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Abstract
The seroprevalence of human parvovirus-4 (PARV4) variesBackground: 

considerably by region. In sub-Saharan Africa, seroprevalence is high in the
general population, but little is known about the transmission routes or the
prevalence of coinfection with blood-borne viruses, HBV, HCV and HIV. 

To further explore the characteristics of PARV4 in this setting, with aMethods: 
particular focus on the prevalence and significance of coinfection, we screened
a cohort of 695 individuals recruited from Durban and Kimberley (South Africa)
and Gaborone (Botswana) for PARV4 IgG and DNA, as well as documenting
HIV, HBV and HCV status.  Within these cohorts, 69% of subjects wereResults: 
HIV-positive. We identified no cases of HCV by PCR, but 7.4% were positive
for HBsAg. PARV4 IgG was positive in 42%; seroprevalence was higher in
adults (69%) compared to children (21%) (p<0.0001) and in HIV-positive (52%)
compared to HIV-negative individuals (24%) (p<0.0001), but there was no
association with HBsAg status. We developed an on-line tool to allow
visualization of coinfection data ( ). Wehttps://purl.oclc.org/coinfection-viz
identified five subjects who were PCR-positive for PARV4 genotype-3. Ex vivo 

CD8+ T cell responses spanned the entire PARV4 proteome and we propose a
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 (0)CommentsCD8+ T cell responses spanned the entire PARV4 proteome and we propose a
novel HLA-B*57:03-restricted epitope within the NS protein.  ThisConclusions: 
characterisation of PARV4 infection provides enhanced insights into the
epidemiology of infection and co-infection in African cohorts, and provides the
foundations for planning further focused studies to elucidate transmission
pathways, immune responses, and the clinical significance of this organism.
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Abbreviations: BBV, blood borne virus; HBV, Hepatitis B Virus; 
HBsAg, Hepatitis B surface antigen; HCV, Hepatitis C Virus; HIV, 
Human Immunodeficiency Virus; IgG, Immunoglobin G; PARV4, 
Human parvovirus 4; sSA, sub-Saharan Africa.

Introduction
Human parvovirus-4 (‘PARV4’) is a single-stranded DNA virus 
in the family Parvoviridae1. Its clinical significance remains  
uncertain2, and epidemiology varies strikingly by region, for  
reasons that are not yet understood. The risk factors that operate 
in various settings appear to be very different. Studies of North  
American and European populations have reported that PARV4 
exposure (IgG positive status) is strongly associated with 
parenteral risk factors, and with infection with blood-borne viruses  
(BBV’s), HIV, HCV and HBV3–9. An acceleration of HIV disease 
has also been described in association with PARV4 infection in 
a European cohort of HIV-infected subjects, although this effect 
may be confounded by the high prevalence of HCV co-infection6. 
In contrast, in sub-Saharan Africa (sSA), serological evidence of 
PARV4 infection in the general population ranges from 4–37% and 
there is a paucity of data to support any consistent relationship with 
other BBVs10–13.

In a previous smaller study of mothers and children in South  
Africa (n=157), we found a high seroprevalence of PARV4 IgG 
(37%), but no cases of detectable viraemia, and demonstrated a  
relationship between older age and increasing PARV4 IgG  
prevalence11. Despite the high population prevalence in sSA,  
little is known about the routes or risk factors for transmission,  
host immune responses, prevalence of viraemia, or clinical impact 
of PARV42,14.

The consistent evidence that PARV4 is endemic in populations  
in sSA prompted us to investigate further, using pre-existing  
cohorts to form a clearer view of the patterns of infection in these 
populations and to develop further insights into adaptive immune 
responses associated with PARV4 infection. Given previous  
evidence for the substantial influence of HLA Class I genotype 
on the outcome of viral infections (best exemplified in this popu-
lation by our studies of HIV15,16 and HBV17), we also set out to 
identify whether any such HLA-mediated effect can be observed 
with respect to PARV4 in the same cohorts. Previous work has  
demonstrated that high magnitude CD8+ T cell responses to  
PARV4 NS protein are maintained in the long-term7; we expanded 
on this observation by screening PARV4 IgG-positive individuals 
for T cell responses spanning the entire PARV4 proteome.

Therefore, our specific aims in this expanded African cohort were 
as follows:

  i   �To assimilate data for PARV4, HIV, HBV and HCV status 
from pre-existing cohorts and to describe the patterns of 
coinfection;

 ii   �To seek any evidence of a relationship between positive 
PARV4 IgG status and acceleration of HIV disease;

iii   �To screen our study subjects for PARV4 viraemia in order to 
establish how prevalent this is, hypothesising that viraemia 

might be associated with age, pregnancy or HIV infection, 
and to derive sequences from viraemic subjects;

iv   �To investigate any significant impact of host HLA Class I 
genotype on PARV4 status and to improve ex vivo charac-
terization of the CD8+ T cell response.

Materials and methods
Patient cohorts
This study represents 695 subjects from sSA recruited in three  
different settings, Durban and Kimberley in South Africa, 
and Gaborone in Botswana. The cohorts are summarized in  
Table 1, and the entire dataset is available as Supplementary  
data 1 (doi, 10.6084/m9.figshare.470731618). Our study subjects 
can be summarized according to HIV status as follows:

 i   �HIV-positive adults and children (n=478): HIV-positive 
adults were recruited in sSA through antenatal clinics in  
both Gaborone (Botswana) and Durban Sinikethemba  
(South Africa), and mothers and their children attending 
HIV clinics in Kimberley (South Africa). We have further 
described chronic viral infections in these groups in  
previous publications19–22.

ii   �HIV-negative adults and children (n=217): HIV-negative 
women were recruited from antenatal clinics in Durban 
(Masibambisane cohort) and HIV-negative children were 
recruited via Kimberley Respiratory Cohort (KReC). KReC 
comprises children aged 9–48 months admitted acutely to 
the paediatric department at Kimberley Hospital with an 
admission diagnosis of a respiratory tract infection.

In addition, we used cryopreserved PBMCs from 7 African adults 
attending HIV outpatient clinics in the UK (Thames Valley Cohort, 
as previously described23,24) to screen for ex vivo T cell responses 
(see further details below).

Ethics approval
Ethics approval was granted as follows: the University of  
KwaZulu-Natal Biomedical Research Ethics Committee (ref. 
E028/99), the Health Research Development Committee,  
Botswana Ministry of Health (ref. PPME-13/18/1); the Oxford 
Research Ethics Committee and site-specific Research and  
Development committees (Thames Valley Cohort ref. 06/
Q1604/12); Ethics Committee of the Faculty of Health Science, 
University of Free State, Bloemfontein, South Africa (Kimberley 
cohorts, ref. ETOVS 08/09 and ECUFS 80/2014). All subjects, 
or the parent/guardian for children, provided written informed  
consent for participation.

Documentation of HIV, PARV4, HCV and HBV status
We screened all 695 subjects for PARV4 DNA and HCV RNA, and 
had sufficient samples also to screen 632 for PARV4 IgG and 593 
for HBsAg.

  i   �HIV: HIV-status had been ascertained prior to recruit-
ment and was recorded prospectively. KReC children were 
deemed to be HIV-negative at the point of presentation to 
hospital. The majority of these were also screened for HIV 
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Table 1. Cohorts from Botswana and South Africa screened for PARV4, HIV, HBV and HCV.

Cohort location/
name

Study 
subjects

Number of 
subjects

HIV status 
of cohort

Number (%) 
positive for 
PARV4 IgGa

Number (%) 
positive for 
PARV4 DNA

Number (%) 
positive for 

HBsAga

Number (%) 
positive for 
HCV RNA

Gaborone, 
Botswana

Antenatal 
women

108 Positive 58/108 
(53.7)

0/108 
(0)

13/94 
(14)

0 
(0)

Durban, South Africa; 
Sinikethemba cohort 

Antenatal 
women

174 Positive 112/174 
(64.4)

0/174 
(0)

20/172 
(11.6)

0 
(0)

Durban, South Africa; 
Masibambisane 

cohort

Antenatal 
women

73 Negative 28/73 
(38.4)

1/73 
(1.4)

6/72 
(8.3)

0 
(0)

Kimberley HIV 
cohort, South Africa

Mothers of  
HIV-positive 

children

64 Positive 21/43 
(48.8)

1/64 
(1.6)

4/33 
(12.1)

0 
(0)

Kimberley HIV 
cohort, South Africa

Children 
attending HIV 

outpatient 
clinics

132 Positive 24/90 
(26.7)

0/132 
(0)

0/104 
(0)

0 
(0)

Kimberley healthy 
controls, South Africa

Children 
(HIV-negative 

siblings of 
Kimberley 

HIV cohort)

24 Negative 12/24 
(50.0)

0/24 
(0)

0/4 
(0)

0 
(0)

Kimberley 
Respiratory Cohort, 

South Africa

Children age 
9–48 months 
admitted to 
hospital with 

LRTI

120 Negative 
(n=117) 
No data 

(n=3)

13/120 
(10.8)

3/120 
(2.5)

1/114 
(0.9)

0 
(0)

TOTAL: 695 Positive: 478  
(68.8) 

Negative: 214 
(30.8)  

No data: 3 
(0.4) 

268/632  
(42.4) 

5/695  
(0.7) 

44/593  
(7.4) 

0/695  
(0) 

a For PARV4 IgG and HBsAg, the denominator is presented for each group as data were missing for some individuals.
LRTI = lower respiratory tract infection

infection during their hospital admission episode, with 
the exception of three children for whom we did not con-
firm HIV status (these children were included in the HIV- 
negative group for analysis, based on the clinical data  
available at the time of admission). HIV-1 RNA viral load 
was determined by Roche Amplicor Version 1.5 assay 
(Rotkreuz, Switzerland) or Abbott Laboratories m2000 
platform (Abbott Park, IL, USA) (data available for 370/478 
HIV-positive individuals). CD4+ T cell counts and percent-
ages were measured by flow cytometry as part of routine 
clinical diagnostics at the centre of recruitment (data avail-
able for 455/478 HIV-positive individuals). High resolution 
HLA Class I data were also available for 476 HIV-positive 
subjects, using PCR-sequence specific primer typing, as 
previously described25.

 ii   �PARV4 IgG: we used indirect ELISA, testing 632 samples 
in duplicate using baculovirus-expressed VP2 and control 
antigens, as previously described4,11; arbitrary unit (AU) 
values were calculated relative to a control sample. Due to 

a high background reactivity observed in this cohort, we 
applied an additional stipulation that positive samples must 
demonstrate a VP2-to-control optical density ratio (ODR) 
greater than 1.2; samples falling below this cut-off were 
considered negative.

iii   �HBV: We determined HBsAg status using Biokit enzyme 
immune assay (Barcelona, Spain) and Murex HBsAg v3 
(DiaSorin) assay to detect HBsAg, as previously described19. 
We were unable to screen the remainder of the cohort for 
HBsAg due to inadequate sample volumes remaining after 
other tests had been performed.

iv   �HCV: For HCV detection, we used PCR rather than screen-
ing for HCV-Ab, to optimize sensitivity and specificity 
of the test. RNA was extracted from pooled serum sam-
ples (50μl each of 10 samples) using the RNeasy mini kit  
(Qiagen), according to the manufacturer’s protocol. cDNA 
was synthesized from 6μl of RNA using Superscript III 
reverse transcriptase (Life Technologies) with random  
hexamer primers. PCR reactions were performed using 
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GoTaq DNA polymerase (Promega) and primers listed in 
Supplementary data 2. First and second round reactions 
were performed using 2μl of template under the following 
conditions: initial denaturation at 94°C for 60 seconds and 
30 cycles of [18 seconds at 94°C, 21 seconds at 50°C and 
60 seconds at 72°C].

      �To confirm that the lack of detection of HCV by PCR in 
these samples was not due to a degradation of encapsidated 
viral RNA, we also screened cDNA samples for a positive 
control virus. To do this, we screened a total of 575 samples 
(all samples except KReC cohort) combined into 51 pools, 
each made up of 10–13 samples (50ul each) using a PCR 
specific for human pegivirus-1 (HPgV), using previously 
described methods26. This is sufficiently common in the 
human population to function as a reliable positive control.

v    �PARV4 DNA: DNA was initially extracted from pooled 
serum samples (50μl each of 10 samples) using the DNeasy 
blood and tissue kit (Qiagen), according to the manufactur-
er’s protocol. For deconvoluted pools and complete genome 
amplification, 50μl samples were re-extracted individually 
using the same protocol. PCR reactions were performed 
using GoTaq DNA polymerase (Promega) and cycling con-
ditions described as above for HCV, using primers listed 
in Supplementary data 2. Direct amplicon sequencing for 
PARV4 was performed using BigDye Terminator v3.1 
(Applied Biosystems), according to manufacturer’s instruc-
tions with both second round primers. Sequencing reac-
tions were read by Edinburgh Genomics (The University of 
Edinburgh, Edinburgh, Scotland) and assembled using SSE 
v1.227.

IFN-gamma ELISpot assays
We used cryopreserved PMBCs from 14 subjects who were  
PARV4 IgG positive, but without PARV4 viraemia (7 children  
from Kimberley, South Africa, and 7 adults enrolled via the 
Thames Valley Cohort) to screen for ex vivo CD8+ T cell  
responses using IFN-gamma ELISpot assays. Using methods 
as previously described28, we quantified IFN-gamma responses  
to a bank of PARV4 overlapping peptides (OLPs) spanning  
PARV4 NS, VP and ARF proteins (for peptide sequences see  
Supplementary data 3, and for a map of the PARV4 proteome, 
see our previous review2). Subjects and ELISpot data are listed in  
Supplementary data 4.

Based on responses by HLA-B*5703-positive subjects, we  
identified a putative epitope within OLPs 9.6 and 9.7. We syn-
thesized three truncations of this epitope (supplied by Schafer-N, 
Denmark; >80% purity; supplied as lyophilized powders and 
then dissolved in DMSO) as follows: 8-mer TRITMFQF, 9-mer  
QTRITMFQF, and 10-mer LQTRITMFQF that most closely 
matched the binding motif for HLA-B*57:03 (namely A/S/T 
at position 2 and F/W/Y at the C-terminal position of the  
epitope)29. Using cells from a PARV4 IgG-positive subject  
recruited from the Thames Valley Cohort (Patient ID N087), we 
tested IFN-g ELISpot responses to serial dilutions of these three 
putative optimal epitope truncations.

Statistical analysis
GraphPad Software (Prism v.6; http://graphpad.com/) was used 
for data analysis, using Fisher’s exact test to identify significant 
relationships between categorical variables, and Mann-Whitney U 
test for continuous non-parametric data. We used the online logis-
tic regression calculator at Google Sheets (https://www.google.
co.uk/sheets/about/). To investigate whether (i) HLA Class I  
genotype is predictive of PARV4 IgG status, and (ii) PARV4 IgG 
status is predictive of either HIV RNA viral load or CD4+ T cell 
count, we constructed receiver operating characteristic (ROC) 
curves. As previously described17, our approach was to build pre-
dictive models using regularized logistic regression, then esti-
mate the out-of-sample (using 10-fold cross validation) predictive  
accuracy of the models using ROC curves. This approach allowed 
us to jointly test for association between all HLA alleles and  
PARV4 status despite a relatively small cohort.

Phylogenetic analysis
The evolutionary histories were inferred for PARV4 sequences 
using maximum likelihood methods implemented using the  
MEGA 6.0 software package30. The optimum maximum likelihood 
model (lowest Bayesian information criterion score and typically 
greatest maximum likelihood value) for the nucleotide sequence 
alignments was first determined and used for phylogenetic recon-
struction. These were the Kimura 2-parameter model with a  
gamma (γ) distribution for partial VP1 sequences, and the Tamura 
3-parameter model with a gamma (γ) distribution for complete  
NS and complete VP1 sequences.

Results
Data visualization
In order to allow visualization of coinfection data subdivided by 
organism (HBV/HCV/HIV/PARV4), cohort location, sex, and 
adult/child, we developed a visualization tool using highcharter 
(A Wrapper for the ‘Highcharts’ Library. R package version 0.5.0. 
https://CRAN.R-project.org/package=highcharter Joshua Kunst 
(2017)). Our visualization can be accessed at the following link: 
https://purl.oclc.org/coinfection-viz and the code is deposited here: 
doi, 10.6084/m9.figshare.475070231.

PARV4 IgG prevalence is higher in adults than children
Overall, PARV4 IgG prevalence in this study was 268/632 (43%). 
Table 1 shows the breakdown of seroprevalence by cohort. Con-
sistent with our previous findings11, adults were significantly more 
likely to be seropositive than children (238/492 (48%) in adults vs. 
50/234 (21%) in children; p<0.0001; Figure 1A). We also observed 
this relationship within the Kimberley cohort (22/43 adults vs. 
50/234 children; p<0.0001; Figure 1B). Among children age 0–10 
years, there was a trend towards an increase in PARV4 seropreva-
lence over time (Figure 1C).

Co-infection analysis: PARV4 IgG is associated with HIV, 
but not with HBV or HCV
We identified a significant association between PARV4-IgG  
status and HIV infection (p=0.002; Figure 1D). This relation-
ship also holds among adults, and in the single setting of Durban 
(p=0.002, Figure 1E; p=0.0002, Figure 1F, respectively). Similarly, 
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Figure 1. Relationship between PARV4 IgG status and age (A–C), HIV status (D–G), and HBV status (H–K). Boxes show median, 25th and 75th 
centiles; whiskers show 5th–95th centiles. P-values by Fisher’s exact test (bar charts), linear regression (scatter plot), and Mann Whitney U test 
(box and whisker plots). Denominator stated on each panel varies based on availability of relevant data.

in children there was a trend towards higher PARV4-IgG positiv-
ity in the context of HIV infection, although this did not reach  
statistical significance (p=0.1; Figure 1G). PARV4 and HBV 
infection were not statistically associated among 557 patients 
(p=0.3; Figure 1H). No subject in this study was positive for HCV 
RNA. However, 17 out of the 51 sample pools were found to be  
positive for our control virus, human pegivirus-1, suggesting an 
overall prevalence comparable to previous reports32 and supporting 
a true absence of HCV viraemia.

Among HIV-infected adults, there was no significant relationship 
between PARV4 IgG status and CD4+ T cell count in Gaborone 
or Durban (Figures 1I and J, respectively), and in children there 

was no relationship between PARV4 IgG and CD4+ percentage  
(Figure 1K). There was also no relationship between PARV4 and 
HIV viral load (data not visualised). On logistic regression analysis 
of 557 subjects for whom we held a complete dataset (data available 
for all variables), PARV4 IgG status remained associated with HIV 
status (p<0.0001), but no relationship was seen with sex, cohort 
location, adult/child or HBsAg status.

Lack of association between HLA Class I genotype and 
PARV4 IgG status
Given the established protective role of certain HLA alleles or 
loci in control and clearance of viral infection in previous stud-
ies of these populations17,20,21, we sought any evidence for a  
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relationship between HLA Class I genotype and PARV4 serosta-
tus among HIV-positive individuals. We found no such association, 
either using the entire class I genotype (ROC Area Under the Curve 
[AUC]=0.62, compared to AUC=0.60 when only cohort labels were 
used as predictors; p=0.18 against null model that AUC is greater 
when including HLA alleles as predictors), or analyzing independ-
ently by class I locus (AUC=0.62, 0.62, and 0.58, for HLA-A, 
HLA-B and HLA-C, respectively; p>0.1 for all comparisons).

PARV4 sequences from South Africa cluster with 
Genotype 3 sequences from Cote d’Ivoire
To investigate the prevalence of PARV4 viraemia, with a particu-
lar interest in exploring the idea that reactivation of latent virus 
may occur in the variable states of immunocompromise associ-
ated with HIV or pregnancy, we screened this composite cohort for 
evidence of PARV4 viraemia using a previously described tetra-
parvovirus PCR33. We identified five viraemic subjects among our 
cohort of 695 (0.7%): three HIV-negative children from Kimberley 
(KReC009, KReC089 and KReC102), one HIV-positive child from 
Kimberley (K172C) and one HIV-negative antenatal woman from 
Durban (Masi039).

Phylogenetic analysis of the tetraparvovirus PCR amplicons  
from the five viraemic individuals revealed that all were genotype-3 
(Figure 2A). From two individuals, K172C and Masi039, we gen-
erated complete viral genome sequences using overlapping PCR; 
the fully assembled sequences have been submitted to GenBank 
(accession numbers KU871314 and KU871315). For the remain-
ing individuals, only a subset of overlapping genome PCR reac-
tions was positive (one or two of the seven reactions), so we were 
unable to assemble a full genome sequence. This suggests a low 
titre of virus in these individuals and further repeat reactions could 
not be performed due to limited sample volume. However, we have 
submitted the partial VP1 sequences used for the phylogenetic 
analysis of these three individuals to GenBank (accession numbers 
KX681683, KX681684 and KX681685).

The K172C and Masi039 sequences show a high degree of simi-
larity to each other showing >99% nucleotide identity across the 
genome. Phylogenetic analysis of the complete NS and VP1 coding 
regions (Figures 2B and C) again demonstrates a clear grouping 
with previously reported PARV4-genotype 3 sequences, particu-
larly those obtained from individuals in Cote d’Ivoire34.

High breadth and magnitude of CD8+ T cell responses to 
PARV4
Among 14 individuals screened for ex vivo CD8+ T cell responses, 
we demonstrated IFN-gamma ELISpot responses to peptides span-
ning all three PARV4 proteins (Figure 3A), including high mag-
nitude responses (mean response >1000 spot forming cells/106 
PBMCs) to NS1, NS4, ARF1 and ARF2 (Figure 3B). Children 
made a median of 5 responses (range 1–12), while adults made 
fewer responses (median 3, range 1–5), but this difference did not 
reach statistical significance (p=0.12, Mann Whitney U test; data 
not visualised). We tested one predicted optimal epitope using 
three possible peptide truncations found within OLPs 9.6 and 9.7,  

confirming that the peptide QF9 (QTRITMFQF) found within 
PARV4 NS protein is the most likely HLA-B*57:03 restricted 
epitope (Figure 3C).

Discussion
Epidemiology of PARV4 and HIV, HBV and HCV  
mono-infection and co-infection
In keeping with previous studies of sSA, we report a PARV4 IgG 
seroprevalence that is strikingly higher than in Western Europe. 
In this setting, we conclude that there is no evidence that HBV 
or HCV infection is associated with PARV4 in sSA. The HBsAg 
data reported here are broadly in keeping with previous epidemio-
logical studies of southern Africa35; however, ongoing surveillance  
will be required in these populations to determine the chang-
ing prevalence of infection following more widespread introduc-
tion of the prophylactic HBV vaccination in infancy22,36. The lack 
of HCV in these cohorts is of interest and in striking contrast to 
high rates of HBV. Antibody screening for HCV can be problem-
atic, both because of reported concerns regarding false positive 
tests, and because of the problem in discriminating between active  
infection and previous cleared infection37,38. We therefore aim to 
have increased both the sensitivity and specificity of testing by 
using a molecular test for HCV.

Here we have shown a significant relationship between HIV infec-
tion and PARV4 serostatus in adults. A previous analysis of a smaller 
cohort reported an unexpected negative correlation between PARV4 
IgG and HIV status in children11, but no such effect was seen in 
this expanded cohort; it is plausible that the previous effect was 
confounded by another factor (of which age is the most likely). The 
reasons for the difference in seroprevalence and associations with 
BBVs remain uncertain, but in this case may relate to increased 
susceptibility to PARV4 infection in the setting of reduced cell-
mediated immunity mediated by HIV infection, or may relate to 
characteristics or behaviours of the host population, environmental 
factors, viral genetics, or a combination of these factors14.

In the three settings studied here, there is no evidence that PARV4 
serostatus is associated with HIV progression, either in adults or 
children. A previous paper that reports an association between posi-
tive PARV4 IgG status and more advanced HIV disease acknowl-
edges the potential confounding influence of co-infecting HCV in 
PARV4-positive individuals39.

PARV4 viraemia and phylogeny
Even in this cohort from an endemic region, enriched for both  
pregnancy and HIV infection, we were able to amplify PARV4  
DNA from only <1% of all individuals screened. Four of the five 
viraemic individuals were children, who may be more likely to 
be experiencing a primary infection. Interestingly, three of the 
subjects with low-grade viraemia were KReC (Kimberley Res-
piratory Cohort) children, concordant with the hypotheses either 
that PARV4 infection might cause or contribute to respiratory ill-
ness in young children, or that respiratory tract infections make  
children more vulnerable to primary PARV4 infection or to  
low-grade reactivation of viraemia. This association has been  
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Figure 2. Phylogeny of PARV4 sequences detected in serum from five individuals from South Africa. Phylogeny inferred using maximum 
likelihood trees from partial VP1 (A), complete NS (B) and complete VP1 (C) nucleotide sequences (equivalent to nucleotides 3067-3310, 
283-2271 and 2378-5035, respectively, of the PARV4 reference sequence NC007018). In each case, the new sequences derived from South 
Africa are highlighted (lavender bars). Bootstrap support of branches (500 replications) is indicated.
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Figure 3. IFN-gamma CD8+ T cell responses to PARV4 peptides determined by ELISpot assays. Data in (A) and (B) are derived by 
screening 14 subjects positive for PARV4 IgG recruited from the Kimberley (n=7, children) and Thames Valley (n=7, adults) cohorts. None of 
these subjects was PCR positive for PARV4 from serum. Raw data showing the responses made by each individual subject can be viewed 
in Supplementary data 4. (A) Proportion of 14 screened subjects who made each individual response. (B) Mean magnitude (box) and range 
of response (whiskers); the dashed horizontal line allows visualization of peptides for which the mean response is >1000 SFCs/106 PBMC. 
Responses to NS peptides are shown in grey, to VP peptides in black, and to ARF in hatched bars. (C) Prediction of a novel HLA-B*5703-
restricted CD8+ T cell epitope in PARV4 NS protein. Cryopreserved PBMCs from PARV4 IgG-positive adult subject N087 (HIV-positive 
adult recruited via the Thames Valley cohort, HLA class I genotype HLA-A*0301/-A*3001/-B*5703/-B*5801/-C*0602/-C*1801) were screened 
by IFN-gamma ELISpot for responses to peptide truncations from PARV4 NS protein (sequences within OLPs 9.6 and 9.7) at different 
concentrations. Plots and error bars show mean and SEM of assays performed in triplicate. On the basis of the HLA-B*5703 binding motif 
and the greatest magnitude responses, the putative optimal epitope is HLA-B*5703-QF9 (QTRITMFQF).
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previously postulated12, but not further explored. Future careful 
studies, enrolling large numbers of study subjects and collecting 
detailed prospective diagnostic data would be required to expand 
on this investigation.

Although our approach to detecting viraemia represents only a 
cross-sectional ‘snap shot’, these data suggest that acute infections 
are relatively short-lived, and that subsequent immune containment 
is generally successful. Overall, therefore, these data do not support 
the hypothesis that either vertical or blood-borne transmission is 
likely to be highly epidemiologically significant in driving the high 
PARV4 seroprevalence in sSA.

We confirmed the identity of the circulating viruses as  
genotype-3, in keeping with other sequences from Africa40. 
Sequence differences between genotypes could potentially con-
tribute to a phenotype difference that accounts for the differing 
transmission and prevalence of PARV4 between Africa and  
Europe; more work is needed to elucidate the biological effect of 
sequence differences between genotypes.

CD8+ T cell responses
Although viraemia was uncommon, we found CD8+ T cell 
responses to PARV4 spanning the entire viral proteome, and of par-
ticularly high magnitude in certain regions of NS and ARF proteins. 
These responses, in the absence of detectable viraemia, support the 
view that PARV4 may behave similarly to chronic herpes viruses, 
particularly CMV, in which a latent reservoir underpins episodic 
reactivation, maintaining T cell responses in the long term41.  
Previous reports quantifying the CD8+ T cell response using the 
same in vitro approach have focused on NS peptides as being  
immunodominant5,7. These current data therefore represent new 
evidence for significant CD8+ T cell responses to both VP and ARF 
proteins, with particularly striking high magnitude responses to 
ARF.

Caveats and limitations
The amalgamation of subjects recruited within pre-existing  
cohorts has allowed us to make some new advances in a manner 
that is cost and time-effective, but this leaves certain important 
questions unanswered. This work is limited in being a retro-
spective approach, by the limited and variable demographic  
characterization of the cohorts, and by the potential confounding 
factors in operation. In particular, differences observed between 
cohorts may be related to factors such as age and sex of study  
participants.

Conclusions
In summary, these data represent an advancement of our under-
standing of PARV4 in sSA, mainly by permitting us to study 
a larger cohort than has previously been amalgamated in this  
setting. However, much remains to be elucidated about the  

epidemiology (specifically in understanding routes of transmis-
sion and differences between geographical settings), as well as an  
ongoing need to determine the clinical significance of this virus. 
These questions are likely to be particularly important for African 
populations in which PARV4 is so highly endemic.

Data availability
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ELISpot assays.
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 Klaus Hedman
Department of Virology, University of Helsinki, Helsinki, Finland

The manuscript by Sharp et al. confirms and extends our knowledge on the epidemiology and T-cell
immunity of an emerging human virus, in a comprehensive sub-Saharan cohort. The methods, data and
conclusions appear on the whole appropriate. I have only one major and a few few minor
questions/comments for the authors' consideration.

Major
Page 5, para "Co-infection analysis: PARV4 is associated..." In complete absence of positive HCV
findings in this manuscript, albeit by PCR, it does not feel appropriate to conclude (here or
elsewhere in this manuscript, e.g. Discussion) that "PARV4 IgG is associated...not with...HCV." We
cannot comment on an association or its absence with a counterpart that did not occur in the
material studied, can we?

Minor
Page 3, para "In addition, we used cryopreserved PBMCs from 7 African adults...".
The authors might want to mention here also the 7 children that were studied (p. 5); and the
corresponding PARV4 statuses?
 
Page 3, last para, "KReC", please spell out, perhaps also in Abbreviations.
 
Page 5, para "To confirm that the lack of detection of HCV by PCR..." As a matter of fact, Ref. 26 
concludes: "...active infections with HHpgV-1 were infrequently detected in blood, even in groups
that had substantial parenteral exposure." Does such a virus qualify for a positive control? Or have
higher prevalences been observed in other papers that could be cited here?
 
Page 10 second para, "suggest that acute infections" - do the authors mean "acute" or "active" (or
"active primary")?

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
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Yes

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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 Eric Delwart
Blood Systems Research Institute, San Francisco, CA, USA

The manuscript by Sharp et al. describes the relationship between sero-positivity to a human parvovirus
(PARV4) and the detection of anti HIV antibodies, HIV viral loads, HBsAg detection and HCV RNA in a
large number of children and adults from sub-Saharan Africa (sSA). As previously reported in sSA a large
fraction of tested samples (42%) were sero-positive for PARV4 with a statistically greater number of those
also being HIV sero-positive rather than HIV sero-negative. Adults showed a greater rate of PARV4
antibody detection than children. No HCV RNA was detected and there was no correlation between
PARV4 antibody detection and presence of HBsAg.

This is a nicely performed study also showing that children are being infected by a still unknown route (4/5
PARV4 DNA positive samples were from children and children showed antibody positivity rate of 21%).
The higher rate of PARV4 antibodies in HIV infected individuals is reminiscent of the situation in
Europe/US where PARV4 infection focused in adults with HIV and/or HCV infections and heamophiliacs,
presumably through injection drug use or other forms of blood and blood products contacts. The current
studies also confirms the predominance of PARV4 genotype 3 in sSA while European and North
American are mostly infected with genotypes 1 and 2.

Whether PARV4 is acquired through the same routes as HIV seems likely although how children become
infected remains unclear. Infection in children may occur through the usual routes for parvoviruses which
includes both the respiratory track (human parvovirus B19) or the fecal oral route (canine parvovirus).
Unlike the situation in adults the rate of PARV4 antibody detection in children was not higher in HIV
positive children.
 
No association was found between PARV4 antibodies and either CD4 counts and HIV viral load. The
persistent high level of CD8 T cell response to PARV4 peptides seems to indicate the lingering presence
of antigens despite low rate of detectable viremia (5/695). This is interpreted as reflecting occasional
reactivation from latent reservoirs although replication below the level of detection in the still unknown
cellular target of PARV4 could also account for the strong CD8 responses.  
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cellular target of PARV4 could also account for the strong CD8 responses.  
 
Last word abstract could replace “…clinical significance of this organism”. by “…clinical significance of
this recently identified virus”.
 
Page 6 it is mentioned that there is no relationship PARV4 antibodies with sex, cohorts, location,
adult/child or HBsAg status. Isn’t the statement about adult/child contradicted by claim in second
paragraph of results that adults have greater rates of PARV4 antibodies than children?
 
In discussion insert reference about sero-prevalence being strikingly higher than in Western Europe.
 
The following sentence could use more clarity: Overall, therefore, these data do not support the
hypothesis that either vertical or blood-borne transmission is likely to be highly epidemiologically
significant in driving the high PARV4 seroprevalence in sSA.
 
Couldn’t the high rate of PARV4 IgG in children reflect at least in part vertical infection from infected
mothers? Couldn’t blood borne infection account for the association with HIV infection acquired through
injection drug use? Is the lack of association with HBsAg used to infer that PARV4 not transmitted through
injection drug use? That paragraph could be expanded. Couldn’t PARV4 be transmitted by both the oral
route in children and by blood contact in adults much like parvovirus B19?
 
PARV4 is compared to CMV but could also be compared to parvovirus B19 whose DNA has been
detected in skin tissues for years after infection.
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