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ABSTRACT: Descriptors calculated from molecular structure information can be
used as explanatory variables in Bayesian optimization (BO). Even though
structural and descriptor information can be obtained from various databases for
general compounds, information on highly confidential compounds such as
pharmaceutical intermediates and active pharmaceutical ingredients cannot be
retrieved from these databases. In particular, determining the stable structure and
electronic state of a compound via quantum chemical calculations from descriptor
information requires considerable computational time. Although descriptor
information can be obtained using density functional theory (DFT), which has a
relatively light computational load, only conventional combinations of basis sets and
functionals can be selected before experiments instead of the best ones. Few studies
have discussed these effects on the search performance of BO, and good search
performance is highly dependent on the application. Therefore, we developed a
method to improve the search performance of BO by using descriptors computed from several combinations of basis sets and
functionals. The dataset obtained from averaging multiple descriptor sets exhibited better BO search performance than that of a
single descriptor dataset. In addition, the more descriptor sets used for averaging, the better the search performance. This method
has a relatively small computational load and can be easily used by those who are unfamiliar with quantum chemical calculations.

■ INTRODUCTION
The search for an optimal solution is a crucial area of research
in machine learning, neural networks, robotics, aerospace
engineering, and the design of experiments (DoE). In this
context, Bayesian optimization (BO)1,2 has been widely
explored as a solution. For example, BO is used to improve
search performance and conduct multi-objective optimization
to accelerate the development of new materials.3,4 It was
previously used to determine the Pareto optimal solution for
the optimal design of chemical reactors using computational
fluid dynamics (CFD), which reduced the number of CFD
calculations. Moreover, it was used to minimize power
consumption and maximize gas retention in a stirred tank
reactor.5 Recently, constrained BO has been applied to reduce
the generation of invalid molecular structures while using the
latent space of variational autoencoders.6 Additionally, it has
been applied to identify the most stable molecular conformers.
Finding low-energy molecular conformers is challenging
because of the high dimensionality of the search space and
the computational cost of accurate quantum chemical methods
for determining conformer structures and energies. However,
combining BO with density functional theory (DFT) reduces
the cost of quantum chemical calculations by ∼90%.7

Therefore, adaptive experimental design methods using BO
have been studied and applied in various fields.

However, there are few examples of its application in the
optimization of reaction conditions. In 2021, a framework for
Bayesian reaction optimization and an open-source software
tool that allows chemists to easily integrate optimization
algorithms into their laboratory practices were developed.13 In
that study, a large benchmark dataset for palladium-catalyzed
direct arylation was collected through high-throughput
experimentation (HTE) to compare the number of experi-
ments required to reach the optimal solution. BO optimized
the reaction conditions faster than experts in organic synthesis,
and the descriptors obtained from the molecular structures via
DFT calculations exhibited a higher search performance than
that obtained when the compounds were treated by one-hot-
encoding (OHE).8,9

Even though structural and descriptor information can be
obtained from various databases for general compounds, highly
confidential compounds such as pharmaceutical intermediates
and active pharmaceutical ingredients cannot be retrieved or
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obtained from databases. In particular, when the stable
structure and electronic state of a compound must be
determined by quantum chemical calculations, obtaining
descriptor information requires considerable computational
time. Approximate calculations led to reduced accuracy, and
new methods have been developed to reduce these errors.17

Although descriptor information could be obtained using DFT,
which has a relatively low computational load, selecting the
best basis sets and functionals before conducting experiments
is difficult, as only the typical conventional combinations are
selected. Few studies have discussed these effects on the search
performance of BO, and a good search performance depends
on the application.

Therefore, in this study, we developed a method to improve
the search performance of BO by using descriptors computed
by adopting several combinations of basis sets and functionals.
Descriptors were computed for the two reactions studied in
Shields et al.,8 direct arylation and Suzuki−Miyaura coupling
reactions, and the search performance in BO was compared
using datasets created from each set of descriptors.
Subsequently, we identified the best method to select the
descriptor sets for BO and confirmed its effect on search
performance in BO.

■ METHODS
Bayesian Optimization. The Gaussian process regression

(GPR) model was used for the BO. The Gaussian process
GP(μ(x), k(x,x′)) represents a distribution of the functions
characterized by a prior mean μ(x) and a kernel function
k(x,x′). Matern52 was selected as the kernel function k(x,x′).
Previously optimized hyperparameters8 were used for the GPR
and BO in this study.
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where r is the distance between the experimental conditions, α
is the output scale parameter, and l is the length scale
parameter. The Gaussian process posterior distribution mean μ
under the experimental condition x was expressed as follows:
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n
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where k(x) is the covariance vector between the experimental
condition x and the training conditions, K is the covariance
matrix between all training conditions, σn2 is the variance of
the estimated noise, I is the identity matrix, and y is the vector
of responses corresponding to the training data. The variance
in the posterior distribution of the Gaussian process under
experimental condition x was expressed as follows:

x x x x xk k K I k( ) ( , ) ( ) ( ) ( )T
n
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Predictions are normally distributed in GPR; therefore, the
hyperparameters can be calculated using the maximum
likelihood estimation. The hyperparameters were determined
such that the following log-likelihood function was maximized:
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The expected improvement (EI), which is the expected value
of I(x), is generally selected as the acquisition function in BO.
The improvement I(x) represents an increase in the objective
function f(x) relative to the best outcome f+.
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The expectation value of I(x), EI(x), for a given experimental
condition x has the following form:
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where I(x) is the improvement in the surrogate mean
prediction μ(x) diminished by δ, an empirical exploration
parameter, which was set to 0.01, a commonly used value; σ(x)
is the surrogate standard deviation; and Φ and φ are the
cumulative distribution function and probability density
function of the standard normal distribution, respectively.

The following experimental conditions were selected based
on the value of EI(x). Considering that the experimental
conditions are expressed as a combination of various
compounds, the chemical space is finite, and x can be selected
such that the expected value of EI(x) is the highest.

xEIarg max ( )x X (9)

If the experiments are conducted in parallel, the Kriging
Believer algorithm14 can be used to iteratively compute x, for
which EI(x) is the maximum. This was achieved by adding the
Gaussian process posterior mean μ(x) to the known data and
updating the GPR model. Hence, we used the following
procedure for calculating the BO, and the corresponding
flowchart is presented in Figure 1

1. The experimental space was defined (e.g., solvent,
ligand, and temperature), and the initial samples x
were selected. If the information on samples x and the
corresponding y was already available, Step 3 was
directly conducted.

2. The experiments were performed based on the selected
samples x.

3. A GPR model was built using the information on
samples x and the corresponding y, and the EI values of
all samples were calculated. All x and y were normalized
and used in the calculation.

4. The sample with the highest EI was selected for
subsequent experiments. If the experiments are con-
ducted in parallel, the calculations are repeated.

5. Experiments were conducted based on the selected
samples.

6. Steps 3−5 were repeated until y reached the target value.
Dataset Creation. A group of multiple descriptors was

created from the structural information of compounds
obtained by DFT calculations, and a dataset was generated
by averaging the descriptor sets. The obtained dataset was then
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used to build a GPR model and perform BO. The calculation
procedure is illustrated in Figure 2 and described below:

1. The molecular structures (MOL files, etc.) were
prepared for m compounds.

2. DFT calculations were performed with n combinations
of various basis sets and functionals using Gaussian
quantum chemical calculation software.15

3. Zero-, one-, two-, and three-dimensional descriptors
were computed using the Mordred10,12 and Codessa16

descriptor computation methods.
4. The k descriptor sets obtained from the DFT

calculations were averaged and combined with a
continuous-valued explanatory variable x and an
objective variable y to create a dataset. The number of
descriptor sets (k) depends on the number of variables,
compounds, basis sets, functionals, and the method of
combination.

5. A GPR model was constructed using the created dataset,
and the condition with the highest acquisition function
value in the BO was selected as the next experimental
condition.

■ RESULTS AND DISCUSSION
Datasets. The search performances of the BO of the direct

palladium-catalyzed arylation (Scheme 1) and Suzuki−
Miyaura coupling (Scheme 2) reported by Shields et al.8

were verified using our strategy.
In the case of the direct palladium-catalyzed arylation

(Reaction A), the experimental conditions were fixed for
equivalent reaction substances, catalysts, and ligands, and 1728
combinations of three reaction temperatures, three substance
concentrations, twelve ligands, three bases, and four solvents
were used (Table S1). Only ten conditions resulted in yields of
≥95%, accounting for 0.58% of the dataset, and only seven
conditions exhibited yields of ≥98%, accounting for 0.41% of
the dataset. Because ligands, bases, and solvents are categorical
rather than quantitative variables, we used Mordred10,11 to
convert the molecular structures of the MOL files into zero-,

Figure 1. Procedure for Bayesian optimization (BO).

Figure 2. Procedure for creating datasets for BO.
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one-, and two-dimensional molecule descriptors. Additionally,
the molecular structures calculated by DFT using the quantum
chemical calculation software Gaussian 16 W and Gauss View
6.0.1615 were converted into three-dimensional molecular
descriptors using the molecular descriptor calculation software
Codessa 3.3.16 All resulting descriptors were used for the
calculation. In the DFT calculations, 10 basis sets (STO-3G,
3−21G, 3−21Gd, 6-31G, 6-31Gd, 6-31Gdp, 6-31G+d, 6-
311G, 6-311Gd, and 6-311Gdp) and the B3LYP functional,
commonly used for organic synthesis calculations, were used.
The descriptors obtained were reduced to 20 variables by
principal component analysis. The cumulative contribution
ratio was >99%.

In the case of the Suzuki−Miyaura coupling (Reaction B),
the experimental conditions were fixed for equivalent reaction
substances, bases, solvents, catalysts, and ligands, and 3696
combinations of four electrophiles, three nucleophiles, eleven
ligands, seven bases, and four solvents were used (Table S4).
Only 71 conditions exhibited yields of ≥95%, accounting for
1.92% of the dataset, whereas only 10 conditions exhibited
yields of ≥98%, accounting for 0.27% of the dataset. Because
electrophiles, nucleophiles, ligands, bases, and solvents are
categorical variables rather than quantitative variables, they
were converted into descriptors for the calculations. The
descriptor calculation method and postprocessing were the
same as those for Reaction A.
Search Performance Benchmarking. BO was conducted

for Reactions A and B under various conditions to compare
search performances. The reactions, number of descriptors,
target yields, and number of proposed experiments (per
round) for each case are listed in Table 1. In Cases 1, 2, and 4,
we used all of the descriptors calculated from the molecular
information obtained by DFT calculations using all 10 basis
sets. In Case 3, for the categorical variables ligand, solvent, and

base, we used descriptors calculated from the molecular
information obtained by DFT calculations with the basis sets
STO-3G, 3−21G, and 6-31G. In Cases 5 and 6, for the
categorical variables electrophile, nucleophile, ligand, base, and
solvent, we used descriptors calculated from the molecular
information obtained by DFT calculations with the basis sets
STO-3G and 6-31G. The initial conditions were determined
randomly, and more than 10,000 calculations were performed
for each case to eliminate the influence of random numbers.
The mean and standard deviation of the number of rounds
required to reach the target yield were compared. However, no
relationship was identified between the choice of basis sets,
functionals, and search performance in BO (Tables S7−S12),
suggesting that more rigorous DFT calculations would not
necessarily have resulted in better search performance. These
results were used as a benchmark for the evaluation of the
dataset creation and for the search performance when a single
descriptor set was used.
Comparison of the Methods Used for Creating

Descriptor Datasets. To confirm the influence of the
descriptor dataset on the search performance of BO, we
compared the search performance using seven methods: one
where a new dataset is generated by averaging descriptor sets
(the method proposed in this study), another where all of the
descriptors are used as a single dataset, and the other five in
which datasets are created by selecting sets of descriptors to be
used in BO (random selection, similarity of descriptor sets: D-
optimality and mean distance from the center of gravity,
prediction performance of the GPR model, and acquisition
function EI value of BO). The calculation procedure for all of
the methods was almost the same as the abovementioned
dataset creation method (Figure 2), except for the dataset
selection criteria. In the descriptor set selection method, the
descriptor sets used in the BO were reselected for each
calculation to create the dataset. When multiple descriptor sets
were selected (ensemble), they were selected in the order of
the highest or in the order of the lowest of the respective
evaluation indices. Details of the five methods are presented
below.

• Random selection of a descriptor set: A uniform random
number was used to randomly select a group of
descriptors for BO.

Scheme 1. Reaction A: Direct Pd-Catalyzed Arylation

Scheme 2. Reaction B: Suzuki−Miyaura Coupling

Table 1. Reactions A and B under Different Conditions for
Comparing Their Search Performances in BO

case no. 1 2 3 4 5 6

reaction A A A B B B
number of descriptor sets 10 10 27 10 32 32
target yield 98 95 98 95 98 95
number of proposed experiments 5 5 5 5 10 5
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• Selection based on diversity (D-optimality and mean
distance from the center of gravity): The poor search
performance of BO can be attributed to its inability to
escape a local optimum. Therefore, we selected
descriptors that were as dissimilar as possible to obtain
diverse conditions. First, to evaluate the similarity of the
descriptor sets, we vectorized (flattened) the descriptor
sets and combined them into a single dataset. The
average distance from the center of gravity and the D-
optimality of each created descriptor set were
determined. The greater the average distance from the
center of gravity or the D-optimality, the more dissimilar
the descriptor sets were considered.

• Selection based on the prediction performance of the
GPR model: Assuming that a higher generalization
performance of GPR will lead to a proportionally high
search performance of BO, we cross-validated the GPR
models constructed in BO, evaluated their generalization
performance using mean squared error (MSE), and
selected the model (descriptor set) with the lowest MSE
for a conditional search. Because this method requires
validation for all GPR models and the computational
load is significantly large (Figures S1 and S2), the
number of folds for cross-validation was set to the
number of proposed experiments (per round). Because
cross-validation cannot be performed when the number
of proposed experiments is one, the number of proposed
experiments should be at least five.

• Selection based on expected improvement: Assuming
that the search performance of BO would be higher for a
condition with a high expected improvement interval
(EI), all of the acquisition function values (EI)
calculated for the multiple BOs were stored, and the
models with the highest EI values were adopted to
propose the next experimental condition. However, the
computational load becomes relatively large owing to
the necessity of a GPR model and EI calculations for all
of the created descriptor datasets (Figures S1 and S2).

For the six cases listed in Table 1, we used twelve different
dataset creation methods (Table 2) to check for differences in
their search performances. The basis function, functional,
number of datasets, termination condition, and number of
proposed experiments (per round) for each case are listed in

Table 1. The initial conditions were determined randomly, and
more than 10,000 calculations were performed for each case to
minimize the effects of the initial conditions and random
numbers as much as possible. Two types of evaluations were
conducted to compare the methods for selecting descriptors
for BO: one using a single descriptor set and the other using an
ensemble of multiple (five) descriptor sets. In Table 2, the
numbers listed after the method name indicate the number of
descriptor sets selected.

Figures 3 and S3−S7 show the search results of the BO
performed using different dataset creation methods. The

horizontal axes in the figures indicate the average number of
rounds required to reach the target yield, and the vertical axes
indicate the standard deviation. The notations in the legend
are the names of the dataset creation methods, and the datasets
indicate the search results for the BO performed using the
previously established benchmark descriptor set. The method
using the average of all descriptor sets (ave) obtained in the
DFT calculations showed the highest search performance
among all cases, and both the mean and standard deviation
were smaller than those obtained for a single set of descriptors
and the other methods. Notably, even in the case of
significantly decreased search performance for many methods
in Case 4 (Figure S5), the outlier descriptors did not have a
significant effect on the search performance. Moreover, the
method of selecting descriptor sets did not significantly
improve search performance, regardless of the number of
selected descriptor sets (single or multiple). This could be
explained by the absence of a high correlation between the five
indices used to select descriptors and the search performance
in BO. In addition, the method with high diversity did not
improve the search performance owing to the absence of a
relationship between the diversity of the dataset and the search
performance of BO. Although the method involving all of the
descriptor sets showed better search performance than the
method involving some descriptors, it was not as effective as
the method involving the average of all descriptors. Figures 4
and S8−S12 show the cumulative relative frequency of the
number of rounds required to reach the target yield normalized
by the cumulative relative frequency of the averaging method
(ave). The horizontal axis represents the number of rounds
required to reach the target yield in each trial, and the vertical
axis represents the normalized cumulative relative frequency.

Table 2. Selection of the Dataset Creation Method

method
name

number of
selected

descriptor sets explanation

Rand1 1 random selection of the descriptor set
Rand5 5
dopt1 1 descriptor set selection based on diversity (D-

optimality)dopt5 5
dist1 1 descriptor set selection based on diversity

(average distance from the center of gravity)dist5 5
CV1 1 descriptor set selection based on the

prediction performance of the GPR modelCV5 5
EI1 1 descriptor set selection based on expected

improvementEI5 5
all 1 all of the descriptor sets combined into a

single descriptor set
ave 1 average of all of the descriptor sets used as a

single descriptor set (proposed method)

Figure 3. Mean and standard deviation of the number of experimental
rounds for Case 1. Case descriptions are summarized in Table 1.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c04891
ACS Omega 2023, 8, 33032−33038

33036

https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c04891/suppl_file/ao3c04891_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c04891/suppl_file/ao3c04891_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c04891/suppl_file/ao3c04891_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c04891/suppl_file/ao3c04891_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c04891/suppl_file/ao3c04891_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04891?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04891?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04891?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04891?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c04891?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Although the results of the first round slightly varied owing to
the effect of random numbers, the search performance of the
averaging method (ave) was higher than that of the other
methods in most cases from the second round onward.

In many cases, the dataset creation method involving the
averaged descriptor sets improved the search performance
compared to the method with a single descriptor dataset. The
search performance in Case 1 was investigated for all
combinations of the descriptors, where two, three, four, five,
eight, and ten were averaged (Figure 5 and Tables S13 and
S14). The mean and standard deviation of the number of
rounds required to reach the target yield were smaller in the
averaged descriptor sets than those obtained for the single
descriptor dataset. In addition, as the number of descriptors
used for averaging increased, the percentage improvement in
the search performance also increased (Table 3).

The performance of the BO search varied depending on the
type of basis sets and functionals selected for the DFT

calculations, which could be attributed to the errors in the
structure-optimized molecular structures and calculated
descriptors. The convergence state of the molecular structure
was also affected by other calculation conditions. For example,
the target molecule would not be represented correctly if the
initial structure is poor and the local optimum is reached, or if
the convergence is not complete because of poor setting
parameters. In general, the data obtained from analytical
instruments is highly dependent on the operator’s technique,
inter-device differences, and setting parameters, which may
lead to values with errors. Similarly, DFT calculations are
highly dependent on the initial structure of a given molecule,
convergence conditions, basis sets, functions, and other setting
parameters, which could lead to values with errors. In both
cases, the true value is unknown, and obtaining values with
errors is common. To overcome this issue in the case of
analytical instruments and obtain reliable values, measures
such as increasing the number of measurements or using the
average value of multiple observations obtained from different
instruments are adopted. Similarly, considering DFT calcu-
lations as an analytical instrument, the average value of the
structural information and descriptors obtained from multiple

Figure 4. Experimental rounds vs normalized cumulative relative
frequency for Case 1. Case descriptions are summarized in Table 1.

Figure 5. Mean and standard deviation of the number of experimental rounds with averaged descriptor sets.

Table 3. Percentage Improvement of the Average Number
of Rounds and Standard Deviation Required to Reach the
Target Using the Proposed Method Compared to Those
Obtained Using a Single Descriptor Set (A: Multi Datasets,
B: Single Dataset)

number of
descriptor

sets
number of

combinations

average number of
rounds of A compared

to that of B [%]

standard deviation of
A compared to that

of B [%]

2 45 86.7 86.7
3 120 90.8 95.8
4 210 98.1 99.5
5 252 98.6 99.5
8 45 100 100
10 1 100 100
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DFT calculations should be closer to the true value. Hence, we
believe that the search performance in BO may have improved
by using the proposed method. However, even if the averaging
approaches the true state, the space represented by the
descriptors must represent the behavior of the objective
variable that should be optimized. Assuming that the
descriptors used in the reactions in this study conform to
the abovementioned conditions, we believe that the effect may
have been achieved. Although averaging the descriptors is
simple and not novel, it achieved a considerable effect. In
addition, the computational load was small (Figures S1−S2),
and researchers with little domain knowledge can easily use it.
The validity of the proposed method was confirmed for several
reactions and combinations of descriptors, and we believe that
this method may be applicable to other synthetic reactions.
However, this strategy should be verified in other reactions
under optimized reaction conditions and should be reprodu-
cible using different combinations of basis sets and functionals.

■ CONCLUSIONS
Descriptors of chemical compounds calculated from their
molecular structure information can be used as explanatory
variables in Bayesian optimization (BO). In this study, we
created descriptor sets for direct palladium-catalyzed arylation
and Suzuki−Miyaura coupling reactions using several combi-
nations of basis sets and functionals and verified the search
performance in BO using newly created descriptor datasets.
The dataset created by averaging multiple sets of descriptors
exhibited better BO search performance than that obtained for
the dataset created from a single set of descriptors. In addition,
the percentage of improved search performance increased as
the number of descriptor sets used for averaging increased.
Furthermore, this strategy of averaging multiple descriptor sets
has a low computational load and can be easily used by
researchers with limited knowledge of quantum chemical
computations. We intend to confirm whether the proposed
method can be used for other synthetic reactions using
different combinations of basis sets and functionals in a future
study.
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