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Model of THz Magnetization 
Dynamics
Lars Bocklage1,2

Magnetization dynamics can be coherently controlled by THz laser excitation, which can be applied in 
ultrafast magnetization control and switching. Here, transient magnetization dynamics are calculated 
for excitation with THz magnetic field pulses. We use the ansatz of Smit and Beljers, to formulate 
dynamic properties of the magnetization via partial derivatives of the samples free energy density, 
and extend it to solve the Landau-Lifshitz-equation to obtain the THz transients of the magnetization. 
The model is used to determine the magnetization response to ultrafast multi- and single-cycle THz 
pulses. Control of the magnetization trajectory by utilizing the THz pulse shape and polarization is 
demonstrated.

Interactions of light and matter play a crucial role in the control of ultrafast solid state processes. With the advent 
of ultra short laser pulses a new time scale of magnetization dynamics became accessible1–4. The interaction of 
laser pulses induces magnetization dynamics either by heating of the electronic system or by non-thermal photo- 
or optomagnetic effects5. One possible coupling of optical laser pulses to the magnetization is given by the inverse 
Faraday effect in ferrimagnetic garnets3. However, optical laser pulses often induce thermal effects in metals and 
for non-canted antiferromagnets the inverse Faraday effect is not applicable. For these materials, a direct Zeeman 
coupling of the magnetic field of the photon to the magnetization is achieved in the low THz regime6,7 and no 
thermal processes have been observed in these experiments. The resulting transient magnetization dynamics 
became accessible with the ability to generate high-power THz coherent laser pulses from optical lasers8,9 or elec-
tron sources10,11 whose pulse width is tunable down to single cycle pulses10,12–14. The frequency spectrum of these 
pulses is in a range where ferromagnetic eigenmodes, the ferromagnetic resonance or spin waves, are not effec-
tively excited. Thus, magnetization dynamics follows on the time scale of the field pulse stimulus that is orders 
of magnitude faster than ferromagnetic resonances7. For antiferromagnetic materials6,15 resonant excitation is 
achieved in the THz regime because of the high resonance frequencies of antiferromagnetic magnons. In both 
cases transient magnetic states are excited by THz pulses.

These ultra fast time-scales require a theoretical approach that handles transient magnetization dynamics 
at these time scales. The Landau-Lifshitz-Gilbert (LLG) equation16,17 describes magnetization dynamics in the 
micromagnetic model and covers typical length and time scales of today’s technological important magnetic 
materials. It was shown that ultrafast magnetization dynamics are described by the LLG as long as the inter-
actions are non-thermal and arise from a time-variation of the effective field6,7,18. This holds for THz laser 
pulses6,7.

Based on the LLG we develop an analytical model that covers transient magnetic states which couple directly 
to magnetic field stimuli. We solve the LLG in spherical coordinates and the effective magnetic field is expressed 
via the derivatives of the free energy density19,20 similar to the formulation of the ferromagnetic resonance by Smit 
and Beljers21. In this way we derive a general solution for transient magnetic states that are independent of actual 
sample properties and of the explicit knowledge of the internal fields. Magnetization dynamics can be directly 
calculated for any sample geometry, field configuration, or anisotropy directly from the free energy density. The 
THz pulse shape and polarization provide a full vectorial control of the magnetization on the sub-picosecond 
time scale.

Theory
Magnetization dynamics are described for small changes of the magnetization vector 

���
M. Therefore, the magneti-

zation is split in a constant part 
���
M0 and a small temporal changing component δ��m t( ). In spherical coordinates the 

polar and azimuthal angles of the magnetization are ϑ(t) =  ϑ0 +  δϑ(t) and ϕ(t) =  ϕ0 +  δϕ(t), respectively. The 
angles of the equilibrium magnetization are ϑ0 and ϕ0. The coordinate system is shown in Fig. 1.
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The Landau-Lifshitz equation in spherical coordinates is22,23
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with the Gilbert damping parameter17 α (Spin transport phenomena, like spin pumping, can alter the effective 
damping). The radial component has been omitted as it is zero. The vacuum permeability is μ0, the gyromagnetic 
ratio is γ with γ′  =  γ/(1 +  α2), and the effective field is 

��
Heff . The dynamic magnetization components are calcu-

lated from the dynamic angles via δ δ δ δ δϕ= = ϑ ϑϕϑ
��m m m M M(0, , ) (0, , sin )S S 0 .

Here, we solve the differential equation and calculate the response of a uniform magnetization to a temporally 
varying and spatially homogeneous small external field = ϕϑ



h t h t h t( ) (0, ( ), ( ))T. The effective field is given by the 
derivative of the free energy density F and by 



h t( ) as µ= − ϑ ϑ +−�� ��� �
H F M h t/ ( )eff 0

1 . The exchange field is not taken 
into account, i.e., antiferromagnets and ferrimagnets as well as spin waves are not included in the model. 
Calculations on THz dynamics of antiferromagnets can be found in ref. 24. The individual components of the 
effective field are µ= − +ϑ −

ϑ ϑH M F h t( ) ( )eff 0 S
1  and µ= − ϑ +ϕ

ϕ ϕ
−H M F h t( sin ) ( )eff 0 S 0

1 . The indices at F indi-
cate partial derivatives around equilibrium positions. Without exchange and with the approximation of the free 
energy density from the ansatz of Smit and Beljers21,25, the system of differential equations becomes linear and can 
be written as
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The solution for the free transient states of the magnetization is calculated to
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where constants C1,2 have to satisfy the given initial condition. The eigenfrequencies are

Figure 1.  Spherical coordinate system with polar angle ϑ and azimuthal angle ϕ. The basis vectors er,ϑ,ϕ 
(red) are fixed by the static magnetization 

���
M0 (light blue). They indicate the directions of the dynamic 

magnetization δ��m (dark blue) and the dynamic field 


h, which are both in the ϑ
e − ϕ

e -plane.
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as well as the resonance linewidth due to Gilbert damping25,26
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and give the ratio of the dynamic angular components δϕ/δϑ =  x1,2 of the resonant modes ω1,2.
The dynamic susceptibility χ of ferromagnets22,27 is small for frequencies off-resonance and, thus, resonant 

dynamics dominate for broadband pulsed excitation. For stimuli with THz pulses however, the Fourier ampli-
tudes at ferromagnetic resonances (FMR or spin waves) are vanishingly small. Hence, the prominent dynamics 
do not longer occur on a time scale of the resonance frequency but on that of the coherent THz laser pulse and a 
much faster coherent magnetization control can be obtained.

To calculate the response of the magnetization to THz pulses from Eq. (2), the dynamic magnetic field is 
approximated as a product of a harmonic signal and a Gaussian8–11,28 σ= − − +
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h t h t t( ) exp( ( ) /(2 )G
2 2

φΩ +i t( ))h , characterized by the width σ and the temporal shift tG of the envelope as well as the frequency Ω and 
the phase φh of the harmonic. The solution of the dynamic magnetization gets

δ
γ µ σ π

=
′�� �

m t
i x

t t hTW E S( )
2 Im( ) 2

( ) ( )
(10)

0

2

with the matrices

=




 ϑ






M

M
T

1 0 0
0 0
0 0 sin

,
(11)

S

S 0

=












ω ω

ω ω
t e e

x e x e
W( )

0 0 0
0
0

,
(12)

i t i t

i t i t
1 2

1 2

1 2

α
α

α α
=







+
ϑ

−
ϑ

−





+
ϑ





−




−

ϑ












x x

x x

S

0 0 0

0 1
sin sin

0 1
sin sin

,

(13)

2
0

2
0

1
0

1
0

and

ω
ω

=





∆

∆






Ω

Ω

t E t
E t

E( )
0 0 0
0 ( , ) 0
0 0 ( , ) (14)

1

2

where ΔEΩ(ω, t) =  EΩ(ω, t) −  EΩ(ω, 0) with

ω σ ω ω φ
σ ω

σ
=



− − Ω − − Ω +









− Ω + − 


ΩE t i t i i t t( , ) exp 1

2
( ) ( ) erf ( )

2 (15)
h

2 2
G

2
G

and with the error function erf(z) with complex argument z. For Ω =  0 and φh =  0 one arrives at the solution for 
a pure Gaussian pulse excitation.
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Results
The response to a THz magnetic field pulse with a frequency of Ω =  2 THz and a width of σ =  1 ps is shown in 
Fig. 2 for a thin film system, one of the most widely used systems. For the computation the values of a polycrys-
talline permalloy film are used that is oriented in the xy-plane. Parallel to the static magnetization 

���
M0 along the 

x-axis an uniaxial in-plane anisotropy Ku and an external field μ0Hext =  10 mT are set. The partial derivatives of the 
free energy density are then given by Fϕϕ =  μ0MS(Hext +  HA), Fϑϑ =  μ0MS(Hext +  MS +  HA), and Fϕϑ =  0 with 
HA =  2Ku/(μ0MS). Typical material parameters are MS =  860 kA/m, Ku =  400 J/m3, α =  0.007 that yield a resonance 
frequency ωr/2π =  3.06 GHz, much smaller than the THz frequency. δmϕ is the in-plane and δmϑ the out-of-plane 
component. The dynamic field (0, hϕ) points in-plane perpendicular to the static magnetization, i.e., the THz 
pulse is linearly polarized. Its amplitude μ0hϕ is set to 400 mT. Such high field amplitudes are achievable with 
intense laser radiation7 and necessary to induce magnetization changes in the order of a percent because the sus-
ceptibility χ is typically small in the THz regime. Therefore, magnetization dynamics are small and our linear 
assumption is well justified even at these high field amplitudes. As the model is linear, the magnetization ampli-
tude scales linearly with the field amplitude. The response to a shorter pulse with another phase is shown in 
Fig. 2(c). Here, the relative phase of both magnetization components to the excitation field stays the same, so THz 
pulses coherently drive the magnetization.

As observed in Fig. 2 the out-of-plane oscillation is dominant, which is in contrast to the larger in-plane oscil-
lation that one obtains at resonant excitation29. The amplitude of the in-plane dynamics is smaller than the ampli-
tude of the out-of-plane dynamics by a factor of about 50. This behavior is due to the reaction of the magnetization 
to a magnetic field. The instantaneous direction of motion points out of the plane spanned by 

���
M and 

��
Heff , i.e. the 

out-of-plane direction in the given example. The THz field alters so fast that the motion can be considered as 

Figure 2.  Magnetization dynamics for an excitation with a linearly polarized THz pulse with σ = 1 ps, 
tG = 5 ps, Ω = 2 THz, and φh = − ΩtG + π/2. Blue and red indicate polar ϑ and azimuthal ϕ components, 
respectively. The grey line depicts the temporal evolution of the excitation field with a field amplitude of 
400 mT, where the ordinate for the field ranges from − 600 to 600 mT. The inset shows the orientation of the 
film and of the magnetization in the coordinate system. (b) Magnetization trajectory in the phase space of the 
dynamic angles. The magnetization performs a few cycles and returns to rest. (c) Magnetization dynamics for an 
excitation with a THz pulse with the same parameters as in (a) except that σ =  500 fs and ϕh =  − ΩtG.
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instantaneous in the timescale of the pulse and the dominant dynamics are out-of-plane. Further, the magnetiza-
tion follows the stimulus in phase. The calculated response corresponds to experimental findings by Vicario  
et al.7. Figure 2(b) shows the oscillation path in phase space. The magnetization performs a few cycles before 
returning to equilibrium and is at rest after the multi-cycle pulse is completed.

Figure 3.  Magnetization dynamics for an excitation with a field from a THz pulse with σ ranging from 
50 fs to 500 fs in steps of 50 fs. The other parameters are as before. Time-dependent dynamic magnetization of 
the (a) polar ϑ and (b) azimuthal ϕ component.

Figure 4.  Magnetization dynamics for excitation with a THz pulse with σ = 100 fs. Other parameters are 
as before. Time-dependent magnetization are shown on a short time scale of the laser pulse in (a,b) and on the 
time scale of the ferromagnetic resonance in (c).
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For a field pulse approaching the single-cycle limit the situation differs. The evolution of the magnetization for 
various σ is shown in Fig. 3. Short excitation pulses are finished before the magnetization returns to equilibrium 
and the in-plane magnetization has an offset. From Fig. 3 it is observed that the magnetization cannot return to 
rest for pulses whose σ is smaller than the THz period. Consequently, THz pulses that are short compared to the 
period 2π/Ω lead to a ringing of the magnetization. Which magnetization component is offset depends on the 
phase ϕh. Here, it is set to ϕh =  − ΩtG +  π/2 to satisfy ∫ ∞−∞ BTHz(t)dt =  0 by BTHz(t) being antisymmetric about tG. 
Figure 4(a,b) depict the magnetization for a pulse with σ =  100 fs on the short time scale of the pulse. This is com-
parable to pulses that have been experimentally achieved30. From the phase space plot it is visible that the magnet-
ization passes only about a quarter cycle after the pulse is over. From this moment the transient states, described 
by Eq. (5), dominate the dynamics. The out-of-plane magnetization resonantly oscillates into equilibrium after 
the pulse as observed from Fig. 4(c) which shows the dynamics on the time scale of the resonance frequency. 
For decreasing width, the pulse approaches a delta function like stimulus and a broadband excitation is obtained 
whose Fourier component at ωr increases. For fast pump-probe experiments or technical applications the ringing 
of the magnetization can be avoided by setting a proper pulse width with respect to the harmonic.

To extend the degree of freedom in THz magnetization control the light’s polarization is utilized in the follow-
ing. A vectorial control of the magnetization by THz light was demonstrated for resonant excitation of antifer-
romagnetic magnons15. Here, it is shown that THz light can also be used to control the magnetization trajectory 
for non-resonant stimuli of ferromagnets by utilizing the THz pulse polarization, which becomes more and more 
tunable31.

An elliptical polarization is introduced via β β= ϕ ϕϑ ϑ



h h i h i( exp( ), exp( )). Here, we consider a circular polar-
ization and choose = ±



h h i( , 1), which preserves the phase of hϕ being the exciting field in the linearly polarized 
example. Using circular polarized light impinging perpendicularly to the film surface will not change the results 
shown previously because the additional dynamic in-plane component is aligned parallel to the static in-plane 
magnetization. It will not initiate dynamics. Therefore, the static magnetization is aligned out-of-plane by an 
external magnetic field (which could also be achieved by an intrinsic perpendicular anisotropy of the film). This 

Figure 5.  Magnetization dynamics for excitation with linearly (a) and circularly (b,c) polarized THz pulses 
with σ =  500 fs impinging perpendicularly to the film plane. The phase βϑ is set to zero in (a), to π/2 in (b), 
and to − π/2 in (c) and the amplitudes μ0hϑ and μ0hϕ are both 400 mT. The out-of-plane external field is 1.1 MS to 
align the magnetization out-of-plane along the x-axis. Blue and red indicate polar ϑ and azimuthal ϕ 
components (along the z and y-directions), respectively. Note that ϑ

e  points in negative z-direction. Here, the 
grey line depicts the hϕ component. The oscillation direction of the THz field in the y-z-plane is indicated by 
green arrows in the insets. The magnetization oscillation is perpendicular to the THz field in (a). The 
magnetization circulation direction in (b,c) equals that of the THz field.
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configuration results in the magnetization dynamics shown in Fig. 5 for three different polarizations (For the 
calculation, the film is oriented in the y-z-plane). Now both magnetization components equally react to the pulse. 
Only the THz pulse polarization has to be altered to obtain either linear or circular precession modes, whereby 
each mode can be addressed individually. mϕ is altered by the phase shifted dynamic field hϑ and again the 
response of the magnetization is determined by the dynamic field component perpendicular to it. Most interest-
ingly this enables a vectorial control of the magnetization by utilizing the polarization. The analytical calculation 
given here is only valid for the Gaussian THz pulse with one defined polarization state. However, experimentally 
it has been shown that THz pulses can be pulse-shaped to a large extent31 and more complicated magnetization 
trajectories become accessible. The off-resonant THz excitation should facilitate the highly tunable manipulation 
of the magnetization, as there is no unique and dominant mode in the THz regime, thus, enabling to arbitrarily 
shape the magnetization trajectory.

In principle the solution is not restricted to a special parameter range and gives the response to a directly 
coupled dynamic magnetic field as long as the reactions of the magnetic system are not too large, i.e., the linear 
model is valid. This holds up to approximately 20° ref. 29 which lies well in the experimentally obtainable range. 
Care must be taken to which extent other thermal or non-thermal effects contribute to magnetization dynamics in 
laser-induced experiments above the low THz regime. A review on these effects can be found in ref. 5.

Summary
An analytical model for transient magnetization dynamics of a homogeneously magnetized sample based on the 
Landau-Lifshitz equation with Gilbert damping is derived. The solution to the equation of motion is formulated 
via the partial derivatives of the free energy density and is given for multi- and single-cycle THz laser pulses. It 
represents a general solution to the excitation profile independent on the actual sample properties. Therefore, the 
trajectory can be calculated for any material, shape, or magnetocrystalline anisotropy of the sample as soon as its 
energy terms are known. Measured magneto-optical signals can be compared to the formalism which can help 
to disentangle magnetization dynamics initiated by a laser pulse that couples either directly or indirectly to the 
magnetization. The control of the magnetization trajectory by THz pulses is demonstrated. This can be achieved 
via the temporal shape of the pulse as well as its polarization. THz pulses are essential to future applications of 
ultrafast magnetization control and switching.
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