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Abstract: Triple-negative breast cancer (TNBC) represents the deadliest form of gynecological tumors
currently lacking targeted therapies. The ethanol extract of the North Pacific brittle star Ophiura
sarsii presented promising anti-TNBC activities. After elimination of the inert material, the active
extract was submitted to a bioguided isolation approach using high-resolution semipreparative
HPLC-UV, resulting in one-step isolation of an unusual porphyrin derivative possessing strong
cytotoxic activity. HRMS and 2D NMR resulted in the structure elucidation of the compound as
(3S,4S)-14-Ethyl-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid. Never
identified before in Ophiuroidea, porphyrins have found broad applications as photosensitizers in the
anticancer photodynamic therapy. The simple isolation of a cytotoxic porphyrin from an abundant
brittle star species we describe here may pave the way for novel natural-based developments of
targeted anti-cancer therapies.
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1. Introduction

Despite the enormous effort, cancer remains one of the leading causes of disease-
related mortality. To overcome this persistence, targeted anticancer therapies are in need
and are being actively developed. The targeting of the tumor while maximally sparing
the healthy tissues can be achieved chemically, i.e., by developing drugs selective for
oncogenic molecules or pathways, or physically. As an example of the former, drugs
attacking the oncogenic Wnt signaling pathway are being actively developed by pharma
companies and academia [1,2]. Aberrant Wnt signaling underlies oncogenic transformation
and progression in several cancer types, such as colon cancer or of the deadliest cancer
in women, triple-negative breast cancer (TNBC) [3,4]. As an example of the latter, photo-
dynamic therapy (PDT) applies loading (topical or systemic) of tissues with a chemical
photosensitizer followed by local laser-based long-wavelength tumor illumination, which
energetically activates the photosensitizer to emit active oxygen radicals and destroy the
tumor cells [5,6].

In our quest to identify novel Wnt-targeting anti-TNBC compounds, we among other
approaches screened extracts from deep-sea invertebrates of the Russian Pacific in a set
of assays monitoring Wnt signaling in the cancer cells, identifying Ophiura irrorata and
other brittle stars collected at the depths of 2.2–3.3 km as a promising source of a powerful
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anticancer activity [7,8]. Since species collection through deep-sea expeditions necessarily
provides a limited material, we decided to investigate whether more easily acquirable
Pacific brittle stars could similarly possess interesting anti-TNBC activities. In doing so,
we turned our attention to Ophiura sarsii.

The brittle star Ophiura sarsii Lütken, 1855 [9] (family Ophiuridae, order Ophiurida,
class Ophiuroidea, phylum Echinodermata) is wide-spread from Northern Atlantic, over the
Arctic, and all the way to Northern Pacific, inhabiting waters from shallow to deep [10].
Extracts from the specimen abundant around the Russky island (Peter the Great Gulf, Sea of
Japan) were characterized for the anticancer activities against TNBC cells. While possessing
a strong anti-Wnt activity (to be described in detail in a separate article), the extracts also
revealed a separate potent cytotoxic activity, which surprisingly was found to be mediated
by a porphyrin compound. Not previously identified in the class Ophiuroidea [11–13],
synthetic porphyrins have found wide applications in the photodynamic therapy (PDT).
Our findings may have identified a natural photosensitizer for future PDT applications.

2. Results and Discussion

Brittle stars Ophiura sarsii were collected near the Russky Island in the Peter the
Great Gulf, Sea of Japan, in May 2019. After homogenization, an increasing solvent
polarity extraction was performed with heptane, chloroform, ethanol, and water (see
Methods). Metabolite profiling of the different extracts by UHPLC-PDA-ELSD-MS (ultra
high performance liquid chromatography- photodiode array- evaporative light scattering-
mass spectrometry) revealed the presence of abundant apolar compounds in the chloroform
and ethanol extracts while polar compounds were found to be scarce in the aqueous extract
(Supplementary Figure S1).

The ethanol extraction produced the highest amount of material (509 mg dry mass),
but presented an important number of signals at the beginning of the HPLC chromatogram
only detected by the ELSD suggesting the presence of polar compounds or inert marine
salts (Supplementary Figure S1). A procedure to eliminate them was thus performed,
whereas the extract was submitted to C18 solid-phase extraction (SPE) by elution with
water and methanol.

The SPE generated a water fraction containing the polar compounds, most probably
inorganic salts (Figure 1A), and a methanol fraction enriched in secondary metabolites
of interest (Figure 1B). Both samples were submitted to a cellular screening using the
triple-negative breast cancer (TNBC) cell line BT-20 in the TopFlash assay monitoring the
level of Wnt signaling, and in the CMV-Renilla assay monitoring the acute cytotoxicity [14].
The assay revealed that the anti-Wnt and the cytotoxic activities were mainly found in the
salt-free methanolic SPE fraction of O. sarsii (Figure 1C,D).

In order to enrich active metabolites at a larger scale, a liquid–liquid extraction was
performed that yielded the butanol fraction (Figure 1E). After confirmation of the anti-Wnt
and the cytotoxic biological activities of the butanol fraction (data not shown), the sep-
aration conditions of the fraction were first optimized with HPLC-PDA-ELSD using a
C18 stationary phase. A geometrical transfer of the HPLC analytical conditions to the
semipreparative scale using the same stationary phase was performed, and the sample
was injected by dry load to improve the chromatographic resolution at a semipreparative
scale (see Methods, Figure 2A). The collected fractions were tested for their activity in
the TopFlash and CMV-Renilla assays. While the identification of the compound specific
anti-Wnt activity will be described in a separate article, we here were attracted by the local-
ization of the acute cytotoxic activity in fraction #14, which possessed a strong dark-blue
to black coloration (Figure 2B,C). NMR and HRMS analysis of fraction #14 revealed the
presence of a pure compound (1) described below.
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Figure 1. Extracts of Ophiura sarsii reveal anti-Wnt and cytotoxic activities. (A,B) Chromatograms of ethanol extracts of O. 
sarsii after additional solid-phase extraction (SPE) with elution with water (A) and methanol (B). Polar compounds, most 
probably inorganic salts, are abundant in the water fraction (A), while the methanol fraction (B) appears enriched in 
secondary metabolites of interest. (C,D) Acute cytotoxicity (CMV-Renilla) and anti-Wnt (TopFlash) biological assays 
reveal that the methanol fraction (D) is indeed enriched in both activities. (E) Scheme of the liquid–liquid extraction of the 
methanol fraction, which produced the butanol phase where the biological activities concentrated. 
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Figure 1. Extracts of Ophiura sarsii reveal anti-Wnt and cytotoxic activities. (A,B) Chromatograms of ethanol extracts of
O. sarsii after additional solid-phase extraction (SPE) with elution with water (A) and methanol (B). Polar compounds,
most probably inorganic salts, are abundant in the water fraction (A), while the methanol fraction (B) appears enriched
in secondary metabolites of interest. (C,D) Acute cytotoxicity (CMV-Renilla) and anti-Wnt (TopFlash) biological assays
reveal that the methanol fraction (D) is indeed enriched in both activities. (E) Scheme of the liquid–liquid extraction of the
methanol fraction, which produced the butanol phase where the biological activities concentrated.
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Figure 2. Isolation of the cytotoxic activity from O. sarsii. (A) Gradient transfer from the analytical HPLC-PDA (up) to the 
semipreparative HPLC-UV (down) of the butanol phase, resulted in the isolation of fraction 14. (B) NMR tubes of the 
different fractions, showing the strong dark-blue coloration of fraction 14. (C) Fraction 14 mediated the cytotoxic activity 
of O. sarsii in the acute cytotoxicity (CMV-Renilla) assay. 

UV spectra of compound 1 reveal a typical UV absorbance of porphyrins at the 
wavelengths of UV λmax 204, 293 sh, 409, and 663 nm [15–18] (Figure 3A). The HRMS 
spectrum of compound 1 showed a protonated ion at m/z 539.2644 [M + H]+, (calculated 
for C32H35N4O4, 539.2653, Δ = 1.6 ppm). The 1H and edited-HSQC NMR spectra presented 
typical signal of porphyrin: three deshielded protons and shielded carbon corresponding 
to aromatics (at δH/δC 8.83/93.2, H/C-20, 9.57/96.7, H/C-5, 9.75/103.9, and H/C-10) and to 
C-methyl groups (at δH/δC 3.25/10.5, H/C-7a, 3.39/10.3, H/C-2a, 3.63/11.2, and H/C-12a). 
An ethyl group at δH 1.64 (3H, t, J = 7.6 Hz, H3-8b) and 3.73 (2H, q, J = 7.6 Hz, H2-8a), a 
methyl doublet at δH 1.77 (3H, d, J = 7.4 Hz, H3-18a), and a methylene group at δH 5.12 
(1H, d, J = 19.4 Hz, H-13b”) and 5.23 (1H, d, J = 19.4 Hz, H-13b’) were also observed. These 
NMR data (see Methods and Supplementary Figure S2) were very similar to those of 
pyropheophorbide a [19] except that the signals corresponding to the vinyl group at C-3 
were not observed. On the other hand, the signal of an oxygenated methylene group was 
detected at δH/δC 5.74/53.9 (H/C-3a). Due to the small amount available, an HMBC 
experiment could not be recorded, but the ROESY correlations between the different 
groups (Figure 3B) allowed one to identify compound 1 and determine its relative 
configuration. The positive optical rotation power of compound 1 ([α]20D +350) indicated 
that absolute configuration was the same than pyropheophorbide a and allowed 
compound 1 to be fully identified as (3S,4S)-14-ethyl-9-(hydroxymethyl)-4,8,13,18-
tetramethyl-20-oxo-3-phorbinepropanoic acid. Upon chemical synthesis, NMR analysis of 
this compound has been reported but restricted to 1H chemical shifts recorded in a solvent 

Figure 2. Isolation of the cytotoxic activity from O. sarsii. (A) Gradient transfer from the analytical HPLC-PDA (up) to
the semipreparative HPLC-UV (down) of the butanol phase, resulted in the isolation of fraction 14. (B) NMR tubes of the
different fractions, showing the strong dark-blue coloration of fraction 14. (C) Fraction 14 mediated the cytotoxic activity of
O. sarsii in the acute cytotoxicity (CMV-Renilla) assay.

UV spectra of compound 1 reveal a typical UV absorbance of porphyrins at the
wavelengths of UV λmax 204, 293 sh, 409, and 663 nm [15–18] (Figure 3A). The HRMS
spectrum of compound 1 showed a protonated ion at m/z 539.2644 [M + H]+, (calculated for
C32H35N4O4, 539.2653, ∆ = 1.6 ppm). The 1H and edited-HSQC NMR spectra presented
typical signal of porphyrin: three deshielded protons and shielded carbon corresponding
to aromatics (at δH/δC 8.83/93.2, H/C-20, 9.57/96.7, H/C-5, 9.75/103.9, and H/C-10)
and to C-methyl groups (at δH/δC 3.25/10.5, H/C-7a, 3.39/10.3, H/C-2a, 3.63/11.2, and
H/C-12a). An ethyl group at δH 1.64 (3H, t, J = 7.6 Hz, H3-8b) and 3.73 (2H, q, J = 7.6 Hz,
H2-8a), a methyl doublet at δH 1.77 (3H, d, J = 7.4 Hz, H3-18a), and a methylene group
at δH 5.12 (1H, d, J = 19.4 Hz, H-13b”) and 5.23 (1H, d, J = 19.4 Hz, H-13b’) were also
observed. These NMR data (see Methods and Supplementary Figure S2) were very similar
to those of pyropheophorbide a [19] except that the signals corresponding to the vinyl
group at C-3 were not observed. On the other hand, the signal of an oxygenated methylene
group was detected at δH/δC 5.74/53.9 (H/C-3a). Due to the small amount available,
an HMBC experiment could not be recorded, but the ROESY correlations between the
different groups (Figure 3B) allowed one to identify compound 1 and determine its relative
configuration. The positive optical rotation power of compound 1 ([α]20

D +350) indicated
that absolute configuration was the same than pyropheophorbide a and allowed compound
1 to be fully identified as (3S,4S)-14-ethyl-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-
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3-phorbinepropanoic acid. Upon chemical synthesis, NMR analysis of this compound has
been reported but restricted to 1H chemical shifts recorded in a solvent different to ours [20],
complicating the direct comparison of NMR data comparison is difficult (Supplementary
Table S1). The overall yield of the compound was high: 4.2 mg from the 212 mg of the
butanol phase (obtained from the 509 mg of the ethanol extract’s dry weight, obtained from
120 g of the wet weight of the collected brittle stars).
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Figure 3. A porphyrin compound, (3S,4S)-14-Ethyl-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic
acid, mediates cytotoxicity of O. sarsii. (A) UV spectrum of the fraction 14 reveals absorbance peaks typical for porphyrins.
(B) NMR identified the compound in fraction 14 as (3S,4S)-14-Ethyl-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-
phorbinepropanoic acid (1); ROESY correlations of compound 1 are shown as blue arrows. (C) Cell proliferation (MTT)
assay shows a broad cytotoxicity of compound 1 against breast cancer lines. IC50 data are shown to the right of the graph as
mean ± SEM values, n = 4.



Mar. Drugs 2021, 19, 11 6 of 11

The cytotoxic activity of compound 1 was next confirmed in an independent assay.
Here, the proliferation of a panel of TNBC cells (BT-20, HCC-1395, HCC-1806, MDA-MB-
231, and MDA-MB-468), along with that of a non-TNBC breast cancer line MCF-7 and a
non-cancerous breast epithelial line MCF-10A, was monitored in the standard MTT assay
(see Methods). The results confirm the broad cytotoxicity of the brittle star porphyrin (1)
with an IC50 around 30 µM (Figure 3C). This was comparable to the cytotoxicity of other
porphyrin derivatives described in the literature [15–17,21]. Further, this MTT-measured
cytotoxicity is similar to that observed in the CMV-Renilla assay in BT-20 cells, which
gave the IC50 of 37 µM (Figure 2C). Noteworthy, the cytotoxicity of compound 1 against
cancerous and non-cancerous breast epithelial cells is similar (Figure 3C). This is typical for
photosensitizers applied in the photodynamic therapy (PDT). In PDT, the targeted nature
of the treatment is achieved not through selective toxicity of compounds against cancerous
cells. Instead, in PDT, tissues are preloaded with the photosensitizer (ideally absorbing in
the red-shifted part of the spectrum that penetrates deeper into biological tissues) either
systemically or topically, which is followed by targeted laser-based illumination with the
correct wavelength. As a result, the photosensitizer is activated, and emits oxygen radicals,
toxic for the cells [5,6].

Porphyrins have been identified in several marine living organisms including Echino-
dermata [13]. However, they were not seen, and were considered absent, in the class
of Ophiuroidea [11,12]. Subsequent studies will address whether (3S,4S)-14-ethyl-9-
(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid is synthesized
by O. sarsii itself, or whether the porphyrin in these brittle stars is an outcome of their
dietary preferences. In the latter case, it will be worth investigating whether such dietary
acquisition (with potential subsequent in-host modification) of the porphyrin is a local
phenomenon, or whether it is as widespread as the northern hemisphere areal of O. sarsii. It
is worth-mentioning that a similar porphyrin, pyropheophorbide a methyl ester, has been
described in the red tide dinoflagellates Heterocapsa circularisquama [18]. In the former
case, subsequent studies will be directed to address the question of the physiological role
the porphyrin plays in O. sarsii, which might be linked e.g., with a protective function of
the compound.

Interestingly, (3S,4S)-14-Ethyl-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3- phor-
binepropanoic acid (1) has not been described as a natural compound before but has been
previously obtained through organic synthesis [20–22]. Synthetic porphyrins, along with
related chlorin compounds, have a long history of application as photosensitizers in PDT.
PDT has been initially developed and approved to treat bladder, esophageal, and lung
forms of solid cancers, and basal cell carcinoma [6]. PDT since then has found additional
applications, e.g., in dermatology [23].

PDT worldwide is a medical market worth some USD 3.4 billion in 2019, projected to
grow to USD 11.9 billion by 2027 (verifiedmarketresearch.com/product/photodynamic-
therapy-market/) and relies on the use of a limited number of approved photosensitizers,
such as Photofrin® and Verteporfin® in the US, Foscan®, and Tookad® in Europe, Photolon®

and Photosens® in Russia, Talaporfin sodium® in Japan, and Hemoporfin® in China [24].
Complicated synthetic routes contributing to the high cost of the photosensitizers are
among the factors for the constant search for novel PDT compounds [25]. In our work, we
describe efficient isolation from an abundant brittle star species of a cytotoxic porphyrin
with strong absorption in the red spectrum. If medical usefulness is proven, upscaling of
the isolation of this potential natural source photosensitizer can be developed, accompanied
by a mariculture of O. sarsii with approaches developed for other North Pacific inverte-
brates [26]; biotechnological production or optimization of the chemical synthesis is also
conceivable. Thus, our discovery may pave the way for novel natural-based developments
of targeted anticancer therapies.
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3. Materials and Methods
3.1. Raw Material, Homogenization, and Extraction

Animal samples of Ophiura sarsii were collected at the depths of 15–18 m in the
Bogdanovich Bay near Cape Vyatlin on Russky Island in the Peter the Great Gulf, Sea of
Japan, in May 2019. The exact coordinates of the catch were 42◦57′48.9” N 131◦54′24.8” E.
Sample collection was performed by the standards approved by the Ministry of Education
and Science (Russia); all efforts were made to minimize animal suffering. Freshly caught
animals were washed twice under running water, after which they were immediately
frozen and stored at −80 ◦C.

Of wet O. sarsii, 120 g were homogenized using a vibrating mill (Retsch, Éragny,
France) in heptane at a vibration frequency of 1500 rpm for 2 min until a homogeneous
gelatinous mass was obtained. Further, the crushed sample was extracted with 500 mL of
solvents. Extraction was performed sequentially with four solvents of increasing polarity:
heptane, chloroform, ethanol, and water, at room temperature for 8–12 h. Each extract
was then filtered using Whatman 47 mm GF/C glass fiber filter (Sigma-Aldrich, St. Louis,
CO, USA). Each filtrate was concentrated in a rotary evaporator. The yield of the obtained
extracts was as follows: heptane 38.2 mg, chloroform 64.8 mg, ethanol 509 mg, and water
513.5 mg.

3.2. Dual Luciferase Assay

The assay was performed as described previously [14,27]. The TNBC cell line BT-20
stably transfected with the TopFlash reporter was seeded in DMEM medium supplemented
with 10% FBS (both Gibco, Gaithersburg MD, USA) into a 384-well white flat bottom plate
for luminescence analysis (Greiner, Monroe NC, USA) at a density of 6000 cells/well in a
final volume of 20 µL of the medium.

The next day, the medium was removed using plate washer (Biotek, Winooski VT,
USA) and the attached cells in the plate were transfected with the plasmid encoding the
Renilla reniformis luciferase gene under control of the CMV promoter. The procedure was
done in accordance with the manufacturer’s instructions using in total 300 µL of Opti-MEM
medium per plate (Gibco, USA) with 12 µg/mL of DNA and 40 µL/mL of X-tremeGENE
reagent (Roche, Basel, Switzerland) in the final volume of Opti-MEM/DMEM mixture of
20 µL/well.

Upon overnight incubation, the transfection media was removed using the plate
washer and the samples from O. sarcii, provided as DMSO stocks, were added to the
reporter cells in a series of dilutions in DMEM starting from 100 µg/mL for extracts and
from 25 µg/mL for the pure substance (based on dry weight). To activate the Wnt cascade
in the BT-20-TopFlash reporter cells, Wnt3a protein purified as described earlier [28] was
added to the final concentration of 2.5 µg/mL. The final concentration of DMSO in the
wells was maintained at 0.5%. Each experiment was carried out in four replicates. Cells
with substances were incubated overnight at 37 ◦C, after which the luminescence was
recorded by the method of the dual luciferase analysis, below.

To measure the activity of luciferases, the culture medium was completely removed
from all wells of the plate. Next, the luciferase activity of the firefly and Renilla luciferases
was detected sequentially in individual wells of a 384-well plate through injection of
corresponding measurement solutions [29] in the Infinite M Plex multifunctional plate
reader with the injection module (Tecan, Männedorf, Switzerland).

The activity of luciferases was recalculated in % relative to the cells in the medium
supplemented with Wnt3a alone, which served as the positive control. Statistical processing
of the results, and plotting of graphs, was performed using Prism 8 (GraphPad Software,
San Diego, CA, USA).

3.3. General Experimental Procedures

UV spectra were recorded on an Agilent Cary 60 UV-Vis (Santa-Clara, CA, USA) in
MeOH. NMR data were recorded on a Bruker Avance Neo 600 MHz NMR spectrometer
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equipped with a QCI 5 mm cryoprobe and a SampleJet automated sample changer (Bruker
BioSpin, Rheinstetten, Germany). 1D and 2D NMR experiments (1H, COSY, ROESY,
and HSQC) were recorded in DMSO-d6. Chemical shifts are reported in parts per million
(δ) and coupling constants (J) in Hz. The residual DMSO-d6 signal (δH 2.50; δC 39.5)
were used as internal standards for 1H and 13C NMR, respectively. HRMS data were
obtained on a Waters Acquity UHPLC system interfaced to a Q-Exactive Focus mass
spectrometer (Thermo Scientific, Bremen, Germany), using a heated electrospray ionization
((HESI-II) source). The biotransformation reactions were monitored on a UHPLC-PDA-
ELSD-MS (Waters) instrument equipped with a single quadrupole detector using heated
electrospray ionization. Analytical HPLC was carried out on an HP 1260 Agilent system
equipped with a photodiode array detector (Agilent Technologies, Santa Clara, CA, USA).
Semipreparative HPLC was conducted on a Shimadzu system equipped with an LC-20 A
module pumps, an SPD- 20 A UV/VIS, a 7725I Rheodyne® valve, and an FRC-40 fraction
collector (Shimadzu, Kyoto, Japan). Before analysis, chloroform, ethanol, and water extracts
were filtered through SPE C18 cartridges (Finisterre 1000 mg/6 mL, Teknokroma, Barcelona,
Spain). Cartridges were first activated by eluting 10 mL of MeOH, then conditioned with
10 mL of H2O. The extract was solubilized in water with a minimum amount of MeOH and
loaded on the cartridge. Around 10 mL of water were first eluted to collect a first fraction,
followed by 10 mL of MeOH.

3.4. UHPLC-PDA-ELSD-MS Analysis

The extracts, fractions, and pure compounds were analyzed on an Ultra-high- perfor-
mance liquid chromatography system equipped with a photodiode array, an evaporative
light-scattering detector, and a single quadrupole detector using heated electrospray ioniza-
tion (UHPLC-PDA-ELSD-MS) (Waters, Milford, MA, USA). The ESI parameters were the
following: capillary voltage 800 V, cone voltage 15 V, source temperature 120 ◦C, and probe
temperature 600 ◦C. Acquisition was done both in the positive and negative ionization
mode (PI and NI) with an m/z range of 150−1000 Da. The chromatographic separation
was performed on an Acquity UPLC BEH C18 column (50 × 2.1 mm i.d., 1.7 µm; Waters)
at 0.6 mL/min, 40 ◦C with H2O (A) and MeCN (B) both containing 0.1% formic acid as
solvents. The gradient was carried out as follow: 5–100% B in 7 min, 1 min at 100% B, and a
re-equilibration step at 5% B in 2 min. The ELSD temperature was fixed at 45 ◦C, with a
gain of 9. The PDA data were acquired in from 190 to 500 nm, with a resolution of 1.2 nm.
The sampling rate was set at 20 points/s.

3.5. UHPLC-HRMS Analysis

The extracts, fractions, and pure compounds were profiled on a Waters Acquity UH-
PLC system equipped with a Q-Exactive Focus mass spectrometer (Thermo Scientific,
Bremen, Germany), using heated electrospray ionization source (HESI-II). The chromato-
graphic separation was carried out on an Acquity UPLC BEH C18 column (50 × 2.1 mm
i.d., 1.7 µm; Waters) at 0.6 mL/min, 40 ◦C with H2O (A) and MeCN (B) both containing
0.1% formic acid as solvents. The gradient was carried out as follow: 5–100% B in 7 min,
1 min at 100% B, and a re-equilibration step at 5% B in 2 min. The ionization parameters
were the same used in [30].

3.6. Semipreparative HPLC-UV Purification of the Butanol Fraction

Before the fractionation process, liquid–liquid extraction was performed on the ethanol
extract to remove salts. The extract (509 mg) was solubilized in 30 mL of butanol and 50 mL
of water and transferred to a separatory funnel. The organic phase (butanol phase) was
extracted 3 times with 50 mL of water. Each aqueous phase was analyzed by UHPLC-
PDA-ELSD-MS. The third aqueous phase contained almost no detectable peaks, indicating
an efficient salt removal. The butanol phase (212 mg) was dried on a rotary evaporator.
For fractionation of this butanol phase by semipreparative HPLC, the chromatographic
separation was optimized on an analytical HPLC HP 1260 Agilent system equipped with a
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photodiode array detector (Agilent Technologies, Santa Clara, CA, USA). The separation
was done on a Waters X-Bridge C18 column (250 mm × 4.6 mm i.d., 5 µm) at 1 mL/min,
25 ◦C with H2O (A) and MeOH (B) both containing 0.1% formic acid as solvents. The gradi-
ent was carried out as follows: 80–100% B in 60 min, followed by 10 min at 100% B. These
optimized HPLC analytical conditions were geometrically transferred by gradient transfer
to the semi-preparative HPLC scale [31]. Of the extract 50 mg was fractionated using
reverse-phase semipreparative HPLC-UV on a Shimadzu system equipped with an LC-20
A module pumps, an SPD-20 A UV/VIS, a 7725I Rheodyne® valve, and an FRC-40 fraction
collector (Shimadzu, Kyoto, Japan). The separation was performed on a Waters X-Bridge
C18 column (250 mm × 19 mm i.d., 5 µm) equipped with a Waters C18 precolumn cartridge
holder (10 mm × 19 mm i.d., 5 µm) at 17 mL/min, 25 ◦C with H2O (A) and MeOH (B) both
containing 0.1% formic acid as solvents. The gradient was carried out as follow: 80–100% B
in 60 min, followed by 10 min at 100% B, with UV detection at 210 and 366 nm. The extract
was injected on the semipreparative HPLC column using a dry load methodology recently
developed in our laboratory [32]. The separation yielded 51 fractions. Each fraction was
evaluated for cytotoxic activity and submitted to UHPLC-PDA-ELSD-MS analysis chemical
content assessment. Among the fractions obtained, fraction 14 afforded compound 1 (3 mg)
with interesting biological activities.

3.7. Structure Elucidation of Compound 1

(3S,4S)-14-ethyl-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic
acid (1). [α]20

D +350 (c 0.004, MeOH); UV (MeOH) λmax (log ε) 204 (3.90), 293 (sh) (3.54),
409 (3.45), 663 (2.63) nm; 1H-NMR (DMSO, 600 MHz) δ 1.64 (3H, t, J = 7.6 Hz, H3-8b), 1.77
(3H, d, J = 7.4 Hz, H3-18a), 2.11 (1H, m, H-17a”), 2.32 (1H, m, H-17b”), 2.55 (1H, m, H-17b’),
2.64 (1H, m, H-17a’), 3.25 (3H, s, H3-7a), 3.39 (3H, s, H3-2a), 3.63 (3H, s, H3-12a), 3.73 (2H,
q, J = 7.6 Hz, H2-8a), 4.32 (1H, dt, J = 10.0, 2.9 Hz, H-17), 4.58 (1H, qd, J = 7.4, 2.9 Hz, H-18),
5.12 (1H, d, J = 19.4 Hz, H-13b”), 5.23 (1H, d, J = 19.4 Hz, H-13b’), 5.74 (2H, s, H2-3a), 8.83
(1H, s, H-20), 9.57 (1H, s, H-5), 9.75 (1H, s, H-10); 13C-NMR (DMSO, 150 MHz) δ 10.3 (C-2a),
10.5 (C-7a), 11.2 (C-12a), 17.1 (C-8b), 18.3 (C-8a), 22.5 (C-18a), 29.0 (C-17a), 30.4 (C-17b), 47.1
(C-13b), 48.9 (C-18), 50.6 (C-17), 53.9 (C-3a), 93.2 (C-20), 96.7 (C-5), 103.9 (C-10); HR-ESI/MS
analysis: m/z 539.2644 [M + H]+, (calcd for C32H35N4O4, 539.2653, ∆ = 1.6 ppm).

3.8. MTT Survival Assay in Breast Cancer Cells

Breast cancer cells BT-20, HCC 1395, HCC 1806, MDA-MB-231, MDA-MB-468, and
MCF-7 were cultured in DMEM medium supplemented with 10% FBS (Gibco, USA). Non-
tumorigenic epithelial breast cells MCF-10A were cultured in DMEM/F12 medium (Gibco,
Waltham, MA, USA) supplemented with 10% FBS. For analysis, the cells were seeded in
transparent 384-well plates (VWR, Dietikon, Switzerland) at the following densities: HCC
1395, HCC 1806—2000 cells/well; BT-20, MDA-MB-231, MDA-MB-468—3000 cells/well;
and MCF-10A—5000 cells/well.

A porphyrin sample was redissolved with DMSO and added to the cells at indicated
concentrations starting from 25 µg/mL. The final concentration of DMSO in the wells was
maintained at 0.5%. Each experiment was done in four repeats. Cells were incubated for
three days at 37 ◦C, after which their numbers were quantified, as follows.

The medium was removed from all wells of the plate and 20 µL of the MTT (tria-
zolyltetrazoliumumbromide) reagent (Sigma-Aldrich, USA) in PBS at a concentration of
0.5 mg/mL was added and incubated for 3.5 h at 37 ◦C. The solution was removed from all
wells of the plate using the plate washer. Subsequently, 50 µL of DMSO was added, incu-
bated for 5 min, and the optical density of the solution was measured at the wavelength of
590 nm by the Infinite M Plex multifunctional plate reader (Tecan, Switzerland). Statistical
processing of the results, and plotting of graphs, was performed using Prism 8.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-339
7/19/1/11/s1, Supplementary Figure S1: UHPLC-PDA-ELSD-MS analysis of the initial chloroform,
ethanol, and water extracts of O. sarsii, Supplementary Figure S2: Details of the NMR identification

https://www.mdpi.com/1660-3397/19/1/11/s1
https://www.mdpi.com/1660-3397/19/1/11/s1
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of fraction 14 as compound 1, Supplementary Table S1: NMR chemical shifts of compound 1 in
comparison with those previously reported for the synthetic compound.
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