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Abstract.
Background: Clinical guidelines recommend incorporating non-cognitive markers like mild behavioral impairment (MBI)
and sleep disturbance (SD) into dementia screening to improve detection.
Objective: We investigated the longitudinal associations between MBI, SD, and incident dementia.
Methods: Participant data were from the National Alzheimer’s Coordinating Center in the United States. MBI was derived
from the Neuropsychiatric Inventory Questionnaire (NPI-Q) using a published algorithm. SD was determined using the NPI-
Q nighttime behaviors item. Cox proportional hazard regressions with time-dependant variables for MBI, SD, and cognitive
diagnosis were used to model associations between baseline 1) MBI and incident SD (n = 11,277); 2) SD and incident MBI
(n = 10,535); 3) MBI with concurrent SD and incident dementia (n = 13,544); and 4) MBI without concurrent SD and incident
dementia (n = 11,921). Models were adjusted for first-visit age, sex, education, cognitive diagnosis, race, and for multiple
comparisons using the Benjamini-Hochberg method.
Results: The rate of developing SD was 3.1-fold higher in older adults with MBI at baseline compared to those without MBI
(95%CI: 2.8–3.3). The rate of developing MBI was 1.5-fold higher in older adults with baseline SD than those without SD
(95%CI: 1.3–1.8). The rate of developing dementia was 2.2-fold greater in older adults with both MBI and SD, as opposed
to SD alone (95%CI:1.9–2.6).
Conclusions: There is a bidirectional relationship between MBI and SD. Older adults with SD develop dementia at higher rates
when co-occurring with MBI. Future studies should explore the mechanisms underlying these relationships, and dementia
screening may be improved by assessing for both MBI and SD.
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INTRODUCTION

Dementia is currently the seventh leading cause
of death worldwide, and 152 million people are
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expected to develop dementia by 2050 [1, 2].
Alzheimer’s disease (AD) is the most common cause
of dementia [3]. With some recent exceptions, clin-
ical trials for AD disease-modifying therapies have
largely been unsuccessful at meeting primary end-
points, partly because of administration too late in
the disease course [4]. Therefore, there is a crucial
need for improved detection of older adults at risk of
dementia to facilitate the development of therapeutic
and preventative interventions and to identify those
with early-stage disease potentially suitable to treat
with disease-modifying therapies.

Clinical guidelines have recommended the use
of non-cognitive markers of dementia for improved
dementia detection [5, 6]. Two of these markers are
mild behavioral impairment (MBI) and sleep distur-
bance (SD). MBI is a neurobehavioral syndrome that
captures later-life emergent and persistent neuropsy-
chiatric symptoms (NPS), representing a change from
longstanding behavior or personality, as a high-risk
state for incident dementia [7]. MBI symptoms are
categorized into five domains: decreased drive and
motivation (apathy), affective dysregulation (mood
and anxiety symptoms), impulse dyscontrol (agita-
tion, impulsivity, abnormal reward salience), social
inappropriateness (impaired social cognition), and
abnormal perception or thought content (halluci-
nations and delusions, i.e., psychotic symptoms).
SD can include a variety of disturbances, including
insomnia, REM sleep disorder, sleep apnea, and rest-
less leg syndrome, the most common of which is
insomnia (i.e., difficulties falling and staying asleep),
resulting in excessive daytime sedation [8].

Cross-sectional studies have indicated that MBI
and SD may be associated with each other. For
instance, behavioral symptoms may contribute to
insomnia [9]. Conversely, SD may increase suscepti-
bility to behavioral symptoms [10, 11].

Both MBI and SD are associated with greater
cognitive decline and dementia. First, studies have
indicated that MBI is associated with cognitive
impairment cross-sectionally [12, 13] and incident
cognitive decline and dementia longitudinally in cog-
nitively normal (CN) older adults [14, 15], mixed
CN and mild cognitive impairment (MCI) samples
[16–22] and in MCI [23]. Analogous to MBI, several
studies have demonstrated associations between SD
and cognitive decline leading to dementia [24–26].
This risk extends to the preclinical stage in CN older
adults, as both MBI and SD can precede typical symp-
toms of AD, such as memory loss, and associate with
a greater risk of incident dementia [15, 27]. Despite

evidence suggesting that both MBI and SD are asso-
ciated with dementia risk, the relationship between
MBI and SD and their combined prognostic utility is
poorly understood.

This study investigated bidirectional associations
between MBI and SD and determined if the prog-
nostic utility of SD for incident dementia could be
improved by further adding MBI to the modeling.
We hypothesized that older adults with MBI would
develop SD at a faster rate, and vice versa, due to
potential positive feedback. Additionally, we hypoth-
esized that sleep-disturbed older adults with MBI
would develop dementia at a faster rate than SD older
adults without MBI due to the additive effects of MBI
and SD.

METHODS

Study design

The National Alzheimer’s Coordinating Center
(NACC) Uniform Data Set (UDS) was used, includ-
ing participant data collected approximately annually
from June 2005 to May 2022. The NACC was
established by the National Institute on Aging and
consisted of data prospectively collected from 45
NIA-funded Alzheimer’s Disease Research Centers
(ADRCs) across 26 states since 1999 [28]. Data are
primarily collected by trained clinicians and clini-
cal staff from participants and informants. Extensive
descriptions of NACC recruitment and data collection
procedures have been published elsewhere [28–31].
Participants and informants provided informed con-
sent at the ADRC, and the respective Institutional
Review Board approved all studies conducted at
ADRCs that provided data to NACC.

Participants

The overall sample from the NACC-UDS consisted
of 45,100 participants. For this study to satisfy the
MBI criterion of later-life emergence of NPS [7], only
participants older than 50 years old (n = 1,069) with
no prior psychiatric or developmental disorders (e.g.,
post-traumatic stress disorder, bipolar disorder, anx-
iety disorder, schizophrenia, obsessive-compulsive
disorder, Down syndrome, Huntington’s disease,
or Parkinson’s disease were included (n = 14,556).
Participants missing data for demographic infor-
mation (n = 244) and Neuropsychiatric Inventory
Questionnaire (NPI-Q) domains required to derive
MBI (n = 910) and SD status (n = 72) were excluded
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Fig. 1. Participant Flow-Diagram. Analysis 1 examined whether baseline MBI was associated with incident sleep disturbance. Analysis 2
examined whether baseline sleep disturbance was associated with incident MBI. Analysis 3 explored whether baseline MBI was associated
with dementia in those with sleep disturbance. Analysis 4 explored whether baseline MBI was associated with dementia in those without
sleep disturbance. NPI-Q, Neuropsychiatric Inventory Questionnaire; MBI, mild behavioral impairment; SD, sleep disturbance.

(Fig. 1). All participants were required to have no
diagnosis of dementia at baseline and have at least
one follow-up visit. The clinician diagnosis in the
NACC-UDS was used to determine cognitive status,
including dementia.

For the longitudinal analyses examining the asso-
ciation between baseline MBI status and incident
SD (and vice versa), additional criteria were applied,
as illustrated in Fig. 1. The sample sizes for the
analyses examining the association between baseline
MBI and incident SD and baseline SD and incident
MBI were 11,277 and 10,535, respectively. The sam-
ple sizes for the analyses examining the association
between baseline MBI within sleep-disturbed older
adults and incident dementia and within non-sleep-
disturbed older adults and incident dementia were
13,544 and 11,921, respectively.

Measures

Sleep disturbance
SD was measured using the NPI-Q nighttime

behaviors item, as described in previous studies
[32–35]. The nighttime behaviors item asks infor-
mants: “Does the patient awaken you during the night,
rise too early in the morning, or take excessive naps

during the day?” to which informants respond “Yes”
or “No” and rate the severity of the SD on a scale of
1–3 if present. For the present study, only the reported
presence or absence of SD was utilized.

Mild behavioral impairment
MBI was derived from the NPI-Q [36] using a

published algorithm [37, 38]. The MBI decreased
motivation score, with a range of 0–3, was directly
derived from the NPI-Q apathy score. The MBI emo-
tional dysregulation score, with a range of 0–9, was
derived by summing the NPI-Q depression, anxi-
ety, and elation scores. The MBI impulse dyscontrol
score, with a range of 0–9, was derived by summing
the NPI-Q agitation, irritability, and motor behav-
ior scores. The MBI social inappropriateness score,
with a range of 0–3, was derived directly from the
NPI-Q disinhibition score. Lastly, the MBI abnormal
perception/thought content score, ranging from 0–6,
was derived by summing the NPI-Q delusions and
hallucination scores. The global MBI score was then
derived by summing up the five domain scores for
each visit, with a range of 0–30, with higher scores
indicating greater MBI symptom severity. However,
for this study, MBI was dichotomized, where a global
MBI score >0 indicated presence. To meet the MBI
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Table 1
Participant characteristics

Analysis 1∗ Analysis 2∗ Analysis 3∗ Analysis 4∗

n 11,277 10,535 1,567 11,921
First-Visit Age (y) 72.7 (8.8), 50.0–104.0 72.7 (8.8), 50.0–101.0 72.2 (8.8), 50.0–101 72.9 (8.8), 50.0–104
Females 6,658 (59.0) 6,412 (60.9) 785 (50.1) 6,991 (58.6)
Education (y) 15.7 (3.1), 0–29.0 15.7 (3.2), 0–29.0 15.4 (3.3), 0–30.0 15.7 (3.1), 0–29.0
Cognitive Status

CN 8,579 (76.1) 8,375 (79.5) 797 (50.9) 8,628 (72.4)
MCI 2,698 (23.9) 2,160 (20.5) 770 (49.1) 3,293 (27.6)

Race: White 8,721 (77.3) 8,063 (76.5) 1,260 (80.4) 9,269 (77.8)
Predictor Characteristics

MBI 1,562 (13.9) – 707 (45.1) 1,902 (16.0)
No MBI 9,715 (86.1) – 860 (54.9) 10,019 (84.0)
SD – 820 (7.8) –
No SD – 9,715 (92.2) –

∗Analysis 1: Baseline MBI and incident sleep disturbance, Analysis 2: Baseline sleep disturbance and incident MBI, Analysis 3: Baseline
MBI and incident dementia within those with sleep disturbance. Analysis 4: baseline MBI and incident dementia in those without sleep
disturbance. All values for continuous variables are shown in mean (SD), range. Values were rounded to one decimal place where appropriate.
Categorical variables are shown as n (%). Participants missing data in any of the variables were excluded from descriptive statistical analysis.
MBI, mild behavioral impairment; CN, cognitively normal; MCI, mild cognitive impairment; SD, sleep disturbance.

symptom persistence criterion, symptoms had to be
present (global MBI score >0) at two consecutive
NACC visits prior to dementia onset [7].

Statistical analysis

Participant demographics were summarized using
descriptive statistics (means, standard deviations,
medians, interquartile ranges, ranges, counts, and
percentages). To compare between groups, Wilcoxon
signed-rank tests, and chi-squared tests were used.

To determine baselines for survival models, a
participant-specific baseline was generated based on
the first instance of symptom positivity for both MBI
and SD. For each participant, the baseline was set
to the visit at which symptoms of either MBI or SD
were endorsed to correspond to the onset of behav-
ioral symptoms or sleep disturbance. For participants
who did not develop MBI or SD before dementia inci-
dence, the first study visit was considered baseline.
MBI positivity required two consecutive NPS+ visits
consistent with the MBI symptom persistence crite-
rion [7]. The presence of SD, however, required only
a single-visit endorsement of symptoms.

Survival analyses were completed utilizing
Kaplan-Meier (KM) survival curves and Cox pro-
portional hazards regressions with time-dependent
variables for MBI, SD, and cognitive diagnosis. Four
models were built for 1) the association between base-
line MBI status and incident SD; 2) the association
between baseline SD and incident MBI; 3) the asso-
ciation between baseline MBI with concurrent SD

and incident dementia; 4) the association between
baseline MBI without concurrent SD and incident
dementia. Participants were followed up for a max-
imum of 16.3 years for analyses 1, 2, and 4 and
15.4 years for the third analysis; however, for ease of
visualization, KM curves were truncated to 12 years
without omitting any data [39]. Participant age at the
first visit, sex, years of education, cognitive diagnosis
(CN or MCI), and race were included as covariates.
These covariates were chosen because they are asso-
ciated with an increased risk for dementia [23, 40, 41].
All p-values were adjusted for multiple comparisons
using the Benjamini–Hochberg method to generate
q-values. The proportional hazards (PH) assumption
of the Cox PH models was confirmed using Schoen-
feld residuals. R version 4.0.5 was used to conduct
all statistical analyses [42].

RESULTS

Participant characteristics

Baseline participant demographics have been sum-
marized in Table 1. Table 2 includes participant
characteristics for each model stratified by baseline
MBI or SD status. In general, the four analyses had
similar sample sizes, with the analysis of baseline
MBI status in those without SD and incident demen-
tia having the largest sample of 11,921 participants.
Across analyses, at baseline, participants were, on
average, about 72 years old, had 15 years of educa-
tion, and were majority female and CN (Table 1).
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Table 2
Participant characteristics for analyses 1, 2, 3, and 4

Analysis 1 Total (n = 11,277) MBI (n = 1,562) No MBI (n = 9,715) p

First-Visit Age (y) 72.7 (8.8), 50–104 72.8 (8.5), 50–104 72.7 (8.8), 50–101 0.501w

Females 6,658 (59.0) 705 (45.1) 5,953 (61.3) <0.001c

Education (y) 15.7 (3.1), 0–29 15.7 (3.2), 1–29 15.7 (3.0), 0–29 0.869w

Cognitive Diagnosis <0.001c

CN 8,579 (76.1) 768 (49.2) 7,811 (80.4)
MCI 2,698 (23.9) 794 (50.8) 1,904 (19.6)

Race: White∗ 8,721 (77.3) 1,301 (83.3) 7,420 (76.4) <0.001c

Analysis 2 Total (n = 10,535) SD Present (n = 820) SD Absent (n = 9,715) p

First-Visit Age (y) 72.7 (8.8), 50–101 72.2 (8.8), 50–96 72.7 (8.8), 50–101 0.106w

Females 6,412 (60.9) 459 (56.0) 5,953 (61.3) 0.003c

Education (y) 15.7 (3.2), 0–29 15.5 (3.2), 0–25 15.7 (3.0), 0–29 0.054w

Cognitive Diagnosis <0.001c

CN 8,375 (79.5) 564 (68.8) 7,811 (80.4)
MCI 2,160 (20.5) 256 (31.2) 1,904 (19.6)

Race: White∗ 8,063 (76.5) 643 (78.4) 7,420 (76.4) 0.115c

Analysis 3 Total (n = 1,567) MBI Present (n = 707) MBI Absent (n = 860) p

First-Visit Age (y) 72.2 (8.8), 50–101 72.2 (8.8), 50–101 72.3 (8.8), 50–96 0.877w

Females 785 (50.1) 307 (43.4) 478 (55.6) <0.001c

Education (y) 15.4 (3.3), 0–30 15.1 (3.5), 0–30 15.6 (3.2), 0–25 0.017w

Cognitive Diagnosis <0.001c

CN 797 (50.9) 233 (33.0) 564 (65.6)
MCI 770 (49.1) 474 (67.0) 296 (34.4)

Race: White∗ 1,260 (80.4) 581 (82.2) 679 (79.0) 0.008c

Analysis 4 Total (n = 11,921) MBI Present (n = 1,902) MBI Absent (n = 10,019) p

First-Visit Age (y) 72.9 (8.8), 50–104 73.1 (8.6), 50–104 72.8 (8.8), 50–101 0.089w

Females 6,991 (58.6) 871 (45.8) 6,120 (61.1) <0.001c

Education (y) 15.7 (3.1), 0–29 15.6 (3.2), 1–29 15.7 (3.0), 0–29 0.218w

Cognitive Diagnosis <0.001c

CN 8,628 (72.4) 783 (41.2) 7,845 (78.3)
MCI 3,293 (27.6) 1,119 (58.8) 2,174 (21.7)

Race: White∗∗ 9,269 (77.8) 1,590 (83.6) 7,679 (76.6) <0.001c

All values for continuous variables are shown in mean (standard deviation). Values were rounded to one decimal place where appropriate,
except for p-values which were rounded to three decimal places. Categorical variables are shown as n (%). Participants missing data for any
of the variables were excluded from descriptive statistical analysis. Analysis (1): baseline mild behavioral impairment (MBI) and incident
sleep disturbance (SD); (2) baseline SD and incident MBI; (3) baseline MBI in those with SD and incident dementia; (4) baseline MBI in
those without SD and incident dementia. ∗Non-white races: Black, First Nations American/Alaskan, Native Hawaiian/Other Pacific Islander,
Asian or Other. wWilcoxon Rank Sum (Mann-Whitney) Test; cChi-Squared Test.

Analysis 1: Association between baseline MBI
and incident sleep disturbance

Of the total sample (n = 11,277), 6,658 (59.0%)
were female, with a mean first-visit age of 72.7 years
(SD = 8.8, range = 50–104), and mean 15.7 (SD = 3.1,
range = 0–29) years of education. Of this sample,
8,579 (76.1%) were CN, 2,698 (23.9%) had MCI, and
8,721 (77.3%) were White. A total of 1,562 (13.9%)
participants had MBI, and 9,715 (86.1%) had no MBI.
The MBI group comprised significantly more males
and those with MCI (Table 2).

Over the total follow-up period of 4.8 (SD = 3.6,
range = 0.4–16.3) years, 2,467 (21.9%) individuals
developed SD before dementia. KM survival curves
at a median follow-up time of 6 years showed that
sleep-disturbance-free survival in the no MBI group

was 75.5% (95%CI:74.3–76.6) and in the MBI group
was 47.7% (95% CI:44.1–51.5) (Fig. 2). Cox propor-
tional hazards regressions showed that the MBI group
had a 3.0-fold (95%CI:2.8–3.3, q < 0.001) greater
rate of developing SD relative to those without MBI
(Table 3).

Analysis 2: Association between baseline sleep
disturbance and incident MBI

Of the total sample (n = 10,535), 6,412 (60.9%)
were female, with a mean first-visit age of 72.7
(SD = 8.8, range = 50–101) years, and mean 15.7
(SD = 3.2, range = 0–29) years of education. Of this
sample, 8,375 (79.5%) were CN, 2,160 (20.5%) had
MCI, and 8,063 (76.5%) were White. A total of 820
(7.8%) participants had SD, and 9,715 (92.2%) had
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Fig. 2. Kaplan-Meier curves up to 12 years for (A) sleep disturbance-free survival based on MBI status (n = 11,277); (B) MBI-free survival
based on sleep disturbance (n = 10,535); (C) dementia-free survival based MBI with concurrent sleep disturbance (n = 1,567); (D) dementia-
free survival based MBI without concurrent sleep disturbance (n = 11,921).

Table 3
Multivariable Cox regression models for the association between baseline MBI or sleep disturbance with incident sleep disturbance, MBI

or dementia using MBI, SD and cognitive diagnosis as time-dependent variables

Exposure Variable Outcome Variable HR 95% CI p

MBI Sleep Disturbance 3.04 2.77–3.33 <0.001
Sleep disturbance MBI 1.52 1.28–1.80 <0.001
MBI status in those with sleep disturbance Dementia 2.20 1.91–2.53 <0.001
MBI status in those without sleep disturbance Dementia 1.92 1.81–2.03 <0.001

Associations were tested using multivariable Cox regression models, adjusted for first-visit age, sex, years of education, cognitive diagnosis
(CN/MCI), and race. Both MBI status and sleep disturbance were dichotomized. The false rate discovery method was used to adjust p values
for multiple comparisons. MBI, mild behavioral impairment; CN, cognitively normal; MCI, mild cognitive impairment; HR, hazard ratio;
CI, confidence interval.

no SD. The SD group comprised significantly more
females and CN individuals (Table 2).

Over the total follow-up period of 4.9 (SD = 3.6,
range = 0.4–16.3), 1,504 (14.3%) individuals devel-
oped MBI. KM survival curves at a median follow-up
time of 6 years showed that MBI-free survival in

the no SD group was 81.6% (95%CI:80.5–82.6) and
in the SD group, was 74.3% (95%CI:70.2–78.7)
(Fig. 2). Cox proportional hazards regressions
showed that participants with SD at baseline had a
1.5-fold (95%CI:1.3–1.8, q < 0.001) greater rate of
developing MBI than those without SD (Table 3).
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Analysis 3: Association between baseline sleep
disturbance and incident dementia, stratified by
MBI status

Of the total sample (n = 1,567), 785 (50.1%) were
female, with a mean first-visit age of 72.2 (SD = 8.8,
range = 50–101) years and a mean 15.4 (SD = 3.3,
range = 0–30) years of education. Of this sample, 797
(50.9%) were CN, 770 (49.1%) had MCI, and 1,260
(80.4%) were White. Of the sample, 707 (45.1) indi-
viduals had MBI at baseline, and 860 (54.9) had no
MBI at baseline. On average, participants with MBI
were more likely to be male and have MCI (Table 2).

Over the average total follow-up period of 4.2
(SD = 3.3, range = 0.4–15.4) years, 411 (26.2%) indi-
viduals developed dementia. In those with SD, KM
survival curves out to 6 years showed that dementia-
free survival in the no MBI group was 79.6% (95%
CI:76.0–83.4) and in the MBI group, was 43.7%
(38.7–49.4) (Fig. 2).

Cox proportional hazards regressions showed that
sleep-disturbed older adults with MBI had a 2.2-fold
(95%CI:1.9–2.6; q < 0.001) greater rate of devel-
oping dementia compared to sleep-disturbed older
adults without MBI (Table 3).

Analysis 4: Association between no baseline
sleep disturbance and incident dementia,
stratified by MBI status

Of the total sample (n = 11,921), 6,991 (50.1%)
were female, with a mean first-visit age of 72.9
(SD = 8.8, range = 50–104) years and a mean 15.7
(SD = 3.1, range = 0–29) years of education. Of this
sample, 8,628 (72.4%) were CN, 3,293 (27.6%) had
MCI, and 9,269 (77.8%) were White. Of the sample,
1,902 (16.0) individuals had MBI at baseline, and
10,019 (84.0) had no MBI at baseline. On average,
participants with MBI were more likely to be male
and have MCI (Table 2).

Over the average total follow-up period of 5.0
(SD = 3.6, range = 0.4–16.3) years, 1,959 (16.4%)
individuals developed dementia. In those without
SD, KM survival curves out to 6 years showed that
dementia-free survival in the no MBI group was
85.6% (95% CI:84.7–86.5) and in the MBI group was
51.8% (48.8–54.9) (Fig. 2).

Cox proportional hazards regressions showed that
non-sleep-disturbed older adults with MBI had
a 1.9-fold (95%CI:1.8–2.0; q < 0.001) greater rate
of developing dementia compared to non-sleep-
disturbed older adults without MBI (Table 3).

DISCUSSION

This study aimed to investigate the longitudinal
associations between MBI and SD and explore the
SD-associated risk for incident dementia in those
with and without comorbid MBI. As hypothesized,
this study demonstrated a bidirectional longitudinal
relationship between MBI and SD; older adults with
MBI at baseline developed SD at a greater rate than
those without MBI, and those with SD at baseline
developed MBI at a greater rate than those without
SD. Furthermore, individuals concurrently reporting
both SD and MBI developed dementia at faster rates
than those with only SD. Additionally, individuals
experiencing MBI developed dementia at faster rates
than those without MBI or SD, respectively. This indi-
cates that there may be additive effects of MBI and
SD when considering the risk to dementia.

Previous literature has cross-sectionally linked cer-
tain NPS to SD. One study found the presence of
depression, disinhibition, and aberrant motor behav-
ior to be associated with a greater frequency and
severity of SD [43]. This finding may be explained
by the difficulties these behavioral symptoms pose
when attempting to fall asleep and stay asleep. Those
experiencing depression have impaired sleep conti-
nuity with frequent and long periods of wakefulness,
reduced sleep efficiency, delayed sleep onset, and
a reduced total sleep time [9]. SD in behaviorally
disturbed individuals may arise from a disruption
of the homeostatic and circadian drives to sleep
[44]. The reverse relationship has also been pos-
tulated, where SD may increase susceptibility to
behavioral symptoms such as anxiety and depression
[10], poor emotional generation and regulation [45],
and decreased inhibition [11]. This association may
be due to functional connectivity deficits between
the amygdala and the ventral anterior cingulate cor-
tex [46], leading to enhanced amygdala responses to
negative stimuli, causing increased aggression and
agitation. Sleep deficiencies can also reduce the abil-
ity of the medial prefrontal cortex to inhibit amygdala
activity, which, similarly, may lead to behavioral and
emotional instability [47, 48]. Thus, in line with pre-
vious literature, the findings of the present study
indicate a possible bidirectional relationship between
SD and behavioral impairments, such that behavioral
symptoms may lead to the development of SD and
vice versa.

SD as a risk factor can contribute to underlying AD
pathology [49–51] but may also be sequelae of exist-
ing AD pathology in older adults [49]. Hence, the
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bidirectional association between MBI and SD and
a higher rate of decline to dementia with both MBI
and SD may be explained by a common pathology.
Having MBI may indicate a more advanced pathol-
ogy, which is more likely to disrupt regions of the
brain that regulate sleep, leading to SD [16, 52–59].
Alternatively, a positive feedback mechanism may be
in play such that increased SD contributes to MBI,
and MBI contributes to SD. In such a scenario, ther-
apies aimed at alleviating MBI symptoms may help
reduce the development or exacerbation of SD, as
the reduction of behavioral symptoms may increase
the likelihood of falling asleep and staying asleep.
Conversely, existing medications for the manage-
ment of SD may help directly or indirectly reduce
behavioral symptoms such as anxiety and depression
[60].

Additionally, these results are consistent with pre-
vious studies that have established the association
between MBI, sleep, and dementia [24, 26, 49]. First,
MBI has been linked to incident cognitive decline
and dementia [61]. The greater dementia risk in those
with MBI may relate to the association of MBI with
pathological hallmarks of AD, like the formation
of amyloid-� (A�) plaques and hyperphosphoryla-
tion and aggregation of tau proteins [62]. Studies
have shown MBI to be associated with A� accu-
mulation [56, 63–65] and hyperphosphorylated tau
deposition [66, 67]. Second, studies have found that
in non-dementia older adults, those with SD have a
greater risk of developing dementia [24–26]. Sleep-
wake cycles influence A� levels in the brain, where
decreased sleep leads to A� accumulation [49–51].
The formation of A� plaques is proposed to decrease
sleep quality directly by disrupting neuronal func-
tion in brain regions involved in sleep-wake cycles
[68] or indirectly, worsening the effects in a positive-
feedback manner [49]. Studies have also found that
tau accumulation increases with greater SD and vice
versa [69]. In light of the association between MBI
and SD with greater cognitive decline and incident
dementia due to similar pathological changes, com-
bining the markers may enhance the ability to detect
or predict dementia onset.

Based on these findings, clinicians might consider
screening for SD and further assess MBI presence to
improve dementia risk assessment in their patients.
Several studies suggest that combining markers of
dementia, such as cognition, gait, and MBI, may
improve dementia prognostication [70, 71]. Thus,
these markers should be incorporated into dementia
risk assessments to best aid early detection.

This study does have limitations. Using a single
item from the NPI-Q to assess SD, rated by an infor-
mant, may not identify all presentations of SD, as
it captures insomnia and excessive daytime sedation
(EDS). While EDS is a symptom of a variety of
SD [72], it is important to assess this relationship,
specifically examining SD such as REM sleep disor-
der, sleep apnea, and restless leg syndrome. This will
allow for a more complete understating of the impact
of SD on incident dementia, especially as SD, such
as REM sleep disorder, are associated with specific
dementias like Lewy body dementia [73]. Addition-
ally, the use of NPI-Q to derive MBI scores poses
a potential limitation as this questionnaire was not
designed initially to measure MBI. For instance, the
two-consecutive visits method was used to opera-
tionalize MBI because the NPI-Q has a one-month
reference range. However, because symptom pres-
ence between study visits outside of the reference
range of the NPI-Q cannot be confirmed, the symp-
tom persistence criteria required for MBI diagnosis
might not be met. The MBI checklist (MBI-C) was
specifically developed for the detection of MBI, has
a 6-month reference range, and explicitly captures
later-life emergent and persistent NPS [7, 74]. How-
ever, the MBI-C has only very recently been included
in the NACC UDS as an optional measure, so it will
take some time to generate sufficient data with this
scale. Therefore, in legacy datasets, using operational
definitions or algorithms to derive MBI status from
other measures is necessary. Dichotomizing SD and
MBI did not allow for the assessment of the severity
of these items, which may have provided additional
insights. Nonetheless, we did find significant asso-
ciations with discrete variables. Future studies could
explore this relationship with more robust and contin-
uous indicators of MBI and SD to ascertain whether
this relationship holds when the severity of symptoms
is considered. Lastly, we acknowledge there are other
variables, in addition to the covariates used in this
study, that could impact the relationships investigated
in this study. Therefore, future studies should inves-
tigate how other variables associated with increased
dementia risk, such as obesity, type 2 diabetes, trau-
matic brain injury, stroke, and hearing loss, impact
these relationships [75].

Regardless, this study establishes a starting point
for further investigations regarding the bidirectional
relationship between MBI and SD, the relation-
ship between SD and dementia, and MBI and
dementia. Additionally, by illustrating the bidirec-
tional relationship and the relationship with incident
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dementia, this study emphasizes the importance of
non-cognitive markers of dementia in pre-dementia
screening, especially the importance of SD. Being
longitudinal in design, this study allowed exploration
of the bidirectional relationship between MBI and
SD. The large sample size also provided sufficient
statistical power to test several hypotheses, enabling
a fuller understanding of the relationship between
MBI, SD, and dementia.

Conclusion

This study demonstrated that older adults with
MBI have a greater rate of incident SD, and those
with SD have a greater incidence of MBI. Further-
more, when participants experienced SD along with
MBI, the rate of developing dementia was greater
compared to experiencing only SD. These findings set
the stage for treatment studies to determine if treat-
ing symptoms of MBI could reduce the incidence of
SD and vice versa, as well as the impact of treat-
ing both on incident cognitive decline and dementia.
Nonetheless, both sleep and MBI should be incorpo-
rated into dementia risk assessments to aid with early
detection.
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