SNP array data of ependymoma [13] analyzed by DNAcopy and CGHcall with lost copies.

DNAcopy CGHcall Kilday et al. [13]
Chromosome arm Patients Chromosome arm Patients Chromosome arm Patients
6p 8 6p 10 6p 9
6q 9 6q 11 6q 8
22q 6 22q 7 22q 6
16q 6 16q 7 16q 6
3q 8 10q 7 10q 7
2q 11 2q 11 2q 0
14q 7 14q 7 14q 0
21q 7 21q 7 21p 0
3p 6 3p 8 3p 0
13q 6 13q 9 13q 0
9q 9 9q 9 9q 0
9p 0 9p 7 9p 0
11q 0 11q 7 11q 0
5q 0 5q 8 5q 0
1p 9 1p 14 1p 0
3q 0 3q 8 3q 0
11p 0 11p 9 11p 0
10p 0 10p 6 10p 0

Table 6: Gene set enrichment analysis using MGSA package with posterior probability ≥ 0.5 for the ependymoma dataset.

ID Pathway Posterior probability
GO:0004522 Pancreatic ribonuclease activity 0.97
GO:0042613 MHC class II protein complex 0.84
KO:04740 Olfactory transduction 0.79
GO:0016339 Calcium-dependent cell-cell adhesion 0.73
KO:04974 Protein digestion and absorption 0.66
GO:0046703 Natural killer cell lectin-like receptor binding 0.65
GO:0051967 Negative regulation of synaptic transmission, glutamatergic 0.55
KO IDs are from the KEGG database and GO IDs are from the Gene Ontology database.

the CTNND2 gene, which encodes a protein that promotes
the disruption of the adhesion protein E-cadherin, favoring
cell migration and therefore cancer metastasis [25].

Christensen and colleagues [12] identified ten lost chro-
mosomal arms in mesothelioma patients. We detected eleven
affected chromosomal arms in our analysis, and eight of
these lost regions are the same as detected by Christensen’s
group. One of these lost regions was 9p, where the tumor
suppressor genes CDKN2A and CDKN2B are located. These
genes encode two proteins that inhibit the CDK4 protein
preventing continuation of the cell cycle in G1 [26]. Some
genes for adhesion molecules with lost copies have been
identified, for example, the cadherins CDH8 (6 patients) and
CDH11 (4 patients). The cadherin genes are located in the
16q arm and loss of heterozygosity was previously reported
in nephroblastoma, hepatocellular carcinoma, prostate can-
cer, and breast cancer [27]. Cadherins are important tight
junction molecules and the absence of these molecules can
promote cancer metastasis [28]. We observed the loss of the
NCAM gene in 4 patients: this can affect cell-matrix adhesion
and stimulate cell migration [29] (Tables 1 and 2). CNVs

in adhesion genes may alter pathways implicated in cell
adhesion, as our GSEA using the KEGG and GO databases
suggests (Table 3 and Figure 2). The CNVs identified in our
analysis could be associated with the lack of the expression
of adhesion proteins in human mesothelioma cell lines that
had been previously described [30].Therefore, our combined
approach not only replicated results published byChristensen
and colleagues but also provided additional support that
reduced cell adhesion in mesothelioma could be used as a
target to improve patient treatment.

Another work studied CNVs in 22mesothelioma patients
and identified lost copies of CDKN2A and CDKN2B tumor
suppressor genes [31]. We also identified lost copies of these
two genes. Additionally, our combined approach detected
CNVevents at other genes associatedwithmesothelioma: lost
copies of LATS1 (associated with hippo signaling) and NF2
(a tumor suppressor) and the amplification of the YAP gene,
responsible for encoding a protein that activates transcription
factors [32].

On the ependymoma dataset, we noticed that combin-
ing CGHcall and DNAcopy increased our ability to detect
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amplifications in the 1q chromosomal arm for most of
patients, corroborating the original findings [13]. Kilday and
colleagues [13] also identified a specific amplification of the
1q25 region, in which the QSOX1 gene was associated with
poor survival from the disease. We identified amplifications
in the 1q25 region in 7 patients as well as in the gene QSOX1
with the analysis through CGHcall. When using DNAcopy,
we detected other events in the 1q region. With CGHcall,
we identified all five lost regions identified by Kilday and
colleagues [13]; we observed only four of them when using
DNAcopy. We also detected amplification of the ADORA1
gene (1q32 region) in 13 patients using CGHcall and in 8
patients using DNAcopy (Tables 4 and 5). This Adenosine
A1 receptor participates in several signaling pathways. In the
breast cancer MCF-7 cell line, the silencing of the ADORA1
gene decreases the endogenous estrogen receptor-𝛼 (ER-𝛼)
levels and causes a decline in cell proliferation [33]. How-
ever, ADORA1 plays an important role as a neuroprotective
molecule in the central nervous system and its activation
is a common target for drugs that treat neurodegenerative
diseases (such as Alzheimer’s disease and multiple sclerosis).
The main result of ADORA1 receptor activation is the
inhibition of the glutamate synapse [34]. Glutamate is a
known apoptosis inducer and its use in ependymoma tumors
can suppress tumor growth [35]. The release of glutamate by
brain tumor cells has been associated with epileptic events
in glioma patients. The system 𝑥

𝑐

−, a plasmatic membrane
cysteine/glutamate antiporter heterodimer, was identified
as responsible for this glutamate release in ependymoma
[36]. It is composed of two proteins, one encoded by the
gene SLC7A11 and another by the gene SLC3A2 [37]. In a
clinical study, themost often reported clinical presentation in
ependymoma patients was seizure and medically intractable
epilepsy [38]. However, studies concerning glutamate release
and ependymoma are not available. We detected amplifica-
tion for the glutamate receptors GRIK1, GRIK2, and GRIK3
(Figure 4(a)). We noticed that SLC7A11, one of the system
𝑥

𝑐

− genes, was amplified in 5 patients, which is evidence
for the role of glutamate in ependymoma. Our combined
analysis detected the loss of the PLA2G6 gene (5 patients with
DNAcopy and 7 patients with CGHcall). PLA2G6 encodes
the iPLA2 protein that phosphorylates the AMPA receptor (a
glutamate receptor) [39]. According to ourGSEA results, neg-
ative regulation of glutamatergic synaptic transmission was
detected with a probability greater than 50% (Table 6), which
can be interpreted as a novel pathway for investigation in
ependymoma tumors.

In the ependymoma dataset, we identified additional
altered pathways with high probability to occur (Table 6).
Calcium-dependent adhesion mediated by E-cadherin is
deficient in this type of tumor because of its low expression
[40] and we found a 73% probability that this pathway was
altered. We also detected extra copies of the CDH22 gene in
13 patients with CGHcall and in 9 patients with DNAcopy.
The overexpression of these genes in this pathway has been
previously associated with tumor progression in colorectal
cancer [41].

Comparing our findings for ependymoma with another
study [42] that used the same array design as [13] and only the

DNAcopy package to perform their analysis, we observed that
some CNVs were identified exclusively by our approach. For
example, when comparing with the findings of Johnson and
colleagues [42], only our approach was able to identify lost
copies of SCHIP-1 (a NF2 protein interaction gene), despite
the fact that the NF2 genes have been previously described
in ependymoma [43]. Ependymoma also has well-known
amplified genomic regions [43], but only a gain of the TERT
gene was identified by Johnson’s group [42] as well as by our
methodology. However, our combined approach identified
novel potential biomarker candidates in ependymoma with
a known relationship to cancer: ERRB2, EGFR, TWIST1,
CDK4, HDAC9, and ARHGEF5 genes.

Taken together, our results provide additional verification
of novel and known pathways and molecular targets for
the improvement of current treatments of ependymoma and
mesothelioma.

5. Conclusions

Wedeveloped a novel combined approach using two different
software packages from the Bioconductor Project (DNAcopy
and CGHcall) to identify CNVs from SNP array data. We
verified the accuracy of our methodology using two different
previously published datasets that used the Affymetrix Nsp
250K arrays. We obtained results similar to those originally
reported. However, our methodology also identified novel
CNVs and possibly altered pathways. These pathways have
strong biological background and can be further investigated
as potential drug targets in mesothelioma and ependymoma.
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