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Abstract: The difficulty of atmospheric correction based on a radiative transfer model lies in the
acquisition of synchronized atmospheric parameters, especially the aerosol optical depth (AOD).
At the moment, there is no fully automatic and high-efficiency atmospheric correction method
to make full use of the advantages of geostationary meteorological satellites in large-scale and
efficient atmospheric monitoring. Therefore, a QUantitative and Automatic Atmospheric Correction
(QUAAC) method is proposed which can efficiently correct high-spatial-resolution (HSR) satellite
images. QUAAC uses the atmospheric aerosol products of geostationary satellites to match the
synchronized AOD according to the temporal and spatial information of HSR satellite images. This
method solves the problem that the AOD is difficult to obtain or the accuracy is not high enough
to meet the demand of atmospheric correction. By using the obtained atmospheric parameters,
atmospheric correction is performed to obtain the surface reflectance (SR). The whole process can
achieve fully automatic operation without manual intervention. After QUAAC applied to Gaofen-2
(GF-2) HSR satellite and Himawari-8 (H-8) geostationary satellite, the results show that the effect
of QUAAC correction is slightly better than that of the Fast Line-of-sight Atmospheric Analysis of
Spectral Hypercubes (FLAASH) correction, and the QUAAC−corrected surface spectral curves have
good coherence to that of the synchronously measured by field experiments.

Keywords: atmospheric correction; radiative transfer model; aerosol optical thickness; surface
reflectance; FLAASH

1. Introduction

The remote sensing images taken by satellite are easily affected by the atmosphere,
which interfere with obtaining the actual surface reflectance (SR) of the target objects.
Most remote sensing applications rely on SR products [1], but acquiring SR is still a
challenge [2,3]. Therefore, in order to improve the quality of images and restore the actual
SR of target objects, it is necessary to eliminate the top-of-atmosphere (TOA) contributions
from atmospheric molecules, aerosols, and other atmospheric components on remote
sensing images through atmospheric correction.

There are many methods of atmospheric correction, which are mainly divided into two
methods which are respectively based on images and physical models [4]. The image-based

Sensors 2022, 22, 3280. https://doi.org/10.3390/s22093280 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093280
https://doi.org/10.3390/s22093280
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9035-363X
https://doi.org/10.3390/s22093280
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093280?type=check_update&version=1


Sensors 2022, 22, 3280 2 of 16

method is relatively simple, and only inverts the reflectivity by the image data, such as
dark object subtraction (DOS) [5] and the empirical line method (ELM) [6]. The physical
model is mainly based on radiative transfer model (RTM)—such as the second simulation
of the satellite signal in the solar spectrum (6S) [7]—and the moderate resolution atmo-
spheric transmission (MODTRAN) [8] model [9]. Under the same conditions, the physical
correction method based on the RTM is relatively more accurate than the image-based
method [10]. However, the difficulty lies in the acquiring of synchronized atmospheric
parameters, especially aerosol optical depth (AOD). The distribution of aerosols in the
atmosphere varies greatly with time and space, which makes it difficult to obtain matched
inputs for atmospheric correction [11]. The previous aerosol data retrieved by old genera-
tion geostationary satellites have low accuracy due to the lack of aerosol sensitive spectral
bands [12], even if they have a very high temporal resolution.

Shekhar et al. [13] proposed a Flexible Atmospheric Compensation Technique (FACT)
method to correct the hyperspectral and multispectral remote sensing data by simulat-
ing the outputs of 6S RTM with various inputs. Compared with the Fast Line-of-sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH) correction, the accuracy of the
FACT was about 95% for hyperspectral imaging sensors and close to 98% for multispec-
tral imaging sensors. Wang et al. [14] proposed a coupling parameter based atmospheric
correction (CPBAC) method to correct the Landsat 7 multispectral data by calculating the
coupling parameters of atmosphere and topography, and the corrected result was similar
to that produced by FLAASH. However, CPBAC can only be used for data containing
good Lambert objects under variant topography, which limited its widespread application.
Katkovsky et al. [15] proposed a new algorithm for atmospheric correction of hyperspec-
tral images which used the atmospheric parameters and the average SR to calculate the
spectral reflectance of all other pixels under the assumption of a horizontal homogeneity
of the atmosphere within the image. The spectra corrected by this algorithm had good
correspondence with the referenced SR. The above methods have many limitations, for
example the atmospheric parameters are difficult to obtain.

Cao et al. [16] corrected Gaofen-2 (GF-2) high-spatial-resolution (HSR) satellite multi-
spectral data with AOD retrieved from the moderate-resolution imaging spectroradiometer
(MODIS) data. Compared with the relative error of reflectance before atmospheric correc-
tion, the difference between the corrected SR and the measured reflectance was obviously
narrowed. David et al. [17] proposed a MODIS-based method that used AOD, aerosol type
and water vapor from MODIS Terra to correct Landsat Enhanced Thematic Mapper Plus
(ETM+) acquisitions in each coincident orbit. The performance of the MODIS-based atmo-
spheric correction is better than that of the image-based the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) method. Basith et al. [18] used the AOD parameter
which was retrieved from SR inversion involving daily global SR products of MODIS, to
corrected Landsat-8 images based the 6S method. The results of atmospherically corrected
images were agreeable with the Landsat 8 Level-2 products. However, the satellite with a
Sun-synchronous orbit cannot provide a high-temporal AOD, which is hard to match the
HSR satellite data such as GF-2. More and more new generation geostationary meteorologi-
cal satellites have been launched, such as Himawari-8 (H-8) [19], Fengyun-4 [20]. Wang
et al. [21] conducted work dedicated to exploiting information from the diurnal variability
in the hypertemporal geostationary observations for atmospheric correction, and the result
of the algorithm correction agreed well with the ground-based measurements. The method
shows that the high-temporal-resolution observation information can help to address the
atmospheric correction problem. It is necessary to propose a fully automatic and efficient
atmospheric correction method for HSR satellite images, taking advantage of atmospheric
products provided by geostationary meteorological satellites [22].

In this paper, a QUantitative and Automatic Atmospheric Correction (QUAAC)
method is proposed, which is fast running and accurate. This method makes full use
of the advantages of geostationary meteorological satellites’ atmospheric monitoring to
solve the problem of obtaining atmospheric data. Atmospheric data from geostationary
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satellite observations are matched according to the spatial and temporal information con-
sistent with the HRS satellite data. Then, an atmospheric correction based on RTM is
carried out to obtain the SR of HSR satellite images. The QUAAC algorithm achieves
a complete processing chain of atmospheric correction without manual operation. The
QUAAC method is applied to GF-2 HSR satellite and H-8 geostationary satellite and its
accuracy was verified.

2. Materials and Methods
2.1. Digital Elevation Model

A digital elevation model (DEM) is a representation of the bare ground (bare earth)
topographic surface of the Earth excluding surface objects such as trees or buildings, and is
a quantitative representation of terrain [23]. DEM is the high-resolution raster data that
covers the global DEM value in numerical form. Each pixel value on the DEM represents the
DEM value of the geographic location. The DEM provides important remote sensing data
for atmospheric RTM [24] which are used to obtain the DEM value in different geographic
locations. A DEM is used which is extracted from Shuttle Radar Topography Mission
(SRTM) with a 90 m spatial resolution [25]. In the first version, the easily accessible SRTM
with a 90 m spatial resolution was used. In future improved versions, the DEM will be
updated with a higher resolution (e.g., 30 m).

2.2. GF-2 Satellite Data

The GF-2 satellite is the first civil optical remote sensing satellite with spatial resolution
better than 1 m developed by China. It was successfully launched at the Taiyuan Satellite
Launch Center on 19 August 2014. The spatial resolution of the sub-satellite point can
reach 0.8 m [26]. The GF-2 satellite is equipped with two high-resolution cameras of 1 m
panchromatic and 4 m multispectral images [27], and contains four bands of blue, green,
red, and near-infrared [28] as shown in Table 1.

Table 1. Spectral bands of the GF-2 satellite.

Load Band Band Range Spatial Resolution

Panchromatic and Multispectral Camera

1 0.45 µm–0.90 µm 1 m

2 0.45 µm–0.52 µm

4 m
3 0.52 µm–0.59 µm
4 0.63 µm–0.69 µm
5 0.77 µm–0.89 µm

The radiometric calibration coefficient and the spectral response function of the GF-2
satellite is used for atmospheric correction, and they can be obtained from The China Centre
for Resource Satellite Data and Application (CRESDA, http://www.cresda.com/CN/,
accessed on 5 April 2022). Every year, the calibration coefficient is published by CRESDA
from field calibration experiments, and the accuracy of the calibration coefficient is better
than 5.3% [29].

2.3. Aerosol Products from Himawari-8 Satellite

The H-8 satellite is a new generation of geostationary meteorological satellite from the
Japan Aerospace Exploration Agency (JAXA). It was successfully launched in Tanegashima,
Japan on 7 October 2014, and has been measuring officially since 7 July 2015 [30,31]. The
Advanced Himawari Imager (AHI) onboard H-8 can achieve an Earth observation every
10 min, which acquires data from 0.47 to 13.3 µm in 16 spectral bands [32]. The monitoring
area of AHI is 60◦ N–60◦ S, 80◦ E–160◦ W, covering most of the western North Pacific. AHI
provides images with a spatial resolution down to 500 m every 10 min (fulldisk) [33].

In this study, the AHI level-2 aerosol products (ARP) were downloaded to use from
the JAXA “P-Tree” system (ftp://ftp.ptree.jaxa.jp, accessed on 7 April 2022). ARP’s

http://www.cresda.com/CN/
ftp://ftp.ptree.jaxa.jp
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four datasets—longitude, latitude, AOT and AOT_uncertainty—are matched to obtain
the synchronized AOD of GF-2 satellite data. The value of AOT dataset represents AOD
in this APR data. The value of AOT_uncertainty dataset represents the degree of AOT
uncertainty. The AOT_uncertainty dataset is divided into three parts according to the value,
and different value ranges represent different AOT dataset’s confidence levels as listed in
Table 2. The retrieval accuracy of the H-8 ARP is generally good [34,35], controlling quality
by the AOT_uncertainty dataset is helpful for identifying AOD accuracy.

Table 2. Three AOT_uncertainty value ranges correspond to three confidence levels of very good,
good, and unreliable.

AOT_Uncertainty (t) Confidence Level

t ≤ 0.5 Very good
0.5 < t < 1 Good

t ≥ 1 NO_Conf

2.4. QUAAC Algorithm

For the atmospheric correction of HSR satellites, we propose a method for atmospheric
correction based on 6S RTM, using the atmospheric aerosol products observed by geosta-
tionary satellites. The algorithm is applied to GF-2 satellite image and H-8 Satellite level 2
ARP as shown in Figure 1.
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In the first step, the pixels of the same spatial data—as GF-2 satellite image in the
DEM—are matched, and the AOT and AOT_uncertainty datasets’ pixels of the same
temporal (no more than 5 min difference) and spatial data as GF-2 satellite images in the
H-8 Satellite level 2 ARP are matched. If the matched pixel value of the AOT_uncertainty
dataset is greater than 0.5, the AOT dataset’s pixel value in the AOT_uncertainty dataset
is discarded. After data matching and quality control, the synchronized DEM value and
AOD data are obtained.

In the second step, it is necessary to perform radiometric calibration for GF-2 satellite
image by absolute radiometric calibration coefficient. Radiometric calibration is employed
to convert the digital number (DN) of the original remote sensing images into TOA radi-
ance [16]. The definition of radiometric calibration is

L = o f f set + Gain × DN (1)

where L is the TOA radiance after radiometric calibration, o f f set is the offset of absolute
calibration coefficient, and Gain is the gain value.

The formula for calculating TOA reflectance ρTOA is

ρTOA =
πLd2

cos(θ)ESUNλ
(2)

where d is the astronomical distance from the Sun to the Earth, θ is the zenith angle of the
Sun, and ESUNλ is the solar spectral irradiance at the upper boundary of the atmosphere
with the central wavelength of λ.

In the third step, the solar and satellite observation geometry, observation date, and
atmospheric model are obtained by the GF-2 images data. There are the following atmo-
spheric models: tropical, mid-latitude summer, mid-latitude winter, sub-arctic summer,
and sub-arctic winter. The atmospheric model is defined by the time and location of GF-2
images. The above data are input into 6S model together with spectral response function,
synchronized DEM value, and AOD. Then, the atmospheric correction coefficients are out-
put to complete the path radiometric correction. In this way, the influence of atmospheric
molecules on the target objects is eliminated. The initial SR is calculated with the radiance
L. The calculation method of the initial SR as

ρARC =
XaL − Xb

1 + (XaL − Xb)Xc
(3)

where Xa, Xb, and Xc are correction coefficients from outputs of 6S RTM, and ρARC are
initial SR.

Finally, it is significant to eliminate the influence caused by the adjacent pixels around
the target pixel on the target pixel [16]. The TOA radiance ρTOA is composed of path radia-
tion reflectance ρa from 6S output, target pixel reflectance ρt, and background reflectance
ρb. The expression is

ρTOA = ρa + T(θs)T(θν)

[
ρt

x
PSFtar(x, y) dxdy + ρb

x
PSFback(x, y) dxdy

]
(4)

where T(θs) and T(θν) are the downward and upward radiative transmittance respectively
from outputs of 6S RTM, where PSFtar is atmospheric point spread function for the target
pixel, and PSFback is atmospheric point spread function for the background pixel.

The formula for background reflectance ρb is

ρb(x, y) =
∑n

i=−n ∑n
j=−n ρARC(i, j)e−r

∑n
i=−n ∑n

j=−n e−r (5)

where r is actual distance of the reference pixel and the central pixel.
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The r is calculated as
r = a

√
i2 + j2 (6)

where a is spatial resolution of the GF-2 satellite image.
Over an entire area, if

s
PSF(x, y) dxdy = 1,

s
PSFtar(x, y) dxdy = α (0 < α < 1) ands

PSFback(x, y) dxdy = 1 − α.
Equation (4) can be

ρTOA = ρa + T(θν)T(θs)(ρtα + ρb(1 − α)) (7)

where α is the contribution rate of target pixel’s actual SR ρt to ρARC.
The α reflects the extent of adjacency effect. After removing ρa and attenuation of

Equation (7), ρARC is obtained as

ρARC = ρtα + ρb(1 − α) (8)

Then, the SR after the adjacency effect correction is obtained as

ρt =
ρARC − ρb(1 − α)

α
(9)

The adjacency effect is corrected via a long computational period. The parallel comput-
ing is a solution method for the temporal acceleration. The parallel strategy uses multi-CPU
to work simultaneously for atmospheric correction of GF-2 image [36]. When the CPU
number increases, the computational speed also increases. Under the 8-CPU working mode,
a multispectral image atmospheric correction only takes 1 min.

2.5. QUAAC Validation
2.5.1. Measured Surface Reflectance (MSR) Data

To verify the accuracy of QUAAC, the multispectral images of the GF-2 satellite were
downloaded as HSR data, and five test sites (Dongting Lake, Guyuan, Qiyang, Guangzhou,
and Xilinhot) were selected as shown in Figure 2. In Dongting Lake, Guyuan, Qiyang,
and Guangzhou, there are various types of land objects, and grass is very abundant in
Xilinhot. The specific information of the multispectral images is shown in Table 3. The
field spectral data of surface types measured at the same time and in the sites are obtained
(http://nsicat.radi.ac.cn, accessed on 29 March 2022). The MSR values were collected in
raw DN mode with an ASD FieldSpec 4 spectroradiometer with the 8◦ foreoptic attachment.
The spectrometer has a 400–2500 nm wavelength range, and the 450–900 nm wavelength
range is used in this study. The uncertainty of the spectrometer measurement is no more
than 3% in 450–900 nm [37].

Table 3. The central longitude and latitude, date, and synchronized DEM value and AOD of the five
test sites.

Location Longitude and Latitude Data AOD DEM Value (km)

Dongting Lake
E113.5, N29.2 11 November 2020 0.042 0.140
E112.2, N29.2 15 January 2021 0.700 0.028
E113.0, N29.4 23 April 2021 0.233 0.028

Qiyang E112.0, N26.5 3 September 2021 0.052 0.296
E111.8, N26.7 6 July 2021 0.175 0.226

Guyuan E116.0, N41.7 10 August 2020 0.050 1.488

Guangzhou E113.2, N23.5 29 January 2021 0.142 0.141

Xilinhot
E115.5, N45.2 27 June 2020 0.019 1.277
E115.1, N44.6 6 August 2020 0.098 1.176
E116.8, N43.1 16 November 2020 0.0326 1.303

http://nsicat.radi.ac.cn
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In order to obtain an accurate MSR, the measured spectral curve of the field objects
and the spectral response function of the GF-2 satellite are convolutionally calculated as

MSR =
∫ b

a
f (τ)g(x − τ)dτ (10)

where a and b are the band range, and f(x) and g(x) respectively represent the measured
spectral curve and spectral response function.

2.5.2. Statistical Index

QUAAC validation is mainly based on MSR. The statistical parameters of remote
sensing image quality can be divided into two categories according to the number of factors
involved in the evaluation [38]. One is single factor statistical indexes—including entropy
values, standard deviation, average gradient, etc. The other is comprehensive statistical
indexes—including root mean square error (RMSE), correlation coefficient (R), etc.

In order to test the effect of QUAAC correction, this study selects normalized difference
vegetation index (NDVI) [39], information entropy (IE), and average gradient (AG) [40]
as the quality statistical index of single image. The RMSE [13], relative error (RE) [41],
mean absolute error (MAE) [34], R, and coefficient of determination (R2) [42] are used as
comprehensive statistical indexes.

NDVI can reflect the growth status and nutrition information of green vegetation. The
larger the value of NDVI, the greater the amount of green vegetation coverage. The IE
represents the amount of information provided by image. AG reflects the rate of change in
the contrast of tiny details of the image, indicating the relative clarity of the image. The
larger the AG is, the higher the clarity of the image. RMSE describes the degree of deviation
between data. The smaller the RMSE, the smaller the degree of deviation. The RE can
reflect the reliability of the predicted value. The MAE represents the average value of the
absolute error between the predicted value and the observed value, reflecting the size of
the actual prediction error. The R represents the correlation between data, the closer the R
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value is to 1, the higher the similarity between the two sets of spectral curves. The larger
the R2, the greater the goodness of fit.

3. Results and Discussion
3.1. Image Quality Evaluation

Sixteen GF-2 multispectral images were corrected by QUAAC. The visual comparison
between the images before and after QUAAC correction is shown in Figure 3. It is found
that after QUAAC, the clarity and contrast of the images are visually improved.
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Figure 3. Comparison of GF-2 images before and after QUAAC correction. True color composite
images of TOA Radiance are shown on the left column and QUAAC−correcteded SR images are
shown on the right column. The dates and locations from top to bottom are Dongting Lake on
11 November 2020 (a,b), Guangzhou on 29 January 2021 (c,d), Dongting Lake on 15 January 2021 (e,f),
and Qiyang on 6 July 2021 (g,h).

The IE and AG of the TOA radiance image and the QUAAC−corrected SR images were
calculated to evaluate the quality of the images as shown in Table 4. The data show that after
QUAAC and FLAASH correction, the IE and AG of images increase significantly, which
indicates that the informational content and clarity of the corrected images are improved.
Most of the IE of FLAASH is higher than that of QUAAC, indicating that the amount of
information contained in images after FLAASH correction is slightly better than that of
QUAAC correction. The average gradient of QUAAC is significantly higher than that of
FLAASH, indicating that the clarity of QUAAC correction is better than that of FLAASH.

Table 4. Information entropy and average gradient of TOA radiance images, QUAAC−corrected
images, and FLAASH−corrected images.

Location TOA Radiance Image EI QUAAC EI FLAASH EI TOA Radiance Image AG QUAAC AG FLAASH AG

Dongting Lake
0.109 1.642 2.220 10.55 133.14 88.85
0.141 1.631 1.790 4.45 46.13 28.63
0.003 1.563 1.270 4.63 122.86 45.74

Qiyang 0.294 1.530 1.730 12.36 128.77 79.69
0.532 1.349 1.902 11.86 117.06 76.94

Guyuan 0.175 1.282 1.530 9.24 92.49 55.79

Guangzhou 0.621 2.393 2.650 13.50 180.62 111.70

Xilinhot
0.913 1.352 1.730 5.42 42.94 27.78
0.106 2.656 2.790 8.27 182.83 93.65
0.153 1.937 2.270 7.25 70.29 43.01

In this experiment, the following typical surface types were also selected as samples:
concrete floor, soil, grassland, gravel, shrub, and water. The NDVI of these objects is
calculated, and the NDVI of the surface types before and after QUAAC correction is
compared as shown in Figure 4. The results indicate that the NDVI of all surface types
changes, and the NDVI of corrected green vegetation is significantly increased. The NDVI
curves of QUAAC correction, FLAASH correction, and MSR involve many overlapping
parts, and numerical gaps are small. This shows that QUAAC improves the ability of
extracting green vegetation information, which is beneficial to the distinction between
green plants and other surface types.
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3.2. Validation of Spectral Reflectance on Different Surface Types

The synchronized MSR is used as the reference data. Multispectral images on the
same date and location after FLAASH and QUAAC correction are selected. We compare
the FLAASH/QUAAC−corrected SR of concrete floor, soil, grassland, gravel, shrub, and
water with the synchronized MSR respectively. The R2, RE, and RMSE are used to evaluate
the accuracy. The comparison charts are shown in Figure 5.
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Figure 5. Comparison of QUAAC (right column) and FLAASH (left column) corrected spectral
reflectances versus synchronized MSR on each surface type. From top to bottom, they are the concrete
floor of Dongting Lake on 11 November 2020 (a,b), the soil of Dongting Lake on 15 January 2021 (c,d),
the grassland of Xilinhot on 27 June 2020 (e,f), the gravel of Qiyang on 3 September 2021 (g,h), the
shrub of Qiyang on 6 July and 2021 (i,j), the water of Guangzhou on 29 January 2021 (k,l). Each
subfigure is marked with R2, RE, and RMS.
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Figure 5 shows that six surface types’ spectral curve trends of FLAASH/QUAAC
correction are basically the same as those of MSR. The QUAAC−corrected effects of soil,
grassland, and shrub are slightly better than those of FLAASH; and the FLAASH−corrected
effects of concrete floor, gravel, water are slightly better than those of QUAAC. After
QUAAC, the corrected effects of surface types are ranked from good to bad, followed
by grass, shrubs, soil, gravel, concrete floor, and water. The deviation between SR of
QUAAC−corrected grassland and synchronized MSR is smallest, and the similarity is high.

The reflectance of water in each band is low, and the errors are brought by factors such
as atmosphere, AOD, and radiation calibration coefficient. This will lead to relative errors,
resulting in a large deviation between thewater reflectance after QUAAC correction and the
synchronized MSR. The R2 of concrete floor is high, and the trends of the spectral curves are
the same. However, the concrete floor’s SR of each band has a systematic deviation. Maybe
it is because validation pixels in the GF-2 image are mixed-pixel, and the field measured
data are a single-point measurements, resulting in systematic errors.

3.3. Validation on Different Spectral Bands

In order to better analyze the corrected effect of QUAAC on each band, the QUAAC−
corrected SR and the synchronized MSR, and the FLAASH−corrected SR and the syn-
chronized MSR in the blue, green, red, and near-infrared bands are compared as shown
in Figure 6. The closer the point is to the diagonal, the smaller the gap between the
FLAASH/QUAAC−corrected reflectance and the synchronized MSR. Respectively, the
MAE, RMSE, R2, and R between the FLAASH/QUAAC−corrected reflectance and the
synchronized MSR are calculated to evaluate the accuracy as listed in Table 4.
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Figure 6. Scatter plots of QUAAC (right column) and FLAASH (left column) corrected SR versus
MSR in each band. From top to bottom, the four bands are blue (a,b), green (c,d), red (e,f), and
near-infrared (g,h). Different shapes and colors in the figure represent different surface types.

The scatter diagram in Figure 5 shows that the surface types in the four bands are
distributed around the diagonal as a whole. In the blue, green, and red bands, the SR are
basically below 0.25, and in the near-infrared band, the SR spans are larger, from 0 to 0.6.
The statistical index of FLAASH, QUAAC, and MSR as listed in Table 5 show that QUAAC
is better than FLAASH in each index in each band. The QUAAC−corrected effect is the
best in the near-infrared band. Probably because the QUAAC computes the atmospheric
radiative transfer more correctly. Generally, the QUAAC−corrected SR and synchronized
MSR have a small deviation, high similarity, and consistent spectral trend.

Table 5. MAE, RMSE, R, and R2 between FLAASH/QUAAC and MSR in the blue, green, red, and
near-infrared bands. The FLA-MSR is FLAASH−corrected SR and the MSR, and the QUA-MSR is
QUAAC−corrected SR and the MSR.

Blue Green Red Near-Infrared

FLA-MSR QUA-MSR FLA-MSR QUA-MSR FLA-MSR QUA-MSR FLA-MSR QUA-MSR

MAE 0.022 0.016 0.026 0.020 0.028 0.024 0.031 0.027
RMSE 0.029 0.021 0.032 0.025 0.034 0.030 0.040 0.038

R 0.784 0.893 0.739 0.819 0.825 0.0890 0.960 0.967
R2 0.614 0.797 0.545 0.671 0.681 0.792 0.921 0.935
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4. Conclusions

In this study, QUAAC uses the atmospheric aerosol products observed by H-8 satellite
to provide synchronized data with the GF-2 satellite images, and successfully achieves
automatically atmospheric correction of the GF-2 images based on the 6S RTM. The im-
ages before and after QUAAC correction were compared, and six kinds of surface types
including concrete floor, soil, grassland, gravel, shrub, and water are selected to verify
the QUAAC accuracy. The QUAAC-correcteded and FLAASH−corrected spectral curves
were compared with synchronized MSR. The results show that the NDVI and clarity after
QUAAC correction are significantly increased. After horizontal comparison, the corrected
effect of QUAAC is slightly better than that of FLAASH. The spectral curve trend of the
surface types is basically the same as that of the synchronized measurement.

The QUAAC which uses atmospheric products from geostationary satellite to support
atmospheric correction of HSR satellite images not only solves the problem of aerosol data
acquisition, but it also provides an accurate and fast running atmospheric correction idea
for the same type of HSR satellite images. QUAAC is a fully automatic and effective method
with good generality. A more accurate inversion of atmospheric parameters [34] will be
more conducive to supporting atmospheric correction of HSR remote sensing images.
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