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Abstract

Background: The accuracy of quantitative real-time PCR (qRT-PCR) is highly dependent on reliable reference gene(s). Some
housekeeping genes which are commonly used for normalization are widely recognized as inappropriate in many
experimental conditions. This study aimed to identify reference genes for clinical studies through microarray meta-analysis
of human clinical samples.

Methodology/Principal Findings: After uniform data preprocessing and data quality control, 4,804 Affymetrix HU-133A
arrays performed by clinical samples were classified into four physiological states with 13 organ/tissue types. We identified a
list of reference genes for each organ/tissue types which exhibited stable expression across physiological states.
Furthermore, 102 genes identified as reference gene candidates in multiple organ/tissue types were selected for further
analysis. These genes have been frequently identified as housekeeping genes in previous studies, and approximately 71% of
them fall into Gene Expression (GO:0010467) category in Gene Ontology.

Conclusions/Significance: Based on microarray meta-analysis of human clinical sample arrays, we identified sets of
reference gene candidates for various organ/tissue types and then examined the functions of these genes. Additionally, we
found that many of the reference genes are functionally related to transcription, RNA processing and translation. According
to our results, researchers could select single or multiple reference gene(s) for normalization of qRT-PCR in clinical studies.
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Introduction

Reference genes (RGs) are widely used to normalize the

expression level for removing potential artifacts caused by sample

preparation and detection as well as to provide an accurate

comparison of gene expression among different samples. Tradi-

tional reference genes (tRGs) are housekeeping genes (HKGs),

such as ACTB, GAPDH, and HPRT, and usually serve as internal

controls in Northern blot, RNase protection assays, conventional

RT-PCR assays, and quantitative real-time PCR (qRT-PCR). The

assumption is that these genes are defined as maintaining basic

cellular functions [1] and are expressed at a constant level across

samples, physiological states, and treatments. However, numerous

studies have already shown that tRGs are regulated and their

expression levels are varied under certain experimental conditions

[2,3,4,5].

qRT-PCR is often considered as the golden standard for

quantitative gene expression analysis. However, the use of

inappropriate RGs can result in incorrect findings if the expression

levels of the chosen RGs are influenced by the experimental

conditions [3,6]. Researchers should make sure that the chosen

RGs are suitable for the experiment they conducted. Thus,

identification of RGs and their validation within specific biological

conditions under investigation are critical issues.

Previous research identified RGs by selecting them from a list of

tRGs for specified biological conditions according to the results of

qRT-PCR [7,8,9,10,11,12]. Microarray screening is an alternative

approach and has the potential to identify novel RGs whose

expression levels are more stable than that of tRGs. Moreover, the

increasing amount of microarray data is an excellent source for the

identification of genes with the most stable expression [13,14,15,16].

Most research using microarray analysis identified RGs for specific

biological conditions, for example, evolution [17], differentiation

[18], development [19], treatment [20], cancer [13,14,21,22,

23,24,25,26], other diseases [27,28,29,30] or comparing different

physiological stages of a single organ [21,23,25]. A number of

studies have identified RGs with relatively stable expressions across

tissue types [31] and among metadata which pooled multitudes of

arrays ignoring cell types and experimental conditions [32,33].

However, no results have been reached for a consistent set of RGs.

Many researchers assume that no RG is universally stable in its

expression in all situations [14,22,23,28,34]. The ideal set of RGs

depends on the biological conditions and should be selected and

evaluated for each series of experiments.
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This study aimed to identify RGs for clinical studies by meta-

analysis of human clinical samples. These RGs had to demonstrate

a stable expression across various physiological states in individual

tissue/organ type. After the removal of poor quality arrays, 4,804

Affymetrix U133A arrays performed on human clinical samples

were selected from the M2DB, a microarray meta-analysis

database [35]. These arrays were classified into 4 physiological

states and 13 organ/tissue types. Genes showing stable expressions

within and between physiological stages for a single tissue were

identified as RGs for that particular tissue. Our results

recommended a number of sets of RGs for various organ/tissue

types. Additionally, we have found that the genes that are

frequently identified as RGs for multiple organ/tissue types are

highly related to the functional category, Gene Expression (GO:

0010467). These genes are frequently classified as HKGs in

previous studies. Besides, our results suggest that RGs identified in

this study are candidates as control genes for qRT-PCR in clinical

studies.

Analysis

Microarray data collection, quality control, and
pre-processing

Expression data were collected from the M2DB, which compiles

more than 10,000 well-annotated, published, human clinical

Affymetrix GeneChip arrays. We excluded poor quality arrays

(8% of the total), that did not match the criteria of the 95

percentile of PMVO [36], according to the QC metrics of the

M2DB. Then, according to the annotation of the M2DB, samples

related to the same organ/tissue type and the same physiological

state were classified into a single group. An organ/tissue type was

included into this study if it has at least two groups, which

contained at least 10 HG-U133A arrays, in the organ/tissue type.

In summary, this study included 4,804 HG-U133A arrays

classified into 13 organ/tissue types and 4 physiological states

(Normal, Abnormality, Disease, and Cancer or Tumor). Table 1

gives the summary of the number of arrays classified in each

organ/tissue and physiological state. The data uniformly processed

by the GC Robust Multi-array Average (GCRMA) algorithm [37]

were downloaded from the M2DB. Intensities (without log

transformation) of the probe sets with the same Entrez GeneID

were averaged to represent the expression of the corresponding

gene.

Selection of Reference Gene Candidates
The definition of an RG in this study is that a gene stably

expressed for each organ across different physiological states. RGs

for each organ/tissue type were identified using the following

criteria:

1. I iw100 and FP.80%.

2.
si

Ii

v0:3

3. Max(Ii=Ij)v1:2

Where Ii and I j denote the mean intensity of the gene in arrays of

ith and jth physiological states respectively. si is the standard

deviation of intensity in ith physiological states. Max() is the

maximum ratio of mean intensity. For a gene, FP is fraction

Present which is the fraction of arrays called present in a single

organ/tissue type [38]. The first criterion identified genes that are

truly expressed in a tissue. For each gene, the expression values

were averaged for each physiological state. A gene was retained if

the average expression level exceeded the selected threshold value

100 and FP was larger than 80%. Filtering data by FP increases

the correlation between Affymetrix GeneChip and qRT-PCR

expression measurements [39]. Genes with their expression values

satisfy these two thresholds are most likely to be truly expressed.

The second criterion used the coefficient of variation, standard

deviation divided by mean intensity, to verify whether the genes

exhibited stable expressions in a physiological state. The third

criterion used fold change of expression to filter out genes that

differentially expressed across physiological states in a single

organ/tissue type. The fold change refers to the ratio of mean

intensity of physiological states and represents the expression

differences between physiological states. Table 2 shows the

number of genes which are stably expressed within individual

physiological state (the first and second criteria), stably expressed

Table 1. Summary of arrays classified into 4 physiological states and 13 organ/tissue types.

Organ/Tissue Types Physiological States

Normal Cancer or Tumor Disease Abnormality Total

blood 252 403 514 137 1,306

lung 44 92 66 128 330

bone marrow 39 559 19 0 617

brain 229 139 202 0 570

uterus 18 15 13 0 46

breast 10 1,229 0 3 1,242

kidney 9 21 0 10 40

bladder 12 64 0 0 76

lymph node 12 33 0 0 45

prostate 15 59 0 0 74

testis 17 102 0 0 119

muscle 75 0 109 44 228

heart 30 0 81 0 111

Total 762 2,716 1,004 322 4,804

doi:10.1371/journal.pone.0017347.t001
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across physiological states (the first and third criteria), and

qualified as RGs (all three criteria) for each organ/tissue type.

For example, by apply the first two criteria, the counts of genes

stably expressed within the four physiological states in blood are

133, 203, 479, and 238, respectively. By applying the first and

third criteria, there were 162 genes stably expressed across

physiological states in blood. Finally, 11 genes passed all three

criteria were identified as RGs for blood. Data S1 gives the

complete lists of RGs for respective organ/tissue types.

Frequent Reference Genes
The genes which were identified as RGs for at least three

organ/tissue types are denoted as frequent reference genes

(fRGs). Table 3 displays a list of 102 fRGs and the corresponding

numbers of organ/tissue types for which the RGs were identified.

Some tRGs, such as ACTB, B2M, UBC, RPL13A and RPLP0,

are also on this list. Gene ontology was used to analyze the gene

function of fRGs. A set of GO terms (14 terms) was chosen to give

a broad overview of gene function. Figure S1 generated by

QuickGO [40] is a graphical view of the term lineage of these 14

terms in Gene Ontology. Figure 1 shows the percentage of fRGs

counts in these 14 terms. Approximately 61%, 15%, and 7% of

fRGs belong to Translation (GO: 0006412), RNA Processing

(GO: 0006396), and Transcription (GO: 0006350) respectively.

Moreover, these three terms are children of Gene Expression

(GO: 0010467) (Figure S1). Approximately 71% of the fRGs fall

into this functional category. These are basic cellular functions

referring to HKGs. When compared with 8 lists of HKGs

identified by microarray or EST analysis in 7 previous studies

[16,41,42,43,44,45,46], fRGs were frequently classified as HKGs

in these lists. Furthermore, the percentages of these HKGs lists

falling into Gene Expression (GO: 0010467) range from 22.4 to

35.1 (Table 4). These percentages are much lower than that of

fRGs. In addition, these 14 terms cover 84% of fRGs. The other

16% of fRGs do not belong to these 14 GO terms, and half of

these genes do not refer to any GO terms.

Expression profiles of tRGs and fRGs
Six tRGs and six fRGs were selected to examine the expression

profiles. The 6 housekeeping genes (ACTB, B2M, GAPDH,

PKG1, RPLP0, and PPIA) have been commonly used as reference

genes for qRT-PCR in numerous studies. In this study, the 6 fRGs

(HUWE1, TPT1, EEF1A1, LRRC40, RPS20, RPL37A, and

RPL41) are the most frequently identified RGs in various organ/

tissue types (Table 3). Three of the housekeeping genes, ACTB,

B2M, and RPLP0, are also identified as fRGs. Although the other

three housekeeping gene are not fRGs, they are still identified as

RGs for one or two organs/tissue types. Figure 2 depicts the

intensity profile of the 12 genes (6 tRGs and 6 fRGs) in various

physiological states of 13 organ/tissue types. The RGs exhibit

consistent expressions in the corresponding organ/tissue type. The

6 fRGs exhibit more stable expression than the 6 tRGs do both

within and between organ/tissue types.

Discussion

We examined the variability of gene expression within and

between various physiological states in 13 organ/tissue types. Lists

of RGs were identified for the corresponding organ/tissue types.

Clinical research usually focused on various physiological states for

a single organ/tissue type (such as cancer classification [47,48,49]).

The relative expression level of an ideal RG for clinical studies

should not be significantly influenced by physiological states.

Previous studies, which used microarray screening to identify RGs,

mostly focused on a specific physiological state in an organ/tissue

type. Some research identified universal RGs by pooling all of

microarray data from public repositories ignoring organ/tissue

types and physiological states [31,32,33]. Different from them, our

study broadly searched RGs in various physiological stages of 13

organ/tissue types. To achieve this goal, we classified samples into

four physiological states according to information found in the

M2DB. Then, we applied several criteria to identify expressed

genes with consistent expression within and between physiological

Table 2. Summary of the number of genes passed different criteria in 13 organ/tissue types.

Organ/Tissue types Stable Within Physiological States*

Stable Between
Physiological States1 RGs¥

Normal Cancer or Tumor Disease Abnormality

blood 133 203 479 238 162 11

lung 211 117 768 581 195 16

bone marrow 186 66 382 - 301 21

brain 184 60 491 - 657 15

uterus 761 1,454 1,548 - 1,271 276

breast 352 108 - 2,263 378 17

kidney 201 1,041 - 2,542 421 31

bladder 362 200 - - 1,385 89

lymph node 2,212 495 - - 1,030 150

prostate 734 106 - - 1,989 65

testis 238 173 - - 713 13

muscle 327 - 198 478 1,103 93

heart 742 - 794 - 2,406 250

*The criterion is that the CV of the intensity of the gene in the physiological state is smaller than 30%. CV, coefficient of variation, is equal to standard deviation divided
by mean.
1The criterion is that the maximum of the fold change of mean intensity between physiological states is smaller than 1.2.
¥The number of genes stably expressed within and between physiological states.
doi:10.1371/journal.pone.0017347.t002
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states as RGs. Genes satisfied these selection criteria indeed

exhibited stable expression and results indicated that the tRGs are

not always the best choice for reference of qRT-PCR (Figure 2).

Although numbers of genes in our RG list had been reported as

RGs for some experimental conditions in previous studies, our

results specified which gene could be RG in particular organ/

tissue types. For example, ACTB, the most frequently used tRG, is

also in our fRGs list, but we suggested that ACTB can only be

Table 3. fRGs and the corresponding numbers of organ/tissue types for which fRGs were identified.

Num. of organ/
tissue types Gene Symbol

3 SEPT2, ATG4B, B2M, BTF3, DAZAP2, DDB1, DDX17, EIF4G2, ENSA, EWSR1, FNTA, HDAC3, HDLBP, HMGB1, HMGN2, HNRNPA1, MORF4L1, MTCH1,
PI4KB, PUM1, RPL10, RPL11, RPL17, RPL19, RPL22, RPL4, RPL5, RPS12, RPS15, RPS28, RPS3, RPS7, TBC1D9B, TCEB3

4 ACTB, CCDC72, EEF1G, EEF2, FTHP1, GDI1, GTF2F1, GTPBP6, RPL12, RPL24, RPL27A, RPL30, RPL37, RPL38, RPL39, RPL7, RPL7A, RPLP0, RPLP1,
RPS16, RPS2, RPS24, RPS25, RPS27A, RPS3A, RPS4X, RPSA, SKP1, SNRPB2, SRP14, USP34

5 ACTG1, EEF1D, EIF1, MYL12B, OAZ1, RPL13A, RPL15, RPL21, RPL27, RPL31, RPL32, RPS13, RPS14, RPS15A, TOX4, UBA52

6 PNN, RPL34, RPL9, RPS10, RPS11, RPS17, RPS18, RPS23, RPS27, RPS29, UBB, UBC

7 NACAP1, RPL23A

8 EEF1A1, LRRC40, RPS20

9 RPL41

10 RPL37A, TPT1

11 HUWE1

doi:10.1371/journal.pone.0017347.t003

Figure 1. Gene Ontology Functional analysis of fRGs. The percentage of fRGs counted in 14 GO terms which give a broad overview of gene
function. Gene expression is the parent term of transcription, translation, and RNA processing in Gene Ontology and contains 71% of fRGs.
doi:10.1371/journal.pone.0017347.g001
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served as RG in three organ/tissue types out of the total thirteen

organ/tissue types which we investigated. Furthermore, unlike

some previous studies, our results indicated that there is no

universal RG for all experimental conditions listed in our study. As

the result, it also shows that choosing randomly any HKGs for

normalization is risky and may lead to erroneous results.

With rapidly accumulating metadata, microarray meta-analysis

is becoming more important in microarray research. One major

concern is that as more datasets are included into analysis, the

more variance could contribute to the result. Ramasamy et al. had

suggested several key issues for microarray meta-analysis [50].

Using pre-processed data based on different algorithms will

introduce variations into meta-analysis and the resulting data are

unlikely to be directly comparable. As Ramasamy et al. point out,

even for studies conducted using the same microarray platform;

the raw data should be uniformly pre-processed and normalized

using the same algorithm to remove systematic biases for all tested

datasets. Several studies have suggested considering data quality

within the context of microarray meta-analysis [50,51,52]. Poor

quality data must be identified and eliminated during data

processing [50,53]. In this study, we adopted single platform for

analysis to avoid the variance of combining different platforms,

and then uniformly pre-processed all arrays to eliminate the

technical variance of data transformation and removed poor

quality arrays to alleviate laboratory-to-laboratory variance [35].

Moreover, we used the 12 tRGs and fRGs in Figure 2 to evaluate

the effect of QC (Figure S2). The CV of intensity for these genes

with QC was lower compared to those without QC. This result

suggests that including poor quality arrays could lead to increase

expression variation. The advantageous effect of excluding poor

quality data is apparent when processing muscle tissues. More

than 40% of muscle sample arrays were identified as poor quality

arrays (8% of total arrays are poor quality). This result shows that

expression variations of RGs are greatly reduced when poor

quality muscle arrays were excluded.

Most genes included in lists of fRGs were commonly referred to as

HKGs in previous studies (Table 4). To a certain extent, this result is

in line with the original concept of using HKGs as RGs for

normalization. However, contrary to commonly held assumptions,

no HKGs were consistently expressed across all tissues in our study.

Moreover, no genes maintained a stable expression level under all

conditions (various organ/tissue types and physiological states)

(Table 4). In fact, this observation has been mentioned in previous

studies [14,22,23,28,34] which presumed there is no universal RGs

for all experimental conditions. Furthermore, approximately 71% of

fRGs’ were related to the function of Gene Expression (including

Transcription, Translation, and RNA Processing). The percentage is

much higher than those of HKGs lists by previous studies (Table 4).

Consequently, fRGs are highly related to HKGs and maintained at

relatively stable level. This result indicates that the genes in the Gene

Expression (GO: 0010467) category are more likely to be stably

expressed across physiological states and organ/tissue types. This

may imply these genes play more important roles than general

HKGs. Besides, we found that half of the fRGs were ribosomal

protein genes. A meta-analysis study conducted by de Jonge et al.

revealed 15 reference genes with the most constant expression, and

13 out of 15 genes were ribosomal proteins [32]. In contrast, Thorrez

et al. demonstrated that ribosomal protein genes exhibited important

tissue-dependent variations in mRNA expression [54]. Thorrez’s

results were based on the study of 70 microarrays, representing 22

tissues. The authors cautioned against using ribosomal protein genes

as a reference [54]. Our study, which preserved more sample

conditions, resolves the contradictory conclusions by these two

studies. Our results depicts that some ribosomal protein genes

maintained relative stability of expression across organ/tissue types,

however, some ribosomal proteins exhibited significant tissue-

dependent expression (for example, RPLP0 in Figure 2). The RGs

identified in this study expressed stably across physiological states in a

single organ/tissue type. Thus, a number of ribosomal protein genes

tallied with the criterion could be identified as RGs. For example, in

this study, more than half of RGs for breast are ribosomal protein

genes, which is consistent with the results of a meta-analysis to identify

RGs for breast cancer [26]. However, if the experiment is conducted

by various organ/tissue types, it required further verification to use

ribosomal protein genes as reference.

UBB, UBC, and UBA52 in the list of fRGs are known as

functions related to protein ubiquitination, as well as numerous

essential cellular functions. They have been identified as RGs in

breast cancer [26]. UBC is a tRG and has also been identified as

an RG in colon cancer [14]. TPT1 was initially described as a

growth-related protein, and it was recently shown being involved

in calcium homeostasis [55]. This implies the expression stability

of TPT1 could influence the calcium stability in cells. It could be

the reason that TPT1 was identified as RG in previous studies

[14,29] and for 10 organ/tissue types in this study. RPL41 and

EEFA1 in the list of fRGs have also been recognized as RG for

liver [23] and myocardium [29] respectively. GAPDH, the most

common tRG, was identified as RG only for heart and muscle in

Table 4. Comparison of fRGs with HKG lists of previous studies.

References Tech. % of overlap* % in Gene Expression (GO: 0010467)1

Warrington et al. 2000 [16] Microarray 59.8 31.9

Hsiao et al. 2001 [46] Microarray 58.8 35.1

Eisenberg et al. 2003 [45] Microarray 43.1 27.2

Tu et al. 2006 [44] Microarray 75.5 22.4

Zhu et al. 2008 [42] EST 92.2 24.5

Zhu et al. 2008 [42] Microarray 85.3 26.1

Dezso et al. 2008 [43] Microarray 81.4 24.3

She et al. 2009 [41] Microarray 68.6 29.1

fRGs Microarray - 70.6.

*The percentage of fRGs falls into HKG lists.
1The percentage of genes in these lists falls into Gene Expression (GO: 0010467) category in Gene Ontology.
doi:10.1371/journal.pone.0017347.t004
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this study, but this is partially consistent with the previous study

which identified GAPDH as a RG for myocardium [29].

HUWE1, which is related to histone ubiquitination [56] and

protein polyubiquitination [57], was the top-ranked RG in our

result. Although HUWE1 was not the most stable gene in

individual organ/tissue type, it was the gene most frequently

identified as RG in this study, and suggested to be a novel RG

candidate for clinical studies.

Geometric averaging of multiple RGs rather than using single

RG for normalization of qRT-PCR is an alternative strategy [58].

We have supplied lists of RG candidates for researchers to confirm

their qRT-PCR results under particular experimental conditions.

Choosing several RG candidates from our RG lists to perform

qRT-PCR could help researchers to confirm one or multiple RGs

for use as references.

For some organ/tissue types, there were only dozens of samples

for identifying RGs, despite the thousands of arrays included in

this study (Table 1). This might underestimate the variance of

expression among individuals or physiological conditions and

might lead to increased false positive rate. For example, 276 RG

candidates were identified for the uterus (Table 2). There is a

limitation of accuracy in identifying RG upon small number of

samples. However, our RG list can be good candidates for

researchers to identify the true RG by qRT-PCR but not choosing

Figure 2. Expression profiles of 6 tRGs and 6 fRGs for 4 physiological states in 13 organ/tissue types. The upper and lower halfs of the
figure are 6 fRGs and 6 tRGs respectively. The error bar is the standard deviation of intensity. * denotes the gene identified as RG in the organ/tissue
type.
doi:10.1371/journal.pone.0017347.g002
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HKGs randomly as reference. Researchers can exclude unsuitable

RGs which had been shown variable expression in our results.

Using the same example, the most used tRG, GAPDH, is not

included in the 276 RG candidates for the uterus. Thus,

researchers could choose several candidate genes in our list for

further validation by qRT-PCR but GAPDH. In the future, with

rapidly accumulated microarray metadata, we could gather more

clinical arrays and subdivide them by detailed physiological states

and organ/tissue types. Accordingly, the more accurate RGs could

be identified for clinical studies.

In summary, this study performed microarray meta-analysis to

compile lists of RG candidate for 13 organ/tissue types. We

provided lists of RG candidates for researchers to select single or

multiple genes as references for the normalization of qRT-PCR in

clinical studies. We also found that fRGs were recognized as

HKGs in previously studies and about 71% of fRGs were

functional annotated to Gene Expression (GO:0010467). The

percentage is also much higher than that of HKG lists. To our best

knowledge, this is the first study considering different physiological

states as well as identifying RGs for various organ/tissue types. In

our results, the tRGs are not the best choice for reference of qRT-

PCR in most conditions, and the RGs identified in this study are

more reliable than tRGs for normalization in qRT-PCR for

clinical studies.

Supporting Information

Data S1 The complete lists of RGs for the 13 organ/tissue types.

For each gene, the CV and mean intensity of various physiological

states are also included in this file.

(XLS)

Figure S1 The lineage of 14 GO terms.

(TIF)

Figure S2 The CV of intensity of 12 genes in 13 organ/tissue

types with/without QC filitering.

(TIF)
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(2009) Comparison of Prognostic Gene Profiles Using qRT-PCR in Paraffin

Samples: A Retrospective Study in Patients with Early Breast Cancer. PLoS One

4: e5911.

49. Rizzi F, Belloni L, Crafa P, Lazzaretti M, Remondini D, et al. (2008) A Novel

Gene Signature for Molecular Diagnosis of Human Prostate Cancer by RT-

qPCR. PLoS One 3: e3617.

50. Ramasamy A, Mondry A, Holmes CC, Altman DG (2008) Key Issues in

Conducting a Meta-Analysis of Gene Expression Microarray Datasets. PLoS

Med 5: e184.

51. Owzar K, Barry WT, Jung SH, Sohn I, George SL (2008) Statistical challenges

in preprocessing in microarray experiments in cancer. Clin Cancer Res 14:

5959–5966.

52. Cahan P, Rovegno F, Mooney D, Newman JC, St Laurent G, 3rd, et al. (2007)

Meta-analysis of microarray results: challenges, opportunities, and recommen-

dations for standardization. Gene 401: 12–18.

53. Larsson O, Sandberg R (2006) Lack of correct data format and comparability

limits future integrative microarray research. Nat Biotechnol 24: 1322–1323.

54. Thorrez L, Van Deun K, Tranchevent LC, Van Lommel L, Engelen K, et al.

(2008) Using ribosomal protein genes as reference: a tale of caution. PLoS One

3: e1854.

55. Arcuri F, Papa S, Meini A, Carducci A, Romagnoli R, et al. (2005) The

translationally controlled tumor protein is a novel calcium binding protein of the

human placenta and regulates calcium handling in trophoblast cells. Biol

Reprod 73: 745–751.

56. Liu Z, Oughtred R, Wing SS (2005) Characterization of E3Histone, a novel

testis ubiquitin protein ligase which ubiquitinates histones. Mol Cell Biol 25:

2819–2831.

57. Zhong Q, Gao W, Du F, Wang X (2005) Mule/ARF-BP1, a BH3-only E3

ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates

apoptosis. Cell 121: 1085–1095.

58. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002)

Accurate normalization of real-time quantitative RT-PCR data by geometric

averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.

Selection of Reference Genes through Meta-Analysis

PLoS ONE | www.plosone.org 8 February 2011 | Volume 6 | Issue 2 | e17347


