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Abstract The ketoenamine-enolimine tautometic equilibrium
has been studied by the analysis of aromaticity and electron-
topological parameters. The influence of substituents on the
energy of the transition state and of the tautomeric forms has
been investigated for different positions of chelate chain. The
quantum theory of atoms in molecules method (QTAIM) has
been applied to study changes in the electron-topological
parameters of the molecule with respect to the tautomeric
equilibrium in intramolecular hydrogen bond. Dependencies
of the HOMA aromaticity index and electron density at the
critical points defining aromaticity and electronic state of the
chelate chain on the transition state (TS), OH and HN
tautomeric forms have been obtained.
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Introduction

The carbonylamines presented in the paper (Scheme 1) are
prototypes of malonaldehydes investigated in a number of
experimental and computational studies [1–3]. The given
compounds can be referred to so-called resonance assisted
hydrogen bond (RAHB) system being elaborated by Gilli et
al. [4]. Recently the interest in RAHB has much grown due
to the critics presented in refs [5, 6]. It is noteworthy that
the aryl Schiff bases were properly studied [7–9]. However,
theoretical studies of the carbonylamine (alkyl derivatives
of Schiff bases) are not as numerous [10–14]. Both the
alkyl Schiff bases and the aryl Schiff bases (Scheme 1)
contain a quasi-aromatic formation as a common feature.
But, the experimental data [15–23] expose the principle
difference between these two types of compounds. What
makes them different is that the HN (ketoenamine)
tautomeric form prevails for the alkyl derivatives [10–
26], meanwhile OH (enolimine) tautomeric form
(Scheme 2) prevails for the aryl derivatives [7–9]. The
transition from one form to another (the proton transfer)
requires energetic expenditure (ΔEPT). The change of
tautomeric equilibrium is evoked by an acid-base balance
and polarity of the environment. A series of papers [27–
40] deals with the ways the tautomeric equilibrium affects
the aromatic state of a molecule with intramolecular
hydrogen bonding.

To trace a change of a tautomeric equilibrium in
carbonylamines experimentally is really challenging. It is
also difficult to estimate the substituent influence in the
chelate chain (O=C-C=C-N) on the hydrogen bonding
strength. This task is hampered by complementary phe-
nomena (trans-cis isomerization [11] and HO-CH=CH-C=
NR⇄O=C-CH2-CH=NR equilibrium [15–17]) observed
experimentally for carbonylamines. However, quantum-
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mechanical calculations make it possible to describe a
complicated nature of hydrogen bond. This paper is
concerned with the ketoenamine-enolimine tautomeric
equilibrium (Scheme 2) and the calculations of the
carbonylamines with various substituents (CH3, H, NH2,
Cl and F) in the chelate chain. The calculations were
performed for the OH and HN tautomeric forms and
transition state (Scheme 2) describing two main stages of
the proton transfer process [41]. For description of these
stages we calculated the difference of energies between them
(ΔEPT=EOH - ENH, ΔETS=ETS – EHN; the energy of HN
tautomer is taken as the ground energetic level) and the
HOMA aromaticity index [42] and electron-topological
parameters [43, 44]. HOMA index is a widely accepted
parameter applied in the description of the aromaticity [45,
46]. The merit of HOMA index is in its ability to be used
for the experimental [47] and computational [48] results.
The difference of energies is one of the most reliable
parameters in the description of the hydrogen bonding
[49].

As for the HOMA aromaticity index, it has been
repeatedly verified by the researchers of intramolecular
hydrogen bonding during last decade [26, 27, 30–40].
There are papers dwelling on the influence of tautomeric
equilibrium on the aromaticity of phenol, aniline and
naphthol complexes [50]. This paper develops these studies
with aim to unify the HOMA aromaticity index in the area
of hydrogen bonding and electron-topological analysis.

Computational details

The calculations were performed with Gaussian 03 [51] sets
of code using the 6-311+G(d,p) basis set [52–55] at the
Møller–Plesset second-order perturbation level (MP2) [56].
QTAIM analysis was performed using the AIM2000
program [57] with all the default options.

The HOMA aromaticity index was calculated by the
following formula:

HOMA ¼ 1� 1

n

Xn

i¼1

ai Ropt � Ri

� �2 ð1Þ

where n is a number of bonds, α is an empirical constant,
Ropt and Ri are the optimal and individual bond lengths
taken from ref. 42. A higher HOMA aromaticity index
corresponds to a more delocalized π-electronic system,
hence a more aromatic formation [58].

Results and discussion

The influence of substituents on the intramolecular
hydrogen bonding in the carbonylamines

The influence of substituents (R1 – R3) in the α, β and γ
positions on the ketoenamine-enolimine equilibrium can be
described by the inductive constants [59] (σF=0, ∼0, 0.14,
0.44 and 0.45 for H, CH3, NH2, Cl and F, respectively). It is
noteworthy, that the π-electron donation of NH2 group is
small due to perpendicular orientation of its lone electron
pair with respect to quasi-aromatic formation. This phe-
nomenon was properly described by Sola et al. [60]. The
increase of the electron acceptor ability of the R1 and R2

substituents (the increase of σF constant) in the α and β
positions results in the growth of both the energetic barrier
of transition state (ΔETS) and the OH form (ΔEPT), (Fig. 1a
and b). This trend is traced for the CH3 (Fig. 1a) and H
(Fig. 1b) substituents at the nitrogen atom, which serve as
the basic ones for the predominant HN tautomeric form. An
opposite picture is observed for the substituent (R3) in the γ

Scheme 1 Alkyl and aryl Schiff bases

Scheme 2 Where R1, R2, R3

and R4 are CH3, H, NH2, Cl and
F substituents
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Fig. 1 The energy levels of
carbonylamine derivatives
depending on substituents (black
column respect to R1=H, CH3,
NH2, Cl, F; R2=R3=H; grey
column respect to R2=H, CH3,
NH2, Cl, F; R1=R3=H; white
column respect to R2=H, CH3,
NH2, Cl, F; R1=R3=H)
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position (Fig. 1a and b) which reveals the decrease of the
ΔETS and ΔEOH values under the σF constants increase.
These trends originate in the following phenomena: 1) the
substitution (R1) in the α position greatly affects the C=O
group by weakening its basicity, consequently, it attenu-
ates the hydrogen bond strength and enhances the ΔETS

and ΔEHN-OH barriers according to the CH3, H, NH2, Cl
and F sequence; 2) the substitution (R3) in the γ position
mostly influences the amine group by increasing its acidity
according to the Cl, F, NH2 and H≅CH3 sequence. Some
exception from the expected CH3, H, NH2, Cl and F
sequence is observed for the fluoro-substituent (R3) in the
γ position. The reason for this disagreement is a marked
polarizability effect of the fluorine atom (σα = −0.25 [59])
which causes some attenuation of the acidity of the HN
group and the intramolecular hydrogen bonding. Remark-
ably, the substituent (R2) in the β-position influences but
to a lesser extent the ΔETS and ΔEOH values due to its
remote position from the acidic (NR4) and basic (O=C)
moieties.

The picture changes for the N-F derivatives (R4). The
majority of these derivatives is characterized by the OH
tautomeric form prevailing over the HN tautomeric form
(Fig. 1c). The development of the electron acceptor ability
of the R1 substituent (under weak basicity of the nitrogen

atom, at N-F substituent) brings about both the decrease of
the ΔETS values and the strengthening of the OH
tautomeric form prevailing. However, the increase of the
electron acceptor properties of the substituent (R2) in the β-
position is accompanied by the growth of the ΔETS values
and the weakening of the OH tautomeric form prevailing.

With respect to the substituent impact on the nitrogen
atom (R4), the ΔETS and ΔEOH values are getting smaller
according to the H, CH3, NH2, Cl and F sequence (Fig. 1d).
Some discrepancy as to the expected CH3, H, NH2, Cl and
F sequence is observed for the H substituent which slightly
influences the acidity of the amine group. A similar
deviation was discovered for ortho-hydroxy aryl Schiff
bases and explained by a significant polarization effect of
the NH group [41, 60, 61].

In terms of the structural data of the hydrogen bridge
(d(OH), d(HN) and d(OH)), they are characterized by the
following tendencies: 1) the elongation of the HN bond results
in the reduction of the hydrogen bond and the OH bond
lengths; 2) the elongation of the OH bond also triggers the
reduction of the hydrogen bond and the HN bond lengths; 3)
the shortest hydrogen bridge is found for the transition state;
4) the position of the TS is more shifted toward the reagents
(d(O-H)TS<d(N-H)TS for prevailing of the NH…O form)
according to Leffler-Hammond rule [62, 63].

Fig. 2 Correlations between the
electron density (a) at the OH
bond critical point (ρBCP(OH),
a.u.) and OH bond length (d
(OH), Å), and (b) at the HN
bond critical point (ρBCP(HN),
a.u.) and HN bond length (d
(HN), Å). Circles, squares and
triangles correspond to the OH,
transition state and HN forms,
respectively

Fig. 3 Correlations between
electron density at the chelate
chain critical points (ρRCP(ch),
a.u.) and (a) OH bond length (d
(OH), Å), and (b) the electron
density at the OH bond critical
point (ρBCP(OH), a.u.)
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Analysis of aromatic and AIM parameters vs. tautomeric
equilibrium

To verify the calculations obtained by the QTAIMmethod the
ρBCP(XH)=f(d(XH)) (X=N or O atom) dependence was
developed (Fig. 2; ρBCP(OH)=0.3489×(OH)

-3,522, R2=
0.9991; ρBCP(NH)=0.3071×(NH)

-3,5938, R2=0.9987). The
dependence taken by means of full optimization for different
substituents in α - γ positions appears to be an exponential
curve which is in accordance with the results obtained by
non-adiabatic approach [41, 64]. Remarkably, the results for
different substituents under full optimization are in agree-
ment with those found under non-adiabatic approach for
ortho-hydroxy aryl Schiff bases [65].

The next stage of the study was to verify the ρRCP(ch)=f
(d(OH)) and ρRCP(ch)=f(ρBCP(OH)) dependencies (Fig. 3)
calculated for the OH, TS and HN states of the compounds.
These dependencies look like Morse or bell-shaped curves.
A similar shape of the curve is traced for HOMA(ch)=f(d
(OH)) scatter plot (Fig. 4). The calculated scatter plot
conditioned by some scattering of points supports the trends
which are not observed under non-adiabatic approach [66].
The correlations reveal that the maximum of the electronic
density at quasi-aromatic critical point (ρRCP(ch)) and
maximum aromaticity reaches its top in the transition state.
This result comes in agreement with the results obtained in
paper 66, where the comparison of the aromaticity of
hydrogen-bonded and Li bonded aryl Schiff bases deriva-
tives was carried out.

Fig. 4 Scatter plot of the chelate chain aromaticity index HOMA(ch)
versus the OH bond length (d(OH), Å)

Fig. 5 Correlations between hydrogen bond length (d(ON), Å) and
electron density at chelate chain critical points (ρRCP(ch), a.u.)

Fig. 6 Correlations between hy-
drogen bond length (d(ON), Å)
and electron density at (a) che-
late chain critical points
(ρRCP(ch), a.u.), and (b) the HN
bond length (d(HN), Å)

Scheme 3 Structural and elec-
tron-topological scheme of the
tautomeric equilibrium
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The d(ON)=f(ρRCP(ch)) correlation (Fig. 5; d(ON)) =
−35.482×(ρRCP(ch))+3.2575, R2=0.9849) appears to be one
of the most interesting dependencies which states that the
shortening of the hydrogen bridge results from the growth of
the electron density at the critical point of quasi-aromatic
formation. But comparatively, the parabolic dependence
d(ON)=f(ρBCP(XH)) is more informative with respect to
tautomeric equilibrium (Fig. 6) in terms of the basic parameter
(d(ON)) describing the hydrogen bond strength.

The ρRCP(ch)= f(d(OH)), ρRCP(ch)= f(ρBCP(OH)),
HOMA(ch)=f(d(XH)) and d(ON)=f(ρRCP(OH)) dependen-
cies (Figs. 3, 4 and 5) show that strengthening of the
hydrogen bond brings about the increase of both electron
density at the critical point of quasi-aromatic formation and
the chelate chain aromaticity (Scheme 3).

Bearing in mind the fact of mutual increase of
aromaticity and π-component in the aromatic formation
one can confirm that the increase of ρRCP(ch) provokes the
active participation of π-component.

Conclusions

It has been shown that for the HN tautomeric form the
increase of the electron-acceptor ability of the substituents
(R1 and R2) in α and β positions evokes a larger prevailing
this form. In case of the OH tautomeric form the growth of
the electron-acceptor ability of the substituents (R1) in β
position contributes into the OH tautomeric form prevail-
ing, whereas for the substituent (R2) in β position it reveals
a reverse trend. With respect to the influence of substituent
(R3) in the γ-position for carbonylamines, the growth of the
electron-acceptor ability hinders the prevailing of the HN
tautomeric form. However, for the HN tautomeric form the
impact of the substituent (R3) in γ-position seems quite
complicated due to mutual compensating action of the
steric, inductive, resonance and polarizability effects, as
well as local N-H…F hydrogen bond influence.

The HOMA(ch)=f(d(OH), ρBCP(ch)=f(d(OH)), d(ON)=
f(ρBCP(ch)) dependencies have been obtained. The HOMA
(ch)=f(d(OH)) and ρBCP(ch)=f(d(OH)) dependencies are
bell-shaped and indicate that the transfer process from one
tautomeric form to another goes via a transition state.
According to these dependencies in the transition state one
can observe the maximum delocalization of π-component
of the chelate chain and the maximum electron density of
quasi-aromatic formation. The d(ON)=f(ρBCP(ch)) depen-
dence states that the electron density at the critical points of
quasi-aromatic formation is a measure of the intramolecular
hydrogen bond strength. According to the presented depen-
dencies the enhancement of the hydrogen bond strength
leads to the growth of ρBCP(ch) and HOMA(ch) and reaches
its maximum in the transition state. Krygowski et al. [58]

stated earlier that the increase of aromaticity strengthens
π-component participation. Therefore, the strengthening of
the hydrogen bond in the studied compounds is conditioned
by the π-electron delocalisation in the chelate chain.
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