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Abstract18

Two simple models – vaulting over stiff legs and rebounding over compliant legs – are em-19

ployed to describe the mechanics of legged locomotion. It is agreed that compliant legs are20

necessary for describing running and that legs are compliant while walking. Despite this agree-21

ment, stiff legs continue to be employed to model walking. Here, we show that leg compliance22

is necessary to model walking and, in the process, identify the principles that underpin two23

important features of legged locomotion: First, at the same speed, step length, and stance du-24

ration, multiple gaits that differ in the number of leg contraction cycles are possible. Among25

them, humans and other animals choose a gait with M-shaped vertical ground reaction forces26

because it is energetically favored. Second, the transition from walking to running occurs be-27

cause of the inability to redirect the vertical component of the velocity during the double stance28

phase. Additionally, we also examine the limits of double spring-loaded pendulum (DSLIP) as a29

quantitative model for locomotion, and conclude that DSLIP is limited as a model for walking.30

However, insights gleaned from the analytical treatment of DSLIP are general and will inform31

the construction of more accurate models of walking.32
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1 Introduction33

Understanding the movement of the center of mass (CoM) and the forces exerted on the CoM34

during locomotion is important because the behavior of the CoM describes the overall interaction35

between the animal and the environment during locomotion. The CoM movement and the forces36

exerted on them follow relatively simple patterns conserved across animals, suggesting that the37

overall animal-substrate interactions and, therefore, the underlying mechanical principles are simple38

and general (Blickhan, 1989; Geyer et al., 2006). The best example of the generality of mechanical39

principles is observed during running: Irrespective of the size of the animal, and the number of legs40

it uses, during running, the CoM reaches its minimum height at mid-stance and the vertical ground41

reaction force (vGRF) has an inverted “U”-shaped profile with a midstance maximum. This profile42

is well-explained by the spring-loaded inverted pendulum (SLIP), in which the mass of the animal43

is concentrated at a point. This point mass is supported by a massless spring (Blickhan, 1989;44

McMahon and Cheng, 1990; Blickhan and Full, 1993; Ahn et al., 2004; Daley et al., 2007; Nishikawa45

et al., 2007; Schmitt, 1999). The success of SLIP at modeling running shows that a body supported46

by a compliant leg is a good model for running – or locomotion at high speeds.47

Unlike running, it is unclear whether leg compliance is important for walking – the gait used at48

low speeds. Initially, the inverted pendulum (IP) model, which uses a non-compliant or rigid leg,49

was used to model walking (Griffin et al., 2004; Usherwood, 2005; Buczek et al., 2006). The IP50

model successfully models the energetics of walking (Kuo, 2001; Donelan et al., 2002; Kuo, 2002;51

Kuo et al., 2005) explaining correctly the exchange of kinetic and potential energy during walking:52

During the first half of the stance phase, the speed of the CoM decreases as the height of the CoM53

increases. The increase in potential energy is reconverted into kinetic energy during the second half54

of the stance phase.55

With modifications, IP can also model the work done during velocity redirection between steps56

which is important for estimating the energy cost of walking. During human walking, the CoM57

velocity vector is directed downwards at the end of the step and must be redirected upwards before58

the next step (Kuo, 2001; Adamczyk and Kuo, 2009; Donelan et al., 2002). In the IP model, velocity59

redirection occurs instantaneously, therefore, the work performed during the transition cannot be60

estimated. Regardless, many trends for work done during walking can be explained by distributing61

the force impulse in IP over a finite period of time; these modifications, however, are entirely ad hoc.62

Another, perhaps more fundamental, limitation of the IP model is that it cannot model the double-63

humped or M-shaped vertical GRF (vGRF) during walking. This limitation has been addressed64

in many ways: by modeling non-impulsive impact forces at the beginning and end of each step,65

and by using a telescoping actuator with bounds on impact forces (Srinivasan and Ruina, 2006;66

Srinivasan, 2011). However, the model that produces the most naturalistic force profiles assumes67

a linear relation between force and leg length, implying that a linear spring is likely necessary to68

model GRF during walking.69

The limitation of IP model in producing appropriate forces, the fact that although IP correctly70

predicts the mid-stance maximum in the height of the CoM, the actual CoM height at mid-stance71

is lower, and the recent realization that legs are compliant during walking (Lee and Farley, 1998;72

Buczek et al., 2006) led to the development of the double SLIP (DSLIP) model, in which each leg73

of a biped is modeled as a spring (Figure 1A). DSLIP extends SLIP with a double stance phase74

during which the CoM is supported by two “springy” legs (Geyer et al., 2006; Rummel et al., 2010).75

DSLIP can produce the M-shaped GRFs observed during human walking by providing a smooth76

velocity redirection during the double stance phase. It also produces trajectories with mid-stance77

heights that are lower than IP and more in accordance with experimental data. While DSLIP is78

an attractive model, there are several issues regarding DSLIP as a model for locomotion. The first79

issue is whether DSLIP can explain the choice of gait. Although it is clear that DSLIP is versatile,80

and all the major gaits observed during bipedal walking can emerge from the DSLIP model (Gan81

et al., 2018), it is unclear whether the range of speed over which a gait is observed in DSLIP matches82
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the range of speeds observed in animals. In humans, for example, walking is the dominant mode of83

transport over a large range of speeds and is characterized by an M-shaped vertical ground reaction84

force (vGRF). DSLIP finds stable gaits with M-shaped GRF for only a limited range of speeds85

(Geyer et al., 2006; Lipfert et al., 2012). The reasons for this limited range of speed supported by86

DSLIP are not understood. Similarly, although humans walk over a wide range of speeds, they do87

transition to faster gaits like running at speeds much lower than arguments involving centrifugal88

forces and slipping suggests. Thus, evaluating whether the DSLIP model can explain why M-shaped89

GRFs are prevalent, and what underlies the transition from M-shaped GRFs to other gaits will90

provide insights into the role of compliance in walking.91

A second issue is how well DSLIP models the kinematics and mechanics of human walking. This92

question has not been evaluated rigorously. In studies in which DSLIP is compared to experimental93

data, it predicts within-step variations in CoM height and ground reaction forces (GRFs) (Lipfert94

et al., 2012; Hubel and Usherwood, 2015) that are larger than those observed experimentally. A95

larger issue is how a successful model is defined. Most studies focus on a single aspect of locomotion96

such as GRFs. Considering GRFs, CoM kinematics, and real non-dimensionalized time (and not97

normalized time) at the same time is crucial because the CoM height, H, along with the gravitational98

acceleration constant, g ≈ 9.8 m/s2, determines the natural timescale of the system
√

Rnat

g , where,99

Rnat ≈ H, is the natural spring length. A successful model must produce realistic GRFs within the100

constraints of experimentally observed CoM kinematics and stance duration. These three constraints101

are rarely satisfied (Maus et al., 2010; Lipfert et al., 2012; Maus et al., 2015) simultaneously in most102

studies of locomotion, leaving the problem under-constrained. A previous study took this approach103

to model the single support phase of human walking (Antoniak et al., 2019).104

These issues raise the question of whether adding compliance to the leg is necessary for modeling105

human walking. In this study, we show that adding leg compliance through the DSLIP model allows106

the modeling of fundamental features of locomotion, which would not be possible without it. During107

locomotion, the radial and angular motions of the CoM must be synchronized. Leg compliance108

provides a natural mechanistic basis for understanding the implications of this synchronization. We109

show that leg compliance explains the gaits observed at a given speed and how they relate to different110

oscillatory modes of the spring. We further argue that the normal gait with the characteristic “M”-111

shaped GRF is preferred because it is energetically efficient. We also show that it is difficult to112

walk using this normal gait at high speeds because achieving the necessary velocity redirection in113

the vertical direction is difficult. While DSLIP seems particularly limited in its ability to produce114

M-shaped GRFs, it enabled us to understand the fundamental reason behind why humans (and115

other animals) transition to faster gaits at size-specific speeds (Froude number ≡ (speed)2/gRnat)116

that are significantly lower than 1, the approximate transition speed predicted by IP. We argue117

that once compliance is added, (which is certainly present during walking) speeds at which walking118

with a normal gait can occur are limited by the inability to perform large velocity redirections.119

We also show that linear springs are fundamentally limited and cannot support normal walking120

above a Froude number ∼ 0.25. Our analysis thus strongly suggests that while a spring with a121

constant stiffness cannot model human walking except for a narrow range of speeds, a compliant leg122

is necessary to understand fundamental constraints and optimization criteria that describe walking123

dynamics. Hence, DSLIP is a far superior starting point for more complex locomotion models than124

without leg compliance.125

2 Results126

Throughout the manuscript, we employ the DSLIP model (Figure 1A) in which both legs are modeled127

as massless springs to gain insight into the role of compliance in walking. Each leg has the same128

stiffness, Ks, and natural length, Rnat. The dynamics of the single stance phase are the same as129

SLIP; the swing dynamics are not modeled. The single stance phase transitions to a double stance130
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phase when the distance between the CoM and the future footstep equals the spring’s natural length,131

and we assume that the swing leg has “touched down”. The step length, L, between two consecutive132

foot positions is another parameter. We will focus on symmetric gaits so that the lift-off of the133

receding leg and the touch-down of the leading leg occur at time points given by time-reversal134

symmetry about the mid-step time. All variables in their dimensional and dimensionless forms are135

enumerated in the table below.136

A

B

Ks

Mid-step Mid-stanceToe-off Touch-down

L

Mid-step

Rnat

Δ0 < Δeq Δ0 > Δeq Δ0 > Δeq 

Δ0
Δeq

H0

Figure 1. The position of the CoM at mid-stance in relation to the equilibrium point
of the spring-mass system determines the GRF profile. A. Gait cycle for normal human
walking showing the mid-stance maximum in height and a mid-step minimum in height. The DSLIP
model is overlayed on the step cycle. Solid lines and dotted lines represent single and double stance
phases respectively. B. The top row shows the position of the CoM at mid-stance in relation to the
equilibrium position. During human walking (left), the CoM at mid-stance is above this equilibrium
point; the resulting vGRF will be at its minimum and produce an M-shaped vGRF. In grounded
running (middle), the CoM is at its minimum height below the equilibrium point resulting in the
maximum spring contraction/force at mid-stance. Walking with multiple oscillations (right) can
have either a maximum or minimum CoM height regarding the number of oscillations. Again with
the same logic, the extremums of vGRF profile are defined based on the position of the CoM related
to the equilibrium point.

2.1 Emergence of different walking gaits and their energetics137

Different gaits are oscillatory modes of the DSLIP model138

In previous work, it has already been shown that the DSLIP model can function in multiple139
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The model’s parameters

Parameter Symbol Dimensionless form Relation

Mass M N/A N/A

Acceleration of gravity g N/A N/A

Weight W N/A W = Mg

Natural spring length Rnat N/A N/A

Time t τ τ = t
√

g
Rnat

Single stance time ts τs τs = ts
√

g
Rnat

Double stance time td τd τd = td
√

g
Rnat

Spring stiffness Ks γ γ = KsRnat

W

Step length L λ λ = L
Rnat

Radial Coordinate R r r = R
Rnat

Initial radial coordinate R0 r0 r0 = R0

Rnat

Radial coordinate at equilibrium Req req req = 1 - 1
γ

Radial coordinate at transition R⋆ r⋆ r⋆ = R⋆

Rnat

Height of CoM H h h = H
Rnat

Height of CoM at mid-stance H0 h0 h0 = H0

Rnat

Spring contraction ∆ δ δ = 1− r

Initial spring contraction ∆0 δ0 δ0 = 1− r0

Spring contraction at equilibrium ∆eq δeq δeq = 1
γ

Spring contraction at transition ∆⋆ δ⋆ δ⋆ = 1− r⋆

Angular coordinate θ θ N/A

Angular coordinate at transition θ⋆ θ⋆ N/A

Initial angular velocity θ̇0 Ω0 Ω0 = θ̇0
√

g
Rnat

Maximal Spring Energy E ϵ ϵ = E
MgRnat

= 1
2γδ

2
max

Oscillation frequency N/A ω ω =
√
γ

Oscillation phase N/A ϕ ϕ = ωt

Oscillation phase at transition N/A ϕ⋆ N/A

Horizontal displacement of the CoM Xcom x x = Xcom

Rnat

Vertical displacement of the CoM Ycom y y = Ycom

Rnat

Average CoM’s speed Vcom v v = Vcom√
gRnat

Froude number N/A Fr Fr = ( λ
τs+τd

)
2

Horizontal velocity at transition N/A vx⋆ vx⋆ ≈ (1− δ⋆)Ω0 cos θ⋆

Vertical velocity at transition N/A vy⋆
vy⋆

≈ −(1− δ⋆)Ω0 sin θ⋆

Vertical acceleration at transition N/A ay⋆
ay⋆

≈ γδ⋆ cos θ⋆ − 1

modes (Geyer et al., 2006; Gan et al., 2018; Andrada et al., 2020; Ding et al., 2022; Mauersberger140

et al., 2022); these modes include common modes of animal locomotion. These different modes141

arise from different positions of the CoM in relation to the equilibrium length of the spring (Figure142

1). To describe the different modes, instead of leg length, it is more convenient to introduce the143

spring compression, ∆, via R = Rnat − ∆. Each mode is an oscillation around the fixed point,144
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R = Req = Rnat −∆eq, of the spring-mass system given by the ∆ where the spring force balances145

gravity, ∆eq = Mg/Ks, where M is the mass of the subject. Assuming symmetry, at mid-stance the146

radial coordinate and the height must be either at a maximum or a minimum. At the take-off point,147

the leg reaches its maximal length or the natural length, Rnat. Whether the mid-stance height is at148

a maximum or minimum is determined by the relationship between the compression at mid-stance,149

∆0, and ∆eq: If ∆0 > ∆eq, the weight is larger than the spring force at mid-stance, the net vertical150

force points downwards, the second derivative of the height at mid-stance, Ḧ0, is negative, and the151

CoM must go down, resulting in a maximum in height and leg length. Thereafter, it must undergo152

approximately an integral number of oscillations before take-off. Normal human walking with its153

mid-stance maximum in height is the most common gait of this kind with approximately a single154

radial oscillation between the mid-stance and take-off (Figure 1B, left).155

In contrast, if the leg starts below the equilibrium, ∆0 < ∆eq, the spring force is larger than the156

weight, leading to an upward net vertical force, Ḧ0 > 0, and therefore a minimum in height and157

leg length. The radial coordinate undergoes approximately half-integral oscillations before take-off,158

Figure 1B, middle. The lowest oscillatory mode with approximately half of an oscillation corresponds159

to the grounded running gait that is employed over a limited speed range in humans but over a large160

range of speed in some birds ((Andrada et al., 2013b, 2020; Davis et al., 2020). In Figure 1B, right,161

we also show gait patterns of this type with more than one vertical oscillation.162

The possible gait patterns and the ranges over which they are found, when we have at most163

one oscillation, are summarized in Figure 2. We have used dimensionless quantities in Figure 2164

that will be introduced shortly. As we just explained, the different modes of DSLIP depend on165

the height of the CoM, H0, at midstance in relation to the equilibrium height Req which in turn166

depends on the angular speed at mid-stance, and Ks. However, due to the centrifugal force resulting167

from the angular motion, this transition occurs at a CoM height, H0, that is slightly higher than168

the equilibrium height (see Appendix A for a detailed derivation). Due to the centrifugal force,169

apart from the normal walking mode, there is a small range of ∆0 values for which the gait has170

a mid-stance maximum in height but not an M-shaped GRF. We refer to this gait as Inverted171

walking. Finally, there is a large range of values where grounded running, with a height minimum172

and inverted “U”-shaped vGRF maximum, is observed, consistent with theoretical work and the fact173

that many animals show grounded running (Andrada et al., 2013b; Blickhan et al., 2018; Andrada174

et al., 2020). The grounded running and inverted walking gaits are together referred to as inverted175

gaits as they both have an inverted “U”-shaped vGRF maximum, as opposed to the “M” shape176

observed in normal walking.177

Gait parameter space178

To evaluate the exact ranges we found limit cycle solutions. A priori, there are five dimensional179

parameters that control the evolution of a symmetric gait: stiffness and natural length of the leg180

spring, Ks and Rnat, respectively, the step length, L, and the height and angular velocity at mid-181

stance, H0 and θ̇0, respectively. Together, these five parameters completely specify a symmetric182

walking trajectory for CoM. We note that time-reversal symmetry requires that at mid-stance and183

mid-step, Ḣ must be zero, or the height must be at a maximum or minimum. Typically, as the184

CoM evolves and reaches mid-step, Ḣ will not be zero, a condition that is required for a symmetric185

gait cycle. Imposing Ḣ = 0 at the mid-step, provides an additional constraint, leaving only four186

independent parameters among {Ks, Rnat, L,H0, θ̇0} that now uniquely parametrizes limit cycles.187

To simplify the analysis further, we used dimensionless quantities (by setting Rnat = 1): the dimen-188

sionless angular speed and length contraction at the mid-stance, Ω0 and δ0, the dimensionless spring189

constant, γ, and relative step length, λ. Of these four, only three are independent due to the limit190

cycle requirement.191

The range of speeds, expressed as Froude number, Fr, the square of the dimensionless average192

velocity (approximately equals Ω0
2), over which limit cycle walking is possible at a given λ is shown193

in Figure 3A. Limit cycles with M-shaped vGRF are found over the range of speeds over which194
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Gait CoM height GRFs  range 

 Normal walking
Max 

 

Min 

 
0 < ≤ 1 − Ω0

2 

Max 

 

Max 

 
1 − Ω0

2 < ≤ 1 

1 <  

Inverted walking

Grounded running

0𝛾

0𝛾

0𝛾

0𝛾
Min Max

Figure 2. vGRFs and CoM trajectories for different gaits with at most a single
contraction-expansion cycle between mid-stance and mid-step and the limits within
which each is supposed to occur. The range over which different gaits are observed depends
mostly on whether the spring is compressed more or less than the compression necessary to balance
the gravitation force. The Ω2

0 term compensates for the centripetal acceleration and will be small
for most walking speeds.

humans typically walk. M-shaped vGRF is possible at low speeds with a DSLIP model but not at195

the highest speed observed during M-shaped human walking. That DSLIP cannot model M-shaped196

walking at the higher end of walking speeds is a well-known limitation of the DSLIP model (Geyer,197

2005; Geyer et al., 2006; Lipfert et al., 2012; Mauersberger et al., 2022; Lin et al., 2023) that we198

will explore in the next section. Modes with higher oscillations are found only at low speeds (orange199

region in Figure 3A). as going through multiple oscillations takes time, increases stance duration,200

and decreases speed.201

The range of speeds for which a single-humped vGRF (inverted gaits) was observed is more ex-202

tensive than the M-shaped vGRF. At low speeds, both the M-shaped vGRF and the inverted force203

profiles are possible using different γ values. However, only the inverted force profile is possible at204

high Froude numbers. Part of this regime (green area) corresponds to grounded running. Consistent205

with grounded running observed in humans and other bipeds (Andrada et al., 2013b; Blickhan et al.,206

2018; Andrada et al., 2020; Davis et al., 2020), the spring constant decreases as the gait transitions207

from normal walking to grounded running.208

Normal walking gait with “M”-shaped vGRF are preferred because they are energeti-209

cally efficient210

Why do humans choose M-shaped GRFs during walking despite other modes being accessible?
A possible reason is that the normal gait is energetically most efficient. Although DSLIP itself
is a conservative model, the spring compression modeled by DSLIP will require work that will be
proportional to the energy stored in the SLIP spring. Thus one can use the maximum spring energy
stored as a proxy for energy cost of transport during the given walking step. Now, the maximal
stored energy is given by

ϵ =
1

2
γδ2max . (2.1)

The stored energy for a given walking speed, Ω0, for the normal and inverted gaits can be estimated.
For the normal gait, δmax ≈ 2/γ − δ0, while in the inverted gaits, δmax ≈ δ0 > 1/γ (Figure 1). In
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the normal gait, the minimum ϵ is achieved by choosing δ0 → 1/γ ⇒ δmax → 1/γ, so that

ϵmin,normal ≈
1

2γ
. (2.2)

Since δ0 > 1/γ in the inverted gaits ϵ is minimized as δ0 → 1/γ as well. Note that for the normal
gait 1/γ is the largest value of δ0 , while for the inverted gait, it is the lowest.

ϵmin,inverted =
1

2
γδ20 =

1

2γ
. (2.3)

For a given speed, the expression for the minimum stored energy is the same for both gaits, and is211

inversely proportional to γ. Therefore, the gait with higher γ is preferred. That the normal gait is a212

high stiffness gait is observed in Figure 3A. The same can be inferred intuitively: The take-off angle,213

θoff , does not change very much between different walking trajectories. Thus the time, θoff/Ω0,214

that a leg is on the ground stays approximately the same as long as the walking speed is the same.215

However, in this time, during normal walking the radial coordinate must oscillate once, while in the216

grounded running gait it only has to undergo half an oscillation. Since oscillation frequency goes as217

the square root of stiffness, γ, this means that the normal walking gait must have a larger stiffness,218

and is thus preferred over the inverted gaits.219

To quantitatively test this idea, we evaluated the ϵ over the entire space where we have limit220

cycle solutions and ϵ was smaller for the normal gait compared to the inverted gaits (Figure 3B)221

for the same speed. Therefore, M-shaped vGRFs are preferable to grounded running because it222

minimizes energy. A similar argument, however, does suggest that multiple oscillatory modes would223

have even higher stiffness and, therefore, should be preferred over the normal gait. So why don’t224

we observe these gaits more frequently? One reason is that each gait (except the grounded running225

gait) has a maximum attainable speed, and the higher the number of oscillations, the smaller this226

speed-bound. Another possible reason is that the higher oscillatory modes require a much larger227

stiffness, making them biologically undesirable. Within the preferred speed range of human walking,228

higher oscillatory modes are not available (or have very large stiffness), making the normal walking229

gait the most energy-efficient gait.230

This analysis above ignores the energy used to propel the swing leg; approximate assessment of
the energetics of the swing phase show that normal gait will be preferred. It has been previously
proposed that the swing energy is ∝ ν4, where ν = 1/(τs) is the angular frequency of the swing leg,
and τs is the dimensionless time for the single stance/swing phase (Kuo et al., 2005). For a given
angular speed, the energy will diminish steeply with θ⋆ ∝ τs. or

ϵswing ∝ 1

θ4⋆
, (2.4)

where θ⋆ is the angular coordinate at the transition from the first single stance to the double stance.231

For geometrical reasons, just like θoff , θ⋆ doesn’t vary much between different gaits, but it does232

increase slightly (Figure 4B) as one decreases δ⋆. Since an increase in γ decreases δ⋆, gaits with233

higher γ are preferred.234

To investigate the range of speed allowed using the M-shaped GRF pattern, we found the limit235

cycles for the range of relative step lengths (λ) in our experimental data. The allowed region for M-236

shaped (normal human walking) (Figure 3C) shows that as λ decreases, the lowest value of γ allowed237

increases. The maximum and minimum Froude numbers (Fr) (Figure 3D) show that DSLIP is a238

good model at lower speeds but is limited at higher speeds. The range of allowed speeds is low even239

after considering different λ values. Compared to the previous study (Antoniak et al., 2019) which240

assessed the range of Fr numbers allowed using constraints on the single stance, i.e., without any241

requirement for limit cycles (Antoniak et al., 2019), the allowed speed is not altered at the lower242

end of the speed range but is altered at the higher end of the speed range. Essentially, DSLIP is an243

adequate model for walking at slow speeds whether one considers just the synchronization of radial244
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Figure 3. M-shaped walking only occurs only over a limited range of speeds over which
it is energetically favored. A. Solution space for a fixed value of dimensionless step-length,
selected according to the best fit to the experimental data for the preferred walking speed of our
subject. Four walking modes are shown - three modes from Figure 2 and one mode with multiple
oscillations. The vGRF is shown in black, and the CoM profile is in gray. B. The same plot as A,
with colors specifying the maximum energy stored in the leg during a cycle shows the M-shaped
GRF is the most energy efficient over the range of speeds for walking. C. The solution space for M-
shaped GRFs for different step lengths. The spring stiffness changes with speed. D. The M-shaped
walking observed in humans is limited to a Fr of 0.25 across step lengths.
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and horizontal motions during the single stance or the full gait cycle. In contrast, the range of speed245

at the high end dramatically decreases when the double stance phase is included, a topic discussed246

at length in the next section.247

2.2 Constraints from synchronization of radial and angular motion in248

single stance and velocity redirection in double stance limit DSLIP249

normal walking speed250

Synchronization between radial and angular motion during the single stance describes251

the lower limits of speed possible with M-shaped GRF252

DSLIP correctly predicts that M-shaped GRF walking is only possible for a limited range of
speeds. To understand the mechanical constraints that limit the range of speeds for M-shaped
walking, we sought an analytical approximation of the DSLIP model. The analytical approximation
has two parts that correspond to single and double stance phases, respectively (see Appendix B
for details). First, during the single stance phase, we assume that the angular and radial motion
are decoupled. When there is no angular motion, and θ ≈ 0, the equation of radial motion can be
written as

δ̈ = −γ

(
δ − 1

γ

)
⇒ δ =

1

γ
+

(
δ0 −

1

γ

)
cos(ωt) , where ω ≡ √

γ . (2.5)

In other words, δ simply oscillates around its equilibrium value, 1/γ. Further, under the approxi-
mation that angular speed is constant, we have

θ = Ω0t . (2.6)

The oscillation phase of the radial motion can be defined as

ϕ ≡ ωt . (2.7)

If ϕ⋆ and t⋆ denote the oscillatory phase and time when the single stance transitions to the double
stance, at this same time the angular motion must traverse up to the transition angle, θ⋆ (Figure
4A):

t⋆ =
ϕ⋆

ω
=

θ⋆
Ω0

. (2.8)

In other words, γ and Ω0 are related as

Ω0 =

(
θ⋆
ϕ⋆

)
√
γ . (2.9)

This equation implies that as speed (Ω0) increases, the leg must oscillate faster in the radial
direction along the leg-length to keep up, leading to a larger stiffness (γ). The relationship between
(Ω0) and (γ) is more complex as θ⋆ and ϕ⋆ are not constants but rather given by (see Appendix B):

sin θ⋆ =
λ2 + (1− δ⋆)

2 − 1

2(1− δ⋆)λ
, and cosϕ⋆ = −

(
γδ⋆ − 1

1− γδ0

)
. (2.10)

Briefly, the θ⋆ equation above results from the transition geometry (Figure 4A), and ϕ⋆ from
Eqn. (2.5). Since δ⋆ is typically small and ranges between 1/γ < δ⋆ < 2/γ ≪ 1, θ⋆ does not
change much; there is a small increase with decreasing δ⋆ (Figure 4B). Assuming γ ≫ 1, we have

λ

2

(
1− 2

γλ2

)
≳ sin θ⋆ ≳

λ

2

(
1− 4

γλ2

)
, (2.11)

As γ increases, δ⋆ becomes smaller, and accordingly θ⋆ increases towards sin−1(λ/2).253
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Figure 4. Synchronization between radial and angular motion divides the gaitspace
into regions in which different modes are expected. A. An example simulation to illustrate
synchronization between radial and angular oscillation (middle panel, zoomed version on the right).
At a given step-length and leg-contraction at mid-stance, any γ and Ω0, only solutions that have
synchronized radial and angular motion can become a limit cycle. During the time it takes to travel
from midstance to the transition between single and double stance phases - denoted by the starred
variables, the angular coordinate must go from midstance to θ⋆. The radial coordinate will go from
its position between the natural length and equilibrium length at midstance to a position slightly
below it. This corresponds to a change in the value of ϕ from 0 at midstance to π

2 < ϕ⋆ < 3π
2

at the transition. B. Two examples based on analytical results show that while ϕ⋆ approximately
accesses the entire range defined for normal walking, θoff and θ⋆ slightly increases and decreases
respectively. C. In the figure, only solutions with π

2 < ϕ⋆ < 3π
2 are shown by color bar; the others

are gray. Analytical constraints from synchronization are shown by the dashed line, which is close
to the lower bound on speed. However, there is no limit on the upper bound. Note that at high γ,
there are no limit cycle solutions close to ϕ⋆ = π

2 .
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Figure 5. M-shaped walking is limited to low speeds because of a combination of
synchronization and velocity redirection constraints. A. Two CoM trajectories illustrate
the single stance (solid lines) and the double stance (dotted lines) phases. The double stance phase
gets shorter with increasing speeds. The vertical black lines specify the mid-step. B. The figure
shows the approximate evolution of δ and θ during the single stance phase. There are only two
solutions once γ, δ0, λ are fixed. C. The variation of ϕ⋆ vs. δ0 for a given step-length for the normal
walking gait. By increasing γ, generally the speed increases, and for a given gamma, as the speed
increases ϕ⋆ and δ0 values get closer to π and zero respectively. D. A graphical representation of how
single (solid line) and double stance (dashed line) constraints affect the range of possible speeds. Here
δ0 = 0. The highest speed possible (intersection) is much smaller than the highest speed from just
single stance considerations(obtained at δ⋆ = 1

γ ). The difference becomes more with higher stiffness

until at the highest stiffness (light blue, γ = 60 ), there is no solution (no intersection point). E.
All solutions for a fixed step-length and stiffness. Note the double stance constraint is independent
of δ0. F. The region of different gait patterns that is estimated by our analytical approximation.
The boundaries for normal walking become highly constrained. The other boundaries - for grounded
running and higher modes - are a result of single stance constraint alone. G. Analytical boundaries
of walking solutions from F overlayed on the numerical solution for comparison.
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In contrast to the small θ⋆ range, ϕ⋆ changes considerably (Figure 4B). When cosϕ⋆ is negative
(we will justify this in the next subsection), ϕ⋆ can, a priori, take any value in the range

π

2
< ϕ⋆ <

3π

2
(2.12)

for a single radial oscillation of the COM. Moreover, (2.10) implies that as δ⋆ varies, we have two254

branches of ϕ⋆(δ⋆): a branch along which δ⋆ varies between 1/γ to 2/γ − δ0, and ϕ⋆ varies between255

π/2 to π, see Figure 4B and another where ϕ⋆ goes from π to 3π/2 as δ⋆ varies between 2/γ − δ0 to256

1/γ.257

We can estimate the speed bounds based on the analytical equations above. It is clear from (2.9)
that Ω0 decreases if ϕ⋆ increases and θ⋆ decreases, however, the effect of ϕ⋆ change is much larger.
Thus approximately the lower-bound on speed is attained at δ⋆ → 1/γ, and ϕ⋆ → 3π/2 following
the upper branch, and yielding

Ω0 ≳

(
2

3π
sin−1

[
λ

2

(
1− 2

γλ2

)])
√
γ . (2.13)

In a similar way, the upper bound is attained as δ⋆ → 1/γ, and ϕ⋆ → π/2:

Ω0 ≲

(
2

π
sin−1

[
λ

2

(
1− 2

γλ2

)])
√
γ . (2.14)

The upper and lower bounds resulting from this synchronization are plotted in Figure 4C. The258

analytical lower bound derived above matches the simulation results well, implying that the ana-259

lytical approximation captures the mechanics well. However, the analytical upper bound does not260

match the bounds obtained through simulation. This mismatch occurs because, except for low γ,261

the allowed ϕ⋆ does not reach π/2; the allowed ϕ⋆ deviates further from π/2 as γ increases. Single262

stance mechanics do not constrain the speed for normal walking; instead, as we will see next, con-263

straints from double stance limit ϕ⋆ This result explains why a previous study that considered only264

the single stance phase came to the conclusion that DSLIP can function as a model for walking even265

at high speeds (Antoniak et al., 2019).266

Limits of DSLIP on speed result from a combination of synchronization and the re-267

quirement to redirect vertical velocity component during the double stance phase268

Thus far, we have investigated how synchronization between the horizontal and vertical motions269

of the CoM in the single stance phase delineates the regions in the γ−Ω0 space where different gaits270

will be observed. The speed range over walking is further constrained by the need to reorient the271

velocity vector during double stance: The vertical CoM velocity, which is pointed downwards at the272

beginning of the double-support phase, must be redirected upwards by the end of the double-support273

phase (Geyer et al., 2006); the required redirection increases with speed. As the speed increases,274

this redirection becomes more difficult because the double-support phase becomes shorter, and the275

required change in velocity is larger (Figure 5A). We first explain this idea conceptually (Figure 5A):276

As speed increases, γ increases as well, and so does the equilibrium height (1− 1/γ). Moreover, as277

the radial motion of the CoM is approximately oscillating with an amplitude less than 1/γ, the CoM278

trajectory is closer to the natural leg length at higher speeds (Figure 5A), r ≲ 1−2/γ. Consequently,279

the transition geometry dictates that the transition occurs closer to the mid-step at higher speeds,280

when the two legs are almost of equal length. This change, in conjunction with increased horizontal281

speed, implies that less time is spent in the double support phase. At the same time, as the vertical282

component of velocity increases with the overall speed-increase, a larger change in speed is required283

at the double-to-single stance transition. A larger speed change in a shorter time necessitates a284

larger force to produce a larger acceleration. A back of the envelope calculation is instructive: The285

double support phase duration, td ∼ δθ/Ω0 keeps shrinking as speed increases while the required286

change of vertical velocity necessary during the double support phase increases, δv ∼ 2Ω0 sin θ⋆.287
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Thus the average upward acceleration that one needs, ∼ δv/td ≈ Ω2
0 sin θ⋆/δθ, increases with speed.288

Crucially, the increased acceleration cannot be produced because the force that can be generated289

during normal walking is bounded and is equal to the weight.290

The above arguments do not incorporate two important effects: First, the oscillatory radial291

motion can flatten the trajectory, which, in turn, may reduce the required vertical speed change.292

Second, the bound of the maximal radially outward force comes from the approximate oscillatory293

dynamics, but obviously, during the double stance phase, both legs are on the ground, which can294

therefore provide larger upward forces. Below we provide an approximation and provide an analytic295

condition determining the maximum speed bound for the normal walking gait.296

Limit Cycle constraint combining the single and double stance synchronization dra-297

matically reduces the solution space298

To estimate the speed bound we will first derive an approximate analytical solution for limit cycle,
and then use this analytical solution to estimate the speed bound. The horizontal speed and vertical
acceleration are approximately constant during the double-stance phase and equal to their value at
the transition between single-stance and double-stance phase: vx ≈ vx⋆ and ay ≈ ay⋆. In particular,
this implies that at the transition, the vertical acceleration must be upwards to make the velocity
redirection possible, or ay⋆ > 0. For an approximately simple harmonic radial oscillation, this occurs
during the phase, π

2 ≲ ϕ⋆ ≲ 3π
2 , thereby justifying the assumption (2.12) we made earlier. Using

these approximations, and the fact that in the time the leg has to travel horizontally to the mid-step
from the transition point, the upward force must be sufficient to bring the downward velocity at
transition to zero at mid-step, we can derive the relationship Ω0(δ0, δ⋆, γ, λ) (see Appendix C for
the derivation) as

Ω2
0 =

(γδ⋆ cos θ⋆ − 1)[λ/2− (1− δ⋆) sin θ⋆]

(1− δ⋆)2 sin θ⋆ cos θ⋆
≡ GD(δ0, δ⋆, γ, λ) . (2.15)

This nonlinear function determining Ω0 as a function of δ0, δ⋆, γ, λ describes the speed based on the299

double stance constraint. Because δ⋆ ≪ 1 and θ⋆ approximately remain a constant, the first term300

(the net upward force) in the numerator is the most important for determining speed, and this will301

be important later.302

The synchronization relation obtained from the single stance phase is also a function of δ0, δ⋆, γ, λ:

Ω2
0 =

(
θ⋆
ϕ⋆

)2

γ ≡ GS(δ0, δ⋆, γ, λ) . (2.16)

Thus, in order to have a synchronized limit cycle, the four parameters, δ0, δ⋆, γ, λ must be related,

GD(δ0, δ⋆, γ, λ) = GS(δ0, δ⋆, γ, λ) , (2.17)

leaving only three independent parameters, δ0, γ, λ. For a given δ0 and γ, inverting the cosine
function in (2.10) while obtaining ϕ⋆ results in two branches, referred to here as ϕu(δ⋆) ∈ (π, 3π/2)
and ϕl(δ⋆) ∈ (π/2, π) (Figure 5C). Accordingly, for a given λ, γ and δ0, the upper branch, ϕu, leads
to a branch with lower speeds from the single stance synchronization condition (2.16),

Ω2
0 =

[
θ⋆(δ⋆)

ϕu(δ⋆)

]2
γ ≡ Gl(δ0, δ⋆, γ, λ) , (2.18)

while the lower branch leads to a branch with higher speeds,

Ω2
0 =

[
θ⋆(δ⋆)

ϕl(δ⋆)

]2
γ ≡ Gu(δ0, δ⋆, γ, λ) , (2.19)

So, if the three parameters, δ0, γ, λ are fixed, there are only two possible values of Ω0 resulting303

from two values of ϕ⋆ and δ⋆ corresponding to two branches of solution (Figure 5B); from a different304
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perspective, relating single and double-stance dramatically shrinks the solution space from the entire305

range between π/2 to 3π/2 for allowed ϕ⋆ to just two values of ϕ⋆ (Figure 5C).306

Satisfying both single stance and double stance constraints simultaneously is difficult307

at high speeds and curtails speeds at which walking is possible308

Normal walking must satisfy both the single stance and double stance requirement (2.17). The309

maximum speed occurs at different δ⋆ and ϕ⋆ values for the single and double stance: Synchronization310

during single stance (2.16) suggests that a speed maximum is reached as δ⋆ → 1/γ and ϕ⋆ → π/2311

(Figure 5D). However, synchronization during double-stance does not allow δ⋆ → 1/γ and ϕ⋆ → π/2:312

As δ⋆ → 1/γ - the upward force (the first term within the parenthesis in the numerator of (2.15))313

becomes negative and is disallowed (see Figure 4C). Thus, it is not possible for ϕ⋆ to attain π/2314

(Figure 5C). This inability of ϕ⋆ to reach π/2 is also reflected in the simulation results in Figure 4C315

and becomes worse as γ increases (Figure 4C and 5C). The maximum upward force in the double316

stance phase occurs at the largest compression possible, δ⋆ ≈ 2/γ when ϕ⋆ ≈ π. In calculating the317

force δ⋆ is multiplied by γ ≫ 1, and thus, the effect of δ⋆ in GD is dominated by the force term. The318

maximum speed possible is a compromise between the considerations from single and double stance319

and the largest speed occurs at a value of δ⋆ between π/2 (where the maximum speed from single320

stance condition occurs) and π (where the maximum speed from double stance condition occurs).321

By inspection of (2.10) it is also clear that for a given δ⋆, ϕ⋆ is smallest if δ0 = 0. Thus, the
maximum speed is approximately attained at a δ⋆ that satisfies both (2.16) and (2.15) for δ0 = 0.
Or, (

θ⋆
ϕ⋆

)2

γ =
(γδ⋆ cos θ⋆ − 1)[λ/2− (1− δ⋆) sin θ⋆]

(1− δ⋆)2 sin θ⋆ cos θ⋆
, (2.20)

where cosϕ⋆ = −(γδ⋆ − 1), and θ⋆ is given by (2.10). (2.20) can be solved to obtain δ⋆ as a function322

of λ and γ. Graphically, the solution is given as the intersection between curves depicting equations323

(2.15) and (2.19) or (2.18) (Figure 5D). The constraining function, GD, from the double-support324

does not depend on ϕ⋆, and therefore has no branches. It is a monotonically increasing function325

of δ⋆ that can intersect both the lower and the higher branches, Gl(δ⋆) and Gu(δ⋆), leading to two326

possible solutions. The maximum speed is given by the intersection of these two constraints that327

occur between ϕ⋆ of π/2 and π, and is, therefore, lower than the speed possible if we only consider328

single-stance synchronization. This decrease is exacerbated as γ increases (Figure 5D). For a given329

λ and large enough γ’s, there are no solutions at all, consistent with our numerical findings (Figure330

5D, γ = 60). The lower bound is also attained when δ0 → 0 as that decreases cosϕ⋆ so that ϕ⋆ can331

get close to 3π/2 (Figure 5D). The lower bound is reached when δ⋆ is close to 1/γ, but as argued332

before, the upper bound δ⋆ ends up at a compromise value between 1/γ and 2/γ. The effect of the333

double-stance constraint on the lower speed bound is much less (Figure 5D).334

Essentially the same analysis can be performed for non-zero δ0 with two limit cycles possible335

for a given value of δ0. More generally, the double-valued nature of ϕ⋆(δ⋆) leads to a double-valued336

δ⋆(δ0) function (Figure 5E) resulting in a family of curves - one for each δ0.337

The overall results are summarized in Figures 5F and 5G. The single stance constraint alone338

divides the gait space into contiguous regions with different oscillatory gaits (Figure 4C). Addition339

of the double stance constraint limits the region allowed (Figure 5F). The results from the analytical340

approximation of DSLIP and the actual simulations are overlayed in (Figure 5G). The range of speeds341

predicted from the analytical consideration (see Appendix C for more details) matches the simulation342

results closely. The correspondence is particularly close for low speeds. The small discrepancy at343

the higher speed is likely a result of oversimplication of the dynamics of the double stance phase.344

However, the critical result is that it is the differing constraints from synchronization in the single345

and double stance phases that limits the range of speed over which M-shaped walking is possible.346

Lowerbound on γ from requirement of a double stance phase347
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There are two other features of the gaitspace. First, requiring a finite single stance phase places
a floor on γ. To change the vertical component of the velocity during the double stance phase at
the transition

δ⋆ ≳
1

γ
(2.21)

We can now use the transition geometry to find a lower bound on γ. As δ⋆ increases the transition
occurs at smaller θ⋆ angles (2.10), also see Figure 4A. Thus if δ⋆ is pushed to a very large value by
decreasing γ, θ⋆ will become zero, and there won’t be any single stance phase at all. By setting θ⋆ = 0
depicting the extreme configuration when the transition to double stance occurs at the mid-stance,
we get

δ⋆,max = 1−
√

1− λ2 ≳
1

γ
⇒ γ > γmin ≡ 1

1−
√
1− λ2

≈ 2

λ2
. (2.22)

The analysis above extends to limit cycles with multiple oscillations
The general form of solutions of (B.4) that have a leg-length minimum (or vGRF maximum) at
mid-stance can be written as

ϕ⋆ = 2πn± arccos

(
1− γδ⋆
1− γδ0

)
, n ∈ {0, 1, . . . } , (2.23)

where we have assumed, γδ⋆ > 1, γδ0 > 1 and arccos(ϕ) is defined as cos−1 ϕ with ϕ restricted to
the first quadrant, 0 < ϕ < π

2 . The lowest n = 0 mode leads to 0 < ϕ⋆ < π
2 and corresponds to the

inverted gaits 1, the most commonly observed gait among these grounded-running like oscillatory
modes. In contrast, the normal walking gait, which exhibits a leg-length maximum (or vGRF mini-
mum) at mid-stance is the lowest oscillatory mode (n=1) among the normal-walking like oscillatory
gaits:

ϕ⋆ = π(2n− 1)± arccos

(
γδ⋆ − 1

1− γδ0

)
, n ∈ {1, 2, . . . } , (2.24)

where now we have γδ⋆ > 1, but γδ0 < 1. The normal walking gait can thus represent solutions348

with ϕ⋆ either in the second (π2 < ϕ⋆ < π) or the third (π < ϕ⋆ < 3π
2 ) quarter of the unit circle.349

The multiple branches of ϕ⋆(δ⋆) lead to multiple branches ofGS as a function of δ⋆, and eventually350

many intersections of GS with GD. Thus we can have many limit cycles with the same speed and δ0351

that, nevertheless, belong to different oscillatory gaits. Since the higher oscillatory modes correspond352

to lower GS curves, the allowed speed range keeps decreasing as the number of oscillations increases.353

There is one gait, the grounded running gait, for which the above approximate strategy fails (and354

is also unnecessary), as discussed in Appendix D. Essentially, in the grounded running gait, there355

is no longer any need to redirect the velocity in the double stance phase, and hence our analytical356

calculations are not valid.357

2.3 DSLIP is an adequate model for human walking only for a narrow358

range of speeds359

The analysis presented in this study thus far show that approximating walking dynamics using a360

spring-mass system explains features of walking, such as the use of M-shaped GRFs and the range361

of speeds over which humans walk. To further evaluate whether the interactions between the walker362

and the substrate can be quantitatively described with a spring-mass model, we next evaluated363

how close DSLIP came to describing the kinematics and GRFs during walking. To this end, we fit364

DSLIP to human walking data. Using an instrumented treadmill, we collected data for four walking365

1Since ϕ⋆ can only be positive, the ϕ⋆ ∈ (−π/2, 0) is unphysical and absent from the n = 0 grounded running gait.
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speeds - 2.0 mph, 2.5 mph, 3.0 mph, and 3.5 mph (see Supplementary Materials 4.2). Following366

previous work (Antoniak et al., 2019), we fit both the GRF and CoM kinematics in real-world or367

dimensional units and individual steps rather than the average data. Briefly, fitting just the GRF368

in normalized time units provides fallacious results as the Rnat determines the natural time scale of369

a pendulum. Thus varying Rnat tunes the natural time scale allowing fits to trajectories for a wide370

range of speeds. However, this is not biologically feasible as the leg length can only vary within a371

small range, and within the context of SLIP, Rnat is considered to be a fixed parameter. At the372

same time, choosing the height of the hip marker as the CoM is an overly stringent constraint; the373

marker for hip height is a good approximation for the movement of the CoM in time but not the374

exact CoM location. Therefore, we began by determining the optimal Rnat for - 2.5 mph - which375

was the preferred walking speed for the subject (Figure 6A).376

To this end, we first fit a non-periodic trajectory, i.e., the fits were not constrained to be limit377

cycles, to each walking step separately, to allow more flexibility and independent assessment of the378

best fit over 40 steps, thereby increasing statistical power (see Supplementary Materials 4.3.1). In379

obtaining Rnat, we used four values of Rnat, these values were selected through trial and error. The380

vertical GRF was well fit at all selected values of Rnat, as was the height of the CoM. The highest381

value of Rnat , 128 cm, was the best fit to the horizontal GRF (Figure 6A and B), and yielded the382

lowest overall error, and was selected as Rnat of 128 cm for limit cycle fits.383

After fixing Rnat, there remained only three free parameters that determine a limit cycle; two384

of them - the average step length and speed were fixed by constraining them to match the exper-385

imentally observed step length and step time. The remaining parameter is selected as the average386

minimum vGRF over the single stance phase, which can be directly calculated from the data as well.387

This parameter captures an essential feature of the vertical ground reaction forces that characterizes388

its “M”-shape profile and therefore seemed important to us. For more details related to optimization389

methods, please refer to Supplementary Materials 4.3.2.390

One example of the limit cycle fit is shown in Figure 6C. A single limit cycle closely describes391

the entire sequence of steps rather than the average step as is typically done; as a consequence, the392

limit cycle fits some steps better than others. As an example, the fourth step, which is slower than393

the optimized limit cycle, does not fit well; but this delay is corrected by faster steps later in the394

sequence (Figure 6C). Overall, a single limit cycle optimized to fit the entire sequence of steps fits395

the data well and implies that DSLIP is an excellent model for walking at the preferred speed.396

Typical single step fits, one for each of the four speeds, are shown in Figure 7A. Walking at 2.5397

mph is best modeled by DSLIP; at this speed, the optimized limit cycle tracks important dynamical398

features such as the step length, speed, vGRF, and the single stance time (Figure S1D). The model399

still produces reasonable fits at both 2.0 mph and 3.0 mph, but the fits deteriorate at these speeds.400

At 2.0 mph, the best-fit model has a longer single stance time; the fitted vGRF oscillates somewhat401

more than the empirical data. The nature of the deviation is different at 3.0 mph where the model402

has a lower minimum in vGRF compared to the subject, and much larger oscillations of the vertical403

motion of the CoM. The model completely fails at 3.5 mph as the minima in the vGRF is close to404

zero. The average of total errors from GRFs and CoM kinematics along with parameters of optimized405

limit cycles, are shown in Figure 7B. The total error validates our qualitative observations above.406

The median error for fits at 2.0, 2.5, and 3.0 mph are at or below ten percent but are much larger407

for fits at 3.5 mph.408

Surprisingly, the best-fit spring constant is higher for 2.0 mph (Figure 8A); this finding provides409

one important clue regarding why DSLIP works as a great model for walking at 2.5 mph and not410

other speeds. The higher spring constant is unexpected because most previous work has shown that411

the spring constant decreases as the speed decreases (Farley and Gonzalez, 1996; Kim and Park,412

2011). Indeed, the spring constant for the single stance phase, as directly inferred from force-length413

curve, decreases with speed (Figure S2). At the step length used by our subject to walk at 2.0414

mph, there are no limit cycle solutions for this spring constant (Figure 8B) and therefore the spring415
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Figure 6. DSLIP is an excellent model for human walking over a narrow range of
speeds. A. Since the hip marker may not be exactly at the CoM, we fit the experimental data
(black lines) to a range of heights both smaller and larger than the hip height (colored lines) (see
Supplementary Materials 4.3.1). Solid lines and dotted lines represent single and double stance
phases respectively. B. The total error for each leg length shows that 128 cm has the lowest error.
The error is the sum of errors related to the vGRF, hGRF, height, and horizontal displacement of
the CoM. C. The optimized limit cycle based on Rnat = 128cm (green lines) fits well into 10 walking
steps. The total error in time is negligible.
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Figure 7. DSLIP fits for both lower and higher than the preferred speed are worse
but for distinct reasons. A. Example fits (green lines) and data (black lines). Solid lines and
dotted lines represent single and double stance phases respectively. The model and subject have the
same step length and speed in all fits. We optimized limit cycles based on the values of vGRF at
the mid-stance, which can be considered the only free parameter left. The best fit belongs to the
preferred speed (2.5 mph), and the highest speed (3.5 mph) has the worst prediction. B. The total
errors including GRFs and CoM kinematics along with the parameters of the optimized limit cycles
for different walking speeds.
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constant for the best-fit limit cycle is artificially higher. Previous work (Biswas et al., 2018) suggested416

that at low speeds it becomes increasingly important to model tangential forces. Their introduction417

may allow one to walk with lower values of γ in this low velocity regime and provide a more accurate418

description of the dynamics. The force-length relationship (Figure S2) also shows that at 2.5 mph,419

the spring constant during single and double stance phases are similar. This similarity can explain420

why a DSLIP model which uses a single spring constant is a quantitative model for human walking421

at that speed. At higher speeds, the spring constants that describe single-stance and double-stance422

phases become very different, and this difference makes it difficult for the DSLIP model to describe423

the data. The fits at 3.0 mph, has a stiffness that is approximately the average of the values in424

the single and double stance phase. As a result the model fit has a smaller γ than suggested from425

the force-length measurements in the single stance phase. With this smaller stiffness generation of426

the observed fluctuations in vGRF required a much larger change in the CoM height in the fits as427

compared to what is observed. In sum, DSLIP seem to function as a quantitative model around the428

preferred walking speed. At lower speeds, the range of spring constant that can lead to limit cycles429

shrinks. At higher speeds, the spring constants that describe single and double stance phases are430

different, making it difficult for DSLIP to model.431

3 Discussion432

3.1 A compliant leg is necessary for modeling many features of locomo-433

tion434

A model with non-compliant legs – IP – continues to persist as a model for walking. The IP model435

has been successful in explaining the energetics of walking (Donelan et al., 2002; Kuo, 2002; Kuo436

et al., 2005). The inability of IP model to describe forces is considered a surmountable limitation.437

Proponents of IP have argued that this limitation of IP arises from the impulsive nature of work438

in the IP model, and that if this constraint is relaxed, variations of IP model can recover the M-439

shaped GRF observed during walking. However, we show here that a compliant leg provides two440

important advantages. First, by providing a means to relate leg stiffness that controls the amplitude441

and period of the vertical oscillation to the angular speed of stance progression, they provide an442

analytical framework rooted in mechanics for analyzing which gaits will be observed. Second, leg443

compliance also provides a mechanism for understanding limitations faced in the redirection of444

velocity vector. It is clear from the analysis performed in this study that the challenges with445

redirecting the velocity vector limits the range of speeds over which humans can walk. We also446

show here that the energetics of a compliant leg is necessary for understanding why a particular447

gait, defined by GRF and kinematics, is observed in a given step during walking as well. Its relative448

simplicity and flexibility make it an ideal jumping board for more complex models of locomotion.449

3.2 M-shaped GRFs are prevalent because they are energetically efficient450

An unexplained characteristic of human walking is that humans walk with a M-shaped GRF profile.451

The M-shaped GRF is observed in other walkers including both bipeds and quadrupeds (Andrada452

et al., 2013a, 2014; Basu et al., 2019). At the speeds at which humans walk, other modes of walking,453

such as grounded running, are possible. However, the M-shaped profile is energetically favored. We454

have shown that the normal walking gait has a stiffer leg as compared to grounded running, which is455

preferred because a stiff leg results in smaller vertical oscillations and therefore ultimately less work2.456

This same logic would posit that even higher modes of oscillation with even stiffer legs would be457

more energy efficient than the normal gait. While this is true and we do see that at very slow speeds458

multi-oscillatory gaits may be preferred (Figure S3), these gaits are not available at typical walking459

2While work is proportional to the force, it is proportional to the square of the contraction.
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Figure 8. The range of spring constant where a limit cycle is possible likely makes it
difficult to obtain good fits for human walking. A, B, C, and D belong to the 2.0, 2.5, 3.0,
and 3.5 mph walking speeds of the subject, respectively. The pink circles show the optimized limit
cycles based on our method, and the pink stars show the limit cycles with the minimum energy at
the same speed. Black crosses demonstrate optimization outputs for non-periodic trajectories. At
both 2 mph and 3.5 mph, the optimization solutions are close to the solution boundary.
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speeds because of a gait-specific speed bound that results from the velocity redirection requirement460

as we now discuss.461

3.3 Gait transition occurs because velocity redirection is difficult462

An important issue that has received much attention is gait transitions: at what speeds do they463

happen and why? One approach to this problem is using the IP model. Walking using an IP464

model is not possible at high speeds because at high speeds – above Fr of 1 - the centripetal force465

needed exceeds the gravitational forces. This logic was later modified to take into account the466

fact that the vertical component of the gravitational force would be lowest near the end of the467

step. While taking this into account it is possible to produce a walking step with Fr ∼ 0.5, such468

steps involves large changes in horizontal speed, completely uncharacteristic of biological walking469

trajectories (Usherwood, 2005). Analysis in this study using the DSLIP model comes to a very470

different conclusion. First, even if we take a nuanced approach to walking and impose the condition471

that walking must have a vGRF minimum at mid-stance, centripetal force does not pose a stringent472

constraint (see Figure 4C). Moreover, DSLIP makes it possible to walk with gaits that are not possible473

using the IP model such as the grounded running gait. In sum, adding compliance to the leg removes474

the appearance of unphysical negative tension force as a reason for gait transition. Our analysis of475

the DSLIP model suggests a completely different reason for gait transition. Walking with a M-shaped476

GRF necessitates velocity redirection. Velocity redirection becomes more difficult as speed increases.477

This inability to perform velocity redirection limits speeds at which walking with M-shaped GRF478

is possible. There are two options when transitioning from M-shaped walking: Transition can be to479

other modes without an aerial phase such as grounded running and inverted walking. Alternatively,480

the transition from M-shaped walking can be to locomotion with an aerial phase. Thus, analysis481

using DSLIP model suggests two different answers to gait transitions: Transitions out of M-shaped482

GRFs occur at low speeds, transitions from locomotion without an aerial phase to one with an aerial483

phase can occur at any speed. As an example, both grounded running and aerial running can occur484

over a large range of speeds.485

At what speed aerial running occurs depends on the individual and species. In humans, transi-486

tions can occur from M-shaped walking to aerial running as is suggested by some. Under certain487

conditions, there is a small range of speed over which humans walk with a grounded running gait488

(Shorten and Pisciotta, 2017; Bonnaerens et al., 2019). In many birds, grounded running is preferred489

over a large range of speeds often exceeding a Fr of 1 (Andrada et al., 2020). Many non-human490

primates also prefer grounded running (Blickhan et al., 2018). Fast-running insects and spiders491

prefer grounded running (Reinhardt and Blickhan, 2014). To address which gait is preferred energy492

estimates for aerial and grounded running at a given speed must be made, which is beyond the scope493

of this paper.494

3.4 Limitations of DSLIP and how they might be overcome495

DSLIP is a great conceptual model, but with its simplicity comes some limitations. Although DSLIP496

does predict that the walk-to-run transition comes from the inability to change the velocity from497

one step to the next, the speed at which this transition occurs is lower than what is typically498

observed. DSLIP cannot support walking above a Fr number of 0.25 whereas humans can walk with499

M-shaped GRF till a Fr number of 0.45 (Kram et al., 1997). There are many mechanisms that might500

contribute to humans walking at higher Fr numbers. One mechanism is that human legs are not501

massless, and recoil from the leg swinging forward contributes to velocity redirection (Adamczyk502

and Kuo, 2009). Another mechanism is that the center of pressure moves forward during stance;503

this forward movement might increase the range of speeds.504

All of these processes can be modeled as additions to the SLIP model and aspects of these pro-505
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cesses have been explored by others (Whittington and Thelen, 2009; Lim and Park, 2019; Mauers-506

berger et al., 2022). Adding features to the model will increase model complexity. If complexity is507

desired, DSLIP is likely the best base model. However, there are additions that might be highly508

beneficial without increasing model complexity unduly. One addition is to use a variable spring509

stiffness. Plotting the relation between change in leg length and force, the slope of which is a sur-510

rogate for the spring constant, suggests that at high walking speeds both the spring constant and511

the natural leg length during the single and double stance phases are different (Figure S2). This512

difference suggests that changing the stiffness and natural length of the spring during the double513

stance phase may be a mechanism for increasing the speed over which M-shaped GRF walking gaits514

are possible. Note, that the M-shape is essentially guaranteed by having a a minimum at mid-stance515

during which the dynamics would be identical to DSLIP, and then having a single oscillatory cycle516

between the mid-stance and take-off.517

Another mechanism is adding an angular spring. As has been noted previously, net forces during518

walking do not point along the leg but are more vertical (Maus et al., 2010; Müller et al., 2017;519

Antoniak et al., 2019). This limitation can be addressed by adding an angular spring as we have520

proposed earlier (Biswas et al., 2018; Antoniak et al., 2019). An angular spring produces restorative521

forces such that there is no angular force at mid-stance. The angular forces increase as the leg moves522

away from mid-stance. As investigated in (Biswas et al., 2018), such angular forces can provide a523

much wider range of realistic gaits at low speeds.524

4 Material and Methods525

In this section, we briefly describe the model, the essential details related to the empirical data, and526

the numerical techniques to find walking solutions and optimized trajectories.527

4.1 Walking dynamics of DSLIP528

In this paper, we reconsider and reevaluate the simplest human walking model introduced by Geyer529

et al. (Geyer et al., 2006). The model is capable of presenting periodic walking gaits with the fewest530

set of parameters while keeping important features of human walking such as M-shaped vGRF and531

CoM trajectory. This model is a basic model for running as well and is able to exhibit other common532

bipedal gaits with a few modifications (Gan et al., 2018). It is a two degrees of freedom (DoF) model533

that describes the planar motion of a point mass merely under gravity and spring forces.534

4.1.1 The equations of motion535

The model in its full dimension and dimensionless form is shown in Figure 1A and Figure 4A
respectively. Figure 1A is a schematic but Figure 4A is drawn based on simulation. The model
consists of two mass-less springy legs hinged with a large mass, M, at the hip (CoM). The model
does not include any swing phase dynamics, so the single stance phase is described by just a single
spring with the mass at the top. The natural leg length of the springs is shown by Rnat. The leg
stiffness, Ks, and the step length, L, are made dimensionless according to the following equations:

γ =
KsRnat

Mg

λ =
L

Rnat
(4.25)

where g is the gravitational acceleration. To show the dimensionless parameters in the figure, the
values of Rnat, M , and g are supposed to be 1. The motion starts from the mid-stance, i.e when
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the stance leg stands upright. The dynamics during the single stance phase evolve according to the
following equations represented in the Cartesian form:

ẍ =
γx(1−

√
x2 + y2)√

x2 + y2

ÿ =
γy(1−

√
x2 + y2)√

x2 + y2
− 1 (4.26)

where x and y show the dimensionless form of horizontal and vertical displacement of the CoM
respectively:

x =
Xcom

Rnat

y =
Ycom

Rnat
(4.27)

Also, we made the time dimensionless by using the following relationship:

t
′
= t

√
g

Rnat
(4.28)

Then, the initial conditions are defined by the position and velocity of the CoM at the mid-stance:

x0 = 0

ẋ0 = (1− δ0)Ω0

y0 = 1− δ0

ẏ0 = −δ̇0 (4.29)

where δ0 and Ω0 are the initial dimensionless spring contraction and angular velocity at the mid-
stance, respectively. With appropriate parameters and acceptable initial conditions, the walker is
able to continue the single stance phase until the leading leg successfully touches the ground. It is
supposed that the touch-down event is recognized by a predefined step length, which can be respected
as a very simplified foot placement strategy. At this moment, the following algebraic equation is
satisfied by the CoM position:

(λ− x)2 + y2 = 1 (4.30)

In contrast to rigid inverted pendulum walking models, this impact is conservative, so the CoM
begins the double support phase without any energy loss. However, since both the velocity and
acceleration of the swing foot get zero, the governing equations of motion switch to the new ones:

ẍ =
γx(1−

√
x2 + y2)√

x2 + y2
−

γ(λ− x)(1−
√

(λ− x)2 + y2)√
(λ− x)2 + y2

ÿ =
γy(1−

√
x2 + y2)√

x2 + y2
+

γy(1−
√

(λ− x)2 + y2)√
(λ− x)2 + y2

− 1 (4.31)

When the contact force at the trailing leg gets zero, the leg reaches its natural length and leaves the
ground. This moment is called toe-off and is detected by a simple geometric formula:

x2 + y2 = 1 (4.32)

Then the single stance phase restarts by resetting the coordinate to the new contact point. In this
regard, despite the CoM’s velocity continuity, it experiences a discontinuity in its position according
to the following equation:

x+ = x− − λ (4.33)
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where x+ and x− are the x-component of CoM just after toe-off and before it respectively. The gait
cycle ends when the stance leg re-stands vertically (x = 0). Now, we can summarize all equations
in a single Poincaré return map which maps the states from ith mid-stance to (i+ 1)th mid-stance:

qi+1 = S(qi) (4.34)

where:
q = {0, ẋ0, y0, ẏ0} (4.35)

At a fixed point which represents a limit cycle we have:

q∗ = S(q∗) (4.36)

where:
q∗ = {0, ẋ∗, y∗, ẏ∗} (4.37)

4.1.2 Parameters and Conditions for symmetric human-like limit cycle walking536

Steady-state human walking is so close to a symmetric and periodic locomotion. Employment of this
fact helps to reduce the complexity and the number of independent parameters. So it is worthwhile
to focus on symmetric limit cycle solutions. To this end, the first derivative of vGRF must be zero
at mid-stance. So we have:

Ḟy = 0 =⇒ ẏ = 0 at x = 0 (4.38)

As a result, the general form of initial conditions for equations (4.26) will be:

[x0, ẋ0, y0, ẏ0] = [0, (1− δ0)Ω0, 1− δ0, 0] (4.39)

Now, since we just look for limit cycles, there must be a relation between δ0 and Ω0 to synchronize
the radial displacement of the spring with its rotational movement; so the real number of independent
parameters for dimensionless symmetric limit cycle walking will be restricted to three; which can be
any three of the following four parameters:

P = {λ, γ,Ω0, δ0} (4.40)

Furthermore, to have human-like solutions, i.e. limit cycles with M-shaped vGRF and maximum
height profile at the mid-stance, another constraint must be applied to parameters to restrict the
solution space. This means that F̈y ≥ 0 and ÿ ≤ 0 leading to the following inequality:

γδ0 ≤ (1− Ω2
0) (4.41)

4.1.3 Finding Limit cycles537

In general, finding limit cycles is not easy; especially for unstable trajectories. If the DoF is low, and
if we have a good estimation of initial conditions, it will be easier to find them. Based on trial and
error or using analytical approximations, we can find such an estimation around the desired fixed
point which represents a limit cycle. At a fixed point we have:

q∗ = S(q∗) (4.42)

where:
q∗ = {0, ẋ∗, y∗, 0} (4.43)

This fixed point represents the initial condition that leads to a symmetric periodic gait. To find
the fixed point and analyze its stability, we engage a method described in (Wisse et al., 2004). To
explain the method in detail, a small perturbation is added to the fixed point at step i as follows:

q∗ +∆qi+1 = S(q∗ +∆qi) (4.44)
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Now, by using the Taylor expansion of Poincaré map around the fixed point we have:

q∗ +∆qi+1 = S(q∗) + J∆qi (4.45)

which results in:
∆qi+1 = J∆qi (4.46)

where J is defined as:

J =
∂S

∂q
|q=q∗ (4.47)

On the other hand, we have:
∆qi = qi − q∗ (4.48)

Afterward, based on Eqs. (4.46) and (4.48), we can conclude:

qi+1 − qi = (J − I)∆qi (4.49)

where I is the identity matrix. Also, employing Eq. (4.34) leads to:

S(qi)− qi = (J − I)∆qi (4.50)

Next, a computer program could be written based on the following algorithm:

Repeat

∆qi = (J − I)−1(S(qi)− qi)

qi = qi +∆qi

Until | ∆qi |< ε (4.51)

where ε is a small disturbance added to the system. Also, the Jacobian matrix, J , can be numer-538

ically calculated in every iteration. Now, if the algorithm is convergent, the fixed point and its539

corresponding Jacobian matrix simultaneously emerge. Otherwise, either the algorithm must be run540

again with a new initial guess or we need to change the system’s parameters. Finding the first fixed541

point would help to find other fixed points in its vicinity. In this regard, a new initial guess is defined542

as a point near the found fixed point. Therefore, trial-and-error is merely necessary to reveal the543

first limit cycle.544

To examine the stability, one also needs to calculate the largest absolute eigenvalue of J, i.e.545

| Λ |max. For this conservative system, the minimum of | Λ |max would be 1. That means since546

the system is not dissipative, by passing time, a disturbing limit cycle remains perturbed, albeit it547

would be very close to the unperturbed trajectory. So stability is guaranteed, although walking is not548

asymptotically stable. If | Λ |max> 1 the limit cycle and its corresponding fixed point are unstable.549

Note, in this case, it is feasible to take several successful steps without falling. We implemented the550

algorithm in MATLAB and used the ‘ode45’ function to solve the equations of motion numerically.551

4.2 Collection of walking data552

The experimental data is collected from walking of a healthy subject (111 kg weight, 185 cm height)553

on a treadmill for one hundred steps at five different speeds, ranging from 1.5 to 3.5 mph, in554

increments of 0.5 mph. This range definitely covers the slow, normal, and fast walking of the555

subject. It is obtained based on the self-selected, desired speed of the subject, followed by 20% and556

40% slower and faster speeds. For data recording, the GRFs were measured by force plates at 1000557

Hz, and the hip coordinates were sampled by VICON at 200 Hz. Unfortunately, due to a very high558

level of noise or completely useless data, we excluded data related to 1.5 mph from our analysis.559

Furthermore, to have a fair comparison among other speeds, we looked for the maximum number of560
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consecutive good strides that are common among all speeds. So, only 40 steps from different time561

intervals of different speeds were selected.562

Noise is a part of the data, and especially is observed during measuring the GRFs. To make563

data smooth without losing any considerable information, we employed ’smoothdata’ function in564

MATLAB, and applied it to the sequence of intervals through all data. These intervals are partitioned565

with the same size. We used ’sgolay’ method (Savitzky-Golay filter). It smooths according to a566

quadratic polynomial that is fitted over each window of data. This method is more efficient than567

other existing methods when the data is too rugged and varies quickly.568

4.3 Fitting DSLIP model to walking data569

We want to assess DSLIP as a model for human walking by fitting it to the empirical data. In this570

regard, we employ two different strategies. First, we try to fit the model to each step separately. This571

gives us an individual non-periodic trajectory for each step that is not connected to the former and572

latter steps. Second, by averaging empirical data for each walking speed and using the optimized non-573

periodic trajectories, we try to fit a single limit cycle to all steps. Besides numerous insights about574

the nature of human walking and the abilities of the model, this procedure proposes a systematic575

approach to find an appropriate limit cycle in a simple and acceptable way.576

4.3.1 Optimized non-periodic trajectories577

Looking for a non-periodic trajectory means that we have more flexibility. In fact, since we remove
the symmetry and limit cycle constraints, the number of independent parameters for the dimension-
less system increases. Also here, instead of the definition of a step from a mid-stance to a mid-stance,
we can suppose that a step begins with a single stance phase and finishes at the end of the double
support phase. This replacement lets the system parameters vary after the toe-off event instead of
the mid-stance, which is more reasonable. Note we used mid-stance as the Poincaré section just to
simplify finding limit cycles and describing symmetric conditions. According to this new definition,
the system parameters can be reset as follows:

P
′
= {λ, γ, θ0, θ̇0, r0, ṙ0} (4.52)

where, θ0, θ̇0, r0, and ṙ0 are dimensionless angular position, angular velocity, radial displacement,578

and radial velocity of the new stance leg at the beginning of each step, respectively.579

Furthermore, we are interested in fitting not only GRFs, but also the step length, speed, and580

position of CoM. To this end, we have to consider the model with full dimension, so Rnat must be581

defined as well. Moreover, because of the unknown location of CoM in the subject, we add a new582

parameter called D which defines the vertical distance between the hip and CoM. Note D > 0 means583

the CoM is over the hip.584

Before doing optimization, we need to define Rnat and D; since these parameters are approxi-
mately constant and do not vary from one step to another. In this regard, we suppose the estimated
D is within 10 cm from the measured vertical position of the hip at the mid-stance, and the amount
of spring contraction at mid-stance is around %5; so we have:

107 cm ≤ Rnat ≤ 128 cm (4.53)

Based on this inequality, we choose 4 different values for Rnat as 107, 114, 121, and 128 cm. Then
the corresponding value of D can be calculated from:

Rnat = 1.05(D +Hh) (4.54)
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where Hh is the average height of the hip at the mid-stance. To determine other parameters, we585

need to do optimization. There are several ways to define a cost function. The more complex, the586

harder to find out the global minimum. So, to avoid local minimums as well as keep the important587

features of human walking, the optimization algorithm tries to minimize the errors related to the588

following items:589

• The vGRF at mid-stance590

• The peaks of vGRF591

• The CoM height at mid-stance592

• The single stance time593

• The step time594

• The step length595

These seven most important characteristics would be easily possible to get minimized by optimizing596

the system’s parameters. Note it is feasible to reduce the dimension of parameter space by fixing λ597

to the dimensionless step length of the subject, i.e. the step length divided by Rnat. Instead, we can598

calculate the error of the step length by subtracting the model’s CoM horizontal displacement from599

the step length of the subject. This helps to get the optimized trajectory as symmetric as possible.600

Also since we try to minimize the error related to the step time, it means that we keep the speed of601

the model the same as the subject.602

To do optimization, a computer program was written by using ’Global Optimization Toolbox’ of
MATLAB along with ’fmincon’ function, ’sqp’ algorithm, and ’MultiStart’ object. We also determine
the boundaries for our parameters as follows:

5 ≤ γ ≤ 70

0.05 ≤ θ0 ≤ 0.50

−0.50 ≤ θ̇0 ≤ −0.05

−0.15 ≤ r0 ≤ 0

−0.10 ≤ ṙ0 ≤ 0.10 (4.55)

We did optimization for the specified values of Rnat and four different walking speeds, ranging from603

2.0 mph to 3.5 mph, in increments of 0.5 mph. Then by employing root-mean-square error (RMSE),604

calculated for vGRF, hGRF, CoM height, and CoM horizontal displacement, we find the best value605

for Rnat. This single value is used to find the optimized limit cycle for each speed separately.606

4.3.2 Optimized limit cycles607

Since limit cycles describe a harmonic motion in a dynamical system, it is not meaningful to look for
them for each step separately. In contrast, by considering human walking as a dynamical system,
it is more acceptable to fit a single limit cycle to all steps. To this end, first, we are interested in
using the information gained from the previously optimized trajectories as a basis. In this regard,
the most important parameters that can be beneficial are Rnat and D. Thus, for the optimized limit
cycles, Rnat and D are predefined and fixed. Also, λ is chosen based on the average step length of
the subject for each speed divided by Rnat. The next parameter is selected as the subject average
speed in its modified form called Froude number, Fr, which is calculated according to the following
equation:

Fr =
V 2
trd

Rnatg
(4.56)
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where, Vtrd is the treadmill speed. There is merely one left parameter that must be determined to608

have a full dimension limit cycle, emulating the GRFs and CoM’s trajectory of the subject. Here,609

we choose the dimensionless form of vGRF at the mid-stance (the minimum vGRF of the subject610

during the single stance phase divided by the weight of the subject), γδ0, since it is available from611

the data. The other choice could be the single stance time; however because we have already kept612

the step length and the speed of the subject, the period of the cycle is fixed. So instead of tracking613

another kinematic variable, it would be better to try to fit something from the force diagram. Now,614

by plotting the solution space for the fixed λ and in Fr-γδ0 plane, we can choose the limit cycle615

which has the same λ and Fr as the subject and has the closest location to the empirical data616

according to the minimum vGRF during the single stance phase. Beyond its simplicity, this is an617

effective method to judge the model and its ability to predict empirical data.618
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Supplementary Materials736

A Single stance dynamics and different gait patterns737

Let us characterize the different gaits DSLIP can realize that, at most, exhibit a single radial (leg
length) oscillation. We can write the equations of motion for the single stance phase in dimensionless
polar coordinates (Table 1) centered around the point of ground contact as

δ̈ = −(1− δ)θ̇2 − γδ + cos θ (A.1)

θ̈ = (sin θ + 2δ̇θ̇)/(1− δ) . (A.2)

where δ represents the dimensionless spring contraction, and θ defines the angular coordinate.738

For the most part we are going to consider symmetric limit cycles. This means that at the mid-739

stance the CoM either has a minimum or a maximum in kinematic variables such as vertical height,740

and vGRF. We will show that three different gaits are possible depending upon the height and vGRF741

profiles with at most a single radial (leg length) oscillation. The normal gait has a height maximum742

and vGRF minimum at mid-stance, while both the inverted gaits (grounded running and inverted743

walking) have a vGRF maximum at mid-stance. While the grounded running has a height minimum744

at mid-stance, inverted walking has a height maximum similar to normal walking gait. Finally, let745

us reiterate (Biswas et al., 2018) that within the DSLIP model there is no provision to have a mid-746

stance maximum in horizontal velocity, it always has a minimum. The different gait characteristics747

are summarized in the table below along with the relationships between gait parameters that must748

be satisfied. We now derive these relationships.749

To ascertain the region in parameter space where the different gaits emerge, first consider the
vertical acceleration at the mid-stance:

ḧ0 = γδ0 − 1 . (A.3)

Clearly then to have a maximum in height we must have δ0 < 1/γ. Now the vertical spring force is
given by

F̄y = γδ cos θ . (A.4)

Using (A.2) we find that at the mid-stance

¨̄Fy = γ[1− γδ0 − Ω2
0] . (A.5)

For F̄y to have a minimum at the mid-stance then, this must be positive, or

δ0 ≤ 1− Ω2
0

γ
. (A.6)

We also note that for a given λ there is an upperbound for δ0 to have any single stance phase at all,
see Fig.?:

δ0 < 1−
√
1− λ2 ≡ δmax . (A.7)

Thus based on the range of δ0 one can have different gait profiles that we tabulate below:750

751

gait mid-stance mid-step mid-stance mid-step mid-stance δ0 range
height height vGRF vGRF velocity

normal walk maximum minimum minimum maximum minimum 0 < δ0 <
1−Ω2

0

γ

inverted walk maximum minimum maximum minimum minimum
1−Ω2

0

γ < δ0 < 1
γ

grounded run minimum maximum maximum minimum minimum 1
γ < δ0

752
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B Approximate Trajectories753

Our goal in this subsection is to derive approximate trajectories of the CoM in order to gain analytical754

insights into how different parameters must adjust to have a synchronized motion. Also, this will755

help us address how well DSLIP is able to capture some of the well-known features of the walking756

gait.757

B.1 Single stance phase758

Starting from the dynamical equations in polar coordinates (A.1, A.2), solutions for δ(t) and ϕ(t)
were derived in the main manuscript,

δ =
1

γ
+

(
δ0 −

1

γ

)
cos(ωt)

θ = Ω0t (B.1)

where we assumed that the angular and radial motion during the single stance phase are effectively759

decoupled. The main idea behind this approximation is that for walking trajectories the radial760

motion undergoes oscillations around its equilibrium position δeq = 1/γ, and since γ ∼ O(10) −761

O(100), the oscillations are small. We also assume that the angular/horizontal velocity of CoM762

remains approximately constant. Technically, this means that we are ignoring θ̇2 term as compared763

to (γδ) in (A.1). Since θ̇2 ∼ Ω2
0 and (γδ) ∼ 1 on an average, this boils down to assuming θ̇2 ≪ 1764

which is valid for the speeds we are interested in. We also assume that θ̇ is approximately constant,765

or θ̈ ≈ 0. By inspection of (A.2) θ̈ depends on θ but this is small, θ < λ/2, for the steplengths under766

consideration. θ̈ also depends on (δ̇θ̇). While θ̇ ∼ Ω0 < 1, on an average δ̇ is close to zero suggesting767

a small effect coming from this term (δ̇θ̇). We shall see, that these approximations provide valuable768

qualitative and quantitative insights into the dynamics and the relationship between various relevant769

dynamical parameters.770

B.2 Transition to double stance771

As argued in the main manuscript, synchronization between the radial and angular motion relates
γ and Ω0 as

Ω0 =

(
θ⋆
ϕ⋆

)
√
γ , (B.2)

where ⋆ marks the values at the transition point between the single and double stance phases. From
geometry, we can find θ⋆ as

sin θ⋆ =
λ2 + (1− δ⋆)

2 − 1

2(1− δ⋆)λ
(B.3)

while substituting δ = δ⋆, and ωt = ϕ⋆ in (B.1) yields

cosϕ⋆ = −
(
γδ⋆ − 1

1− γδ0

)
. (B.4)

The dependence of θ⋆, ϕ⋆ as a function of δ⋆ are plotted in Figure 4B. In principle, the transition
time can be found by solving

λ2 + [1− δ(t⋆)]
2 − 2[1− δ(t⋆)]λ sin θ(t⋆) = 1 . (B.5)

so that t⋆ = t⋆(λ,Ω0, γ, δ0). One can then evaluate θ⋆ = θ(t⋆), and δ⋆ = δ(t⋆), to obtain the position772

of CoM at the transition, as well as the phase angle, ϕ⋆ = ωt⋆. Thus all these quantities can be773

thought of as functions of four gait parameters, λ,Ω0, γ, and δ0.774
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B.3 Double stance phase775

To approximate the double stance phase we are going to assume that the horizontal velocity and the
vertical acceleration remain approximately constant. The intuition behind these approximations is
as follows: the two springy legs provide horizontal forces in opposing directions so that we expect
the average horizontal acceleration to be small and therefore the horizontal velocity to remain
approximately constant. Realistic walking trajectories typically exhibit low-velocity changes which
further strengthens this argument, and we compute the horizontal velocity at the start of the double
stance. In contrast with the horizontal motion where the legs oppose each other, both legs provide
a vertically upward forces. At the beginning of the double stance phase, all the force comes from
the leg that was supporting the single stance phase at the touchdown, the swing leg is at its natural
length. Thereafter, while the initial stance leg unloads, the leg that touched down loads. Therefore
we conjectured that the net upward force may not change much, and approximate the net force as
a constant. The approximate trajectories in the double stance phase are thus given by

x(t) = (1− δ⋆) cos θ⋆ + vx⋆(t− t⋆) ,

y(t) = (1− δ⋆) sin θ⋆ + vy⋆(t− t⋆) +
1

2
ay⋆(t− t⋆)

2 . (B.6)

where vx⋆, vy⋆, and ay⋆ can be calculated at the transition time as follows:

vx⋆ = (1− δ⋆)Ω0 cos θ⋆ ,

vy⋆ = −(1− δ⋆)Ω0 sin θ⋆ ,

ay⋆ = Fy⋆ = γδ⋆ cos θ⋆ − 1 . (B.7)

The ultimate test of these approximations, of course, will obviously be provided by comparing it776

with results from numerical simulation.777

To summarize, Eqs. (2.5, B.5, B.6, B.7) together completely specifies a walking trajectory as778

a function of λ,Ω0, γ, and δ0. We are now going to see how to maintain a steady limit cycle779

gait these four parameters must obey a specific relationship that can be derived by looking at the780

synchronization of the periodic angular and radial motion. We will also see how different gait781

patterns emerge.782

C Limit cycles783

C.1 Constraint from periodicity and synchronization784

A key requirement of a sustainable walking gait is that after a given step the CoM returns to the785

same vertical height as the beginning of the cycle and also has the same velocity. Technically, the786

gait cycle should be a limit cycle. This is a technical way of ensuring that the different types of787

motion an animal undergoes are periodic and synchronized. For instance, in the context of the CoM788

motion, the vertical and horizontal motion have to be synchronized and this imposes important789

relationships between the parameters governing the dynamics, as we shall now see.790

We will be able to derive this relationship by imposing that the time to reach the appropriate
vertical and horizontal mid-step configuration that can be computed separately from the vertical
and horizontal motion respectively, must be the same. For a limit cycle Using (B.6) we can calculate
half of the horizontal distance traveled during the double stance:

xd = λ/2− (1− δ⋆) sin θ⋆ , (C.1)

So, the half-time of the double stance phase is

1

2
τd =

xd

vx
=

λ/2− (1− δ⋆) sin θ⋆
(1− δ⋆)Ω⋆ cos θ⋆

, (C.2)
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Now, due to the symmetry assumption, the vertical velocity is zero in the middle of the double
stance phase. Therefore, it is possible to calculate td from the vertical kinematics as well

1

2
τd =

∆vy
ay

=
0− vy
ay

=
(1− δ⋆)Ω⋆ sin θ⋆
γδ⋆ cos θ⋆ − 1

, (C.3)

Therefore, from (C.2) and (C.3) we can conclude

Ω2
⋆ =

(γδ⋆ cos θ⋆ − 1)(λ/2− (1− δ⋆) sin θ⋆)

(1− δ⋆)2 sin θ⋆ cos θ⋆
, (C.4)

Since we suppose that the angular velocity is approximately constant during the single stance phase,
we can rewrite it as

Ω2
0 =

(γδ⋆ cos θ⋆ − 1)(λ/2− (1− δ⋆) sin θ⋆)

(1− δ⋆)2 sin θ⋆ cos θ⋆
≡ GD(δ0, δ⋆, γ, λ) , (C.5)

Moreover, from (2.9) we have

Ω2
0 =

(
θ⋆
ϕ⋆

)2

γ ≡ GS(δ0, δ⋆, γ, λ) . (C.6)

Thus, in order to have a synchronized limit cycle the four parameters, δ0, δ⋆, γ, λ must be related:

GD(δ0, δ⋆, γ, λ) = GS(δ0, δ⋆, γ, λ) . (C.7)

This explicitly demonstrates why all limit cycles can be characterized by only three parameters, for791

instance by δ0, γ, λ, as Ω0 and δ⋆ can be obtained via (C.6) and (C.7).792

C.2 Different oscillatory mode solutions arise from the single stance phase793

constraint794

In this subsection we will see how the gait parameter space of periodic (limit cycle) walking separates795

into different regions with different characteristic features. The different gaits fundamentally arise796

because δ(t) is a periodic function. Technically, one can see its effect in the multivalued nature of797

ϕ⋆ as a function of γ, δ0 and δ⋆ as inferred from (B.4) using the cosine inverse. This in turn makes798

GS a multivalued function and choosing different branches while solving (C.7) leads to different799

oscillatory limit cycle gaits. To understand this more intuitively suppose one wants to travel at a800

given speed (approximately fixing Ω0) and a given step-length (λ). What the oscillatory evolution801

of δ(t) suggests is that even if one fixes the mid-stance contraction (δ0), there may be more than802

one way to achieve synchronization needed for limit cycle walking. For instance consider the single803

stance synchronization condition (C.6): One can maintain approximately the same Ω0, with the same804

transition angle 3, θ⋆, either by choosing a relatively lower value of γ and oscillating less (smaller805

ϕ⋆), or have a much higher γ and oscillate more (ϕ⋆ approximately larger by a multiple of 2π). To806

ensure that the upward velocity can be reversed during the double stance phase, the trajectory with807

the smaller γ does require a little longer double stance time as compared to the larger γ trajectory.808

So, the transition must occur a little earlier in the lower oscillatory mode, and accordingly t⋆, δ⋆, and809

θ⋆, are not exactly the same for the two trajectories. However, the flexibility of undergoing different810

phases of oscillation approximately separated by multiples of 2π explains how the gait parameter811

space separates into different oscillatory gaits, and why even with the same λ,Ω0 and δ0, different812

γ and correspondingly different oscillatory modes are possible.813

3In other words, achieve approximately the same contraction length, δ⋆, approximately at the same same time, t⋆.
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D Approximate speed range for different oscillatory gaits814

In this section, we provide a technical discussion on why the different oscillatory gaits are associated815

with different speed ranges. We specifically demonstrate why it is not possible to walk too fast in816

the normal walking gait.817

D.1 Inverted and grounded running can lead to high walking-speeds.818

We will first discuss the inverted walking gait whose CoM trajectory resembles that of the normal
walking gait but has a different vGRF profile. We will show that while it is subjected to a lower
bound in speed, one can theoretically walk much faster using this gait as compared to the normal
walking gait. To see this, let us remind ourselves that for inverted walking approximately we have,
0 < ϕ⋆ < π

2 . According to (C.6), for a fixed γ one can decrease the speed by increasing ϕ⋆, but since
the latter has an upperbound leading we have

Ω2
0,min =

(
2θ⋆
π

)2

γ , (D.1)

where approximately θ⋆ should be calculated by substituting δ⋆ = δeq = 1/γ consistent with ϕ⋆ =819

π/2. Incidentally, this coincides with the upperbound for normal walking, see also Fig.?. In contrast820

to having a lower bound in speed for a fixed γ, by decreasing ϕ⋆ all the way to zero, the speed821

can be increased arbitrarily according to the single stance constraint (C.6). Just as in the normal822

walking gait though, the velocity redirection constraint coming from double stance phase limits the823

maximum speed attainable and this bound agrees well with our numerical simulation. Nevertheless,824

ϕ⋆ can be much smaller in the inverted walking gait in comparison with the range available for825

normal walking gait, and therefore much larger speeds can be accessed in this gait as compared to826

the normal walking gait.827

Let us next focus on the grounded running gait. In contrast to all other gaits the grounded828

running gait has an inverted CoM trajectory where in between the mid-stance and mid-step during829

the single stance phase, the CoM has a vertically upward velocity. This obviates the need to have830

an upward force during the double stance phase in order to redirect the velocity. This means that831

we should no longer require δ⋆ > δeq = 1/γ. So, ϕ⋆ need not satisfy, 0 < ϕ⋆ < π
2 , but could be832

larger, as borne out bt our simulations. More importantly, it is clear that in the grounded running833

gait, the radial velocity can no longer be ignored as compared to the angular velocity, in fact, the834

upward component of the radial velocity dominates over the downward component associated with835

the angular motion. Thus our estimate of the transition velocity (B.7), which was essentially based836

on angular motion, can no longer be trusted, and the limit cycle constraint (C.7) which gave rise837

to the maximum speed-bound in other gaits, is no longer valid. Surprisingly though our analytical838

estimates for such gaits continue to be broadly consistent with the numerical simulations, see Fig.?.839

Intuitively, high speeds in normal walking gait became impossible to attain because the upward840

force had a maximum and the time it had in the double stance phase shrunk with increasing speed841

eventually making it impossible to redirect the vertical velocity. Grounded running is this very842

special gait where the velocity in the single stance phase after the mid-step is upward and hence843

there is no need for velocity redirection. Thus the speed maximum constraint coming from velocity844

redirection is not applicable, and indeed in our numerical simulations we see the grounded running845

gait to be able to access larger and larger speeds by increasing γ.846

D.2 Normal walking is bounded by the double stance phase constraint847

For normal walking we have shown that π
2 < ϕ⋆ < 3π

2 . Moreover, we know that by varying δ⋆,848

θ⋆ does not change too much (see Figure 4B). So according to (C.6), again we have two options849
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to increase the speed. Decreasing ϕ⋆ and increasing γ. However, in contrast to grounded running,850

there is a conflict between these two options for normal walking. In summary, for high speeds, if ϕ⋆851

decreases as much as possible, we have ϕ⋆ −→ π
2 , that leads to γδ⋆ −→ 1; so the force might not852

be enough to redirect the CoM velocity during double stance phase. In other words, the increase in853

speed needs an increase in transition force; and to have the maximum transition force we must have854

γδ⋆ −→ 2, which leads to ϕ⋆ −→ π. So at the upper bound of speed, to satisfy both constraints855

from single and double support phases ((C.5) and (C.6)), ϕ⋆ settles somewhere between π
2 and π.856

On the other hand, there is only a little effect of the double stance constraint on the lower bound857

of speed (see Figure 5G and S??). This boundary deviation from the single stance constraint can858

be observed better for high values of γ in which the need for higher force increases. For the lower859

bound, although ϕ⋆ is somewhere between 3π
2 and π, it is much closer to 3π

2 rather than π.860

D.3 Slow walking via multiple oscillation modes861

According to (C.6), by increasing ϕ⋆ over the normal walking range, it is quite possible to jump to the862

slow walking region. In this situation, since there is no concern about the speed-force relationship,863

the double stance constraint does not play the main role again.864
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Figure S1. How important dynamic and kinematical features vary across gaits. A. We
show how the maximal force, γδmax, exterted during a gait cycle varies across limit cycles. We
note that lower the number of oscillations the lower is the maximal force required.In B. and C.
We assess how the height and horizontal speed varies during a gait cycle by calculating the ratio
between their maximum and minimum values, hmin/hmax, and vmin/vmax respectively. We note that
while the variations in the normal gait lies mostly within the ranges observed in humans, the higher
oscillatory gaits show a larger variation in speed. D. Here we depict how the single-stance or swing
time varies across different gait cycles. We see that cycles more number of oscillations have a longer
time and therefore lower frequency. Since energy loss due to swing increases with higher frequency,
this suggests that high oscillatory modes are energetically preferred. In all these figures the black
dot represents the limit cycle that best fits experimental walking data at 2 miles/hour. We note
that it exhibits relatively small variation in speed and height. Moreover, as compared to inverted
gait cycles (at the same speed) it expends less swing energy, and as compared to higher oscillatory
modes exerts less force. In concert, these plots argue why the normal gait is the preferred gait.
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Figure S2. Force-length relationship shows that except for walking at 2.5 mph, the
spring constants during single and double stance phases are different Each panel shows
the force-length relationship for a single step. Dotted black line is during the single support phase,
and solid black lines are during the double support phase. Red dotted and solid line show the best
fitting linear spring to the single and double support phases. The mean and the SD of the spring
constants and natural leg length are also reported for each speed.
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Figure S3. Human walking can involve higher oscillatory modes at low speed . A.
At low speeds, such as, at a Fr number of 0.04 (gray line), both an M-shaped GRF (blue), and
higher oscillation mode (orange) are possible. B. vGRF at these walking speeds can show both an
M-shaped GRF, and GRF with higher number of oscillation as seen by the three-humped vGRF
pattern.
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Figure S4. Comparison between analytically and numerically obtained limit cycles. A.
We show the analytical solutions for a fixed step-length that are characterized by three quantities:
the x-axis and y-axis corresponds to Ω2

0 and γ respectively, while the color represents the value of
δ0. B. To compare with the analytical results we here depict numerical limit cycle solutions using
the same color axis scale to represent δ0 values. The analytical and numerical plots show similar
patterns, and while the analytical solution over-estimates the value of δ0, its variation both along the
Ω2

0-axis and γ-axis show similar trend as the numerical plot. C. and D. shows the same plots as A.
and B. respectively, except that the color now represents the identity of the gait, normal, inverted
or exhibiting multiple oscillations. While there are some discrepancies between the analytical and
numerical results, they are broadly consistent with each other.
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