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a b s t r a c t 

Progress in medicine such as the use of anti-infective drugs and development of the advanced life support equip- 

ment has greatly improved the survival rate of patients with sepsis. However, the incidence of sepsis-related 

diseases is increasing. These include severe neurologic and psychologic disorders, cognitive decline, anxiety, de- 

pression, and post-traumatic stress disorder. Cerebral dysfunction occurs via multiple interacting mechanisms, 

with different causative pathogens having distinct effects. Because sepsis-related diseases place a substantial bur- 

den on patients and their families, it is important to elucidate the underlying pathophysiologic mechanisms to 

develop effective treatments. 
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Sepsis is a life-threatening condition caused by a dysfunc-

ional host response to infection and is a common cause of

eath in critically ill patients. As an increasing number of pa-

ients are now recovering from critical illnesses, physical dys-

unction and organ failure after discharge as well as short- or

ong-term neurologic disorders such as cognitive impairment,

ecreased self-care ability, anxiety or depression, and post-

raumatic stress disorder —collectively known as post-intensive

are syndrome —are becoming more common. [1] Depressive

ymptoms are common in patients discharged from the ICU and

dversely affect patients’ quality of life. A systematic review

howed that about 30% of ICU survivors had clinically signifi-

ant depressive symptoms within the first 12 months after recov-

ry from severe diseases. Given the complex pathogenesis and

any complications of sepsis, there is considerable research in-

erest in elucidating the mechanism underlying the association

etween sepsis and depression. 

Depression is a common mental disorder in modern society

nd can impair physical functioning; [2,3] the emotional and neu-

ocognitive manifestations include insomnia, overeating, obe-

ity, diabetes, [4,5] and memory deficits, which can negatively

mpact daily work [6–8] and life activities of patients. [9,10] Numer-

us studies have used non-invasive neuroimaging approaches

o investigate the pathologic changes in brain anatomy associ-
∗ Corresponding author. 

E-mail address: gong_ye@fudan.edu.cn (Y. Gong) . 

ttps://doi.org/10.1016/j.jointm.2022.12.002 

 Managing Editor: Jingling Bao 

vailable online 11 February 2023 

opyright © 2023 The Authors. Published by Elsevier B.V. on behalf of Chinese Med

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
ted with depression. Functional magnetic resonance imaging

fMRI) and positron emission tomography (PET) have revealed

ignificant changes in the frontal lobe, hippocampus, temporal

obe, thalamus, striatum, and amygdala in patients with severe

epression exposed to negative vocabulary, a fearful environ-

ent, or sad scenes. [11,12] Although the mechanistic basis of

hese changes remains unknown, neuron loss, dendritic atrophy,

bnormal activation of glial cells, and disruption of the neural

etwork are thought to be involved. [13] 

Studies on sepsis-induced brain injury have mostly focused

n the destruction of the blood–brain barrier (BBB) and short-

nd long-term physiologic damage caused by metabolic distur-

ance and intestinal flora imbalance. In this review, we describe

he mechanisms linking sepsis to emotional disorders, which can

rovide guidance for the development of effective interventions.

epsis Causes Depression-like Behavior by Disrupting the 

BB 

athogens activate nuclear factor kappa B (NF- 𝜿B) signaling 

o disrupt the BBB 

The BBB, which is surrounded by adherent vascular cells and

erivascular astrocytes, is an important physiologic barrier be-

ween the central nervous system (CNS) and peripheral circu-

ation that regulates the exchange of molecules between blood
ical Association. This is an open access article under the CC BY-NC-ND license 
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essels and brain parenchyma; its normal function is critical for

he stability of the internal environment and signal transduction

n the CNS. [14,15] 

The pathophysiology of sepsis is related to the host immune

esponse to infectious microorganisms. [16] The molecular pat-

erns associated with pathogen signals such as lipopolysaccha-

ide (LPS) are recognized by pattern recognition receptors ex-

ressed on host cells. Among the most important molecular pat-

erns in the immune response in sepsis are those associated with

he toll-like receptor (TLR) family. Pathogen recognition trig-

ers a signal transduction cascade that culminates with the ac-

ivation of the transcription factor NF- 𝜅B, which induces the

xpression of genes encoding proinflammatory cytokines and

hemokines such as tumor necrosis factor alpha (TNF- 𝛼), inter-

eukin 1 beta (IL-1 𝛽), and IL-6. This leads to the recruitment

nd activation of leukocytes to the site of infection. In sepsis,

athogens cause damage at the CNS by inducing the release of

ytokines from peripheral organs that penetrate the BBB. [17] Ad-

itionally, the production of TNF- 𝛼 and IL-1 𝛽 along with mi-

robial peptides enhances the permeability of the BBB. It was

lso reported that leukocytes pass through the BBB into brain

icrovasculature in the early stages of sepsis, thereby causing

amage to the brain. [18] 

Another important mechanism contributing to the destruc-

ion of the BBB is the production of excess reactive oxygen

pecies (ROS). Activated neutrophils and the electron trans-

ort chain are important sources of oxidizing molecules such

s superoxide and hydrogen peroxide that can destroy macro-

olecules in the BBB. [19] Furthermore, ROS produced during

epsis can cause oxidative damage to proteins of the mitochon-

rial respiratory chain, resulting in mitochondrial dysfunction

n neurons. [20] In preclinical studies, elevated levels of nitric ox-

de as well as lipid peroxidation and protein carbonylation were

bserved in the brain in the early stages (i.e., the first 48 h)

f sepsis, which were associated with short-term damage. Addi-

ionally, long-term oxidative damage up to 60 days after sepsis

nduction was also reported. [21] 

nflammation disrupts the BBB, leading to depression 

Although the relationship between the disruption of the BBB

nd depression is controversial, [6] the altered ratios of var-

ous molecules in the cerebrospinal fluid and serum of de-

ressed patients suggest that the integrity of the BBB is com-

romised, and there is broad consensus that inflammatory fac-

ors in gut microbiome-associated diseases cause an imbalance

f the brain–gut axis and act on the BBB to trigger depres-

ion. [22] In a mouse model of depression, mice that were stress-

ensitive but not exposed to stress had lower expression of the

ight junction protein claudin-5 (Cldn5) in the nucleus ambigu-

us (NAc) and abnormal morphology of the surrounding vascu-

ature. Cldn5 expression was also found to be decreased in the

Ac of depressed patients. Downregulation of Cldn5 was suffi-

ient to induce depression-like behavior following subthreshold

ocial stress, whereas chronic antidepressant treatment restored

ldn5 expression and promoted resilience. In mice with re-

uced BBB integrity or that were injected with adeno-associated

irus expressing short hairpin RNA targeting Cldn5, the periph-

ral cytokine IL-6 infiltrated into the brain parenchyma and

nduced depression-like behavior. These findings suggest that
240 
hronic social stress promotes the penetration of peripheral IL-6

hrough the BBB and alters its integrity by reducing Cldn5 ex-

ression. [23] The astrocyte marker S100B has been detected in

eripheral blood following BBB damage and thus serves as a

erum marker of compromised BBB integrity. [24] In clinical stud-

es, the S100B level was found to be elevated in the serum

nd cerebrospinal fluid of patients with major depressive dis-

rder. [25,26] Real-time in vivo two-photon microscopy revealed

hat depression model mice had significant leakage of a 40-

Da fluorophore-conjugated dextran into the perivascular re-

ion, implying a loss of BBB integrity. [27] Inflammatory factors

ere shown to cross the BBB and induce depression in polycystic

vary syndrome. [28] At the same time, bovine serum albumin–

erium dioxide nanoclusters targeting ROS that could penetrate

he BBB were effective in the treatment of depression. [29] These

tudies suggest that the destruction of the BBB and excess ROS

roduction play an important role in the development of depres-

ion in patients with sepsis. 

bnormal Activation of Microglia Induced by Sepsis Leads 

o Depressive Behavior 

Microglia are macrophage-like innate immune cells in the

NS. In a reactive state, microglia interact with neurons, astro-

ytes, and oligodendrocytes in response to changes in the CNS

nd coordinate immune mediators such as the proinflammatory

ytokines IL-1 𝛽, IL-6, IL-18, IL-23, and TNF- 𝛼. In response to in-

ury or pathogen-related molecular patterns, microglia coordi-

ate the neuroinflammatory response and participate in the es-

ablishment of the CNS and clearance of dead cells, which play

n important role in neurologic and psychiatric disorders. [30] 

n a mouse model of LPS-induced inflammation, activated mi-

roglia initiated a proinflammatory response, thereby directly

odulating the function of neuronal circuits. [31] Peripheral in-

ammation in sepsis models caused extensive and intense mi-

roglia activation that induced nitric oxide production and in-

reased the expression of the pro-apoptotic proteins B cell lym-

homa 2 (Bcl-2) and Bcl-2–associated X protein (Bax), lead-

ng to apoptosis and sepsis-associated encephalopathy (SAE). [32] 

he high incidence of long-term brain damage caused by sep-

is, including cognitive decline, anxiety, and depression and

he occurrence of post-traumatic stress disorder, constitutes a

ubstantial health burden in sepsis survivors. [33] Activated mi-

roglia were shown to enhance SAE, as demonstrated by stud-

es in which microglia were inhibited by intracerebroventricular

njection of dimethylamine tetracycline, which reduced acute

erebral oxidative stress injury, inflammation, and long-term

ognitive impairment in sepsis survivors. [34] 

Microglia exhibit abnormal function in neuropsychiatric dis-

rders as a result of an overproduction of inflammatory media-

ors and increased neural phagocytosis, which may affect neu-

al network remodeling and synaptic pruning, thereby impair-

ng synaptic function and negatively impacting behavior. [35,36] 

n a mouse model of alcohol abuse, alcohol intake was shown

o induce activation of Src tyrosine kinase, leading to anxiety-

ike behavior through overactivation of microglia-dependent

rc/NF- 𝜅B/TNF signaling, which enhanced synaptic phagocyto-

is and impaired synaptic pruning. [37] A proteome-wide associa-

ion study that incorporated genome-wide association data from

ubjects with depression identified potential causative genes
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hat were enriched in microglia. [38] In a clinical study, single-

ucleus sequencing in the dorsolateral prefrontal cortex of 17

atients with major depressive disorder and 17 mentally healthy

ontrols revealed 26 cell clusters in which microglia were the

redominant cell type. The brain–gut axis theory posits that per-

urbation of gut flora balance can cause immune dysfunction,

esulting in a cascade of events involving the release of inflam-

atory factors that reach the CNS through the circulation, acti-

ating microglia and triggering the emergence of depression-

ike behaviors. [39] Early-life inflammation was shown to im-

air microglia engulfment, leading to long-lasting maladap-

ation of glutamatergic neurons to stress and the develop-

ent of depression during adolescence. [40] Collectively, the evi-

ence to date suggests a close relationship between acute sepsis

nd long-term psychological and neurologic damage resulting

rom overactivation of microglia and impairment of neuronal

unction. 

berrant Activation of Hypothalamic–pituitary–adrenal 

HPA) Axis in Sepsis-related Depression-like Behavior 

PA axis and depression-like behavior 

The limbic system comprises the cingulate cortex, [41,42] 

mygdala, and hippocampus. Corticotropin-releasing hormone

CRH) secreted by neurons activates the pituitary gland and

odulates the HPA axis, which regulates homeostasis, stress re-

ponse, energy metabolism, and neurologic functions and plays

n important role in the pathophysiology of mood and cog-

itive disorders. The hypothalamus secretes stimulatory or in-

ibitory factors that act on the pituitary gland, which in turn se-

retes hormones (namely, corticotropin-releasing factor [CRF],

drenocorticotropic hormone, and cortisol) that act on target

rgans. 

Overactivation of the HPA axis leading to the emergence of

epression-like behaviors is one of the main hypotheses regard-

ng the pathogenesis of depressive illness, [43] and some stud-

es have demonstrated that excessive stimulation of the HPA

xis in chronic and persistent high-stress states (e.g., inflam-

ation, post-trauma, or prolonged hypertension) is linked to

he emergence of depression. [44,45] CRF is a key factor in the

egulation of the stress response and has been implicated in a

umber of psychiatric disorders; overproduction of CRF can lead

o depression, anxiety, and anorexia nervosa whereas CRF de-

ciency is related to neurodegeneration in Alzheimer disease,

arkinson disease, and Huntington disease. [27] Sleep depriva-

ion can lead to dysfunction of the limbic system, increased CRH

elease in the amygdala, and hyperactivation of the HPA axis,

esulting in cognitive dysfunction and depression-like behavior

n mice. [46] 

Abnormalities in the HPA axis have been observed in a large

roportion of depressed patients ranging from 35% to 65%,

nd typically involve the excessive release of glucocorticoids

r increased expression of adrenocorticotropin-releasing hor-

one. [47] Overexpression of the postsynaptic protein postsy-

aptic density 93 (PSD-93) was shown to be associated with

epression-like behavior in mice; whereas, PSD-93 depletion

ad an antidepressant effect. Additionally, postmortem exam-

nation of brain samples from patients with depression revealed

ncreased colocalization of PSD-93 and CRH in the paraventric-
241 
lar nucleus of the hypothalamus, suggesting synaptic regula-

ion of the HPA axis in depression. [48] The HPA axis plays an

mportant role in the brain–gut axis; patients with depression

how altered immune cell activity in the gut, an imbalance of

ut microbial composition, and abnormal gut microbial func-

ion. [49] This dysregulation is associated with decreased levels

f anti-inflammatory factors (e.g., IL-10, transforming growth

actor beta [TGF- 𝛽]) as well as increased levels of proinflam-

atory factors (e.g., IL-1, IL-6, TNF- 𝛼, interferon alpha [IFN- 𝛼])

hat further activate the HPA axis to induce hypercortisolism

hile reducing brain serotonin levels and interfering with glu-

amatergic neuron metabolism, leading to the development of

epression. However, additional studies are needed to validate

hese findings. 

epsis and the HPA axis 

Sepsis-induced brain dysfunction (SIBD) has high morbid-

ty and mortality. [33] It has been proposed that impaired auto-

omic regulation in the brain results in insufficient brain perfu-

ion and neuronal damage, leading to SIBD. [50] In a prospec-

ive neuroimaging study of patients with SIBD with sepsis-

nduced neurologic dysfunction, MRI and stereoscopic pixel-

ased brain morphometry (VBM) analysis suggested neuronal

oss in the insula, cingulate cortex, frontal lobe, precuneus, and

halamus. [51,52] In sepsis mice, expression of HPA axis-related

ircadian rhythm-regulated genes and circadian fluctuation of

lucocorticoid level were abolished. Mice with cecal ligation

nd puncture-induced sepsis showed a stress-induced decline

n cFos mRNA and protein levels in the ventral hippocampus,

hich coordinates emotional behavior, and reduced HPA axis

ctivation with a corresponding increase in the glucocorticoid

eceptor-mediated immune response and negative emotional be-

avior. [53] Thus, overactivation of the HPA axis caused by dys-

unction of limbic system regulation may be a key mechanism

nderlying depression in SIBD. 

ysfunction of the reward system in sepsis 

The brain reward system comprises the substantia nigra,

triatum, and mesencephalic marginal cortex dopamine path-

ays. [54] The dopamine system is involved in reward and af-

ective functions, which are perturbed in schizophrenia, addic-

ion, and depression; dopaminergic neuron fibers in the sub-

tantia nigra and ventral tegmental area (VTA) of the mid-

rain project to the striatum, cortex, and other brain areas. [55] 

 chemical genetic approach has been used to activate the

opaminergic system in the VTA of sepsis mice, leading to ex-

itation of the sympathetic nervous system and an increase in

he level of catecholamine neurotransmitters acting on mononu-

lear macrophages and B cells; this was associated with in-

reases in the phagocytic bactericidal capacity of macrophages

nd number of IgM + B cells and enhanced intrinsic and adap-

ive immunity, suggesting a causal relationship between the im-

une response to bacterial infection and VTA activation. [56] 

ctivation of the reward system by a chemical genetics ap-

roach in tumor-bearing mice reduced sympathetic nervous

ystem-mediated noradrenergic input, resulting in decreased

mmunosuppression of myeloid immune cells and reduced tu-

or volume and mass, demonstrating that antitumor immune
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Figure 1. Possible mechanisms of sepsis-induced depression. ACTH: Adrenocorticotropic Hormone; CRH: Corticotropin-releasing hormone; INR: International nor- 

malized ratio; IL: Interleukin; NAcc: Nucleus accumbens; NF- 𝜅B: Nuclear factor kappa B; PAMPs: Pathogen-associated molecular patterns; TLR: Toll-like receptor; 

TNF: Tumor necrosis factor; VTA: Ventral tegmental area. 
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esponses can be modulated by the brain reward system, which

s a key neural circuit for emotional responses. [57] These find-

ngs suggest that peripheral and CNS dysfunction is closely

inked to immune responses caused by the cytokine storm in

epsis. 

onclusions and Outlook 

Sepsis is associated with depression-like behavior resulting

rom the disruption of the BBB, systemic immune dysfunction,

nd uncontrolled neuroinflammation. Depression can worsen

he prognosis of patients with sepsis. Using brain imaging tech-

iques such as fMRI and PET 

[58] combined with chemical ge-

etics and photogenetics, it has been demonstrated that over-

ctivation of glial cells, reduced integrity of the BBB, dys-

egulation of the HPA axis caused by limbic system dysfunc-

ion, and disorder of the brain reward system caused by ab-

ormal neurotransmitter secretion and excessive release of pe-

ipheral inflammatory factors can individually or jointly con-

ribute of the occurrence of sepsis and depression ( Figure 1 ).

he detailed mechanisms linking these processes must be clar-

fied in order to develop targeted and effective interventions

or preventing the occurrence of depression in patients with

epsis. 
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