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Abstract: The emergence of immunotherapy has been an astounding breakthrough in cancer
treatments. In particular, immune checkpoint inhibitors, targeting PD-1 and CTLA-4, have shown
remarkable therapeutic outcomes. However, response rates from immunotherapy have been reported
to be varied, with some having pronounced success and others with minimal to no clinical benefit.
An important aspect associated with this discrepancy in patient response is the immune-suppressive
effects elicited by the tumour microenvironment (TME). Immune suppression plays a pivotal role
in regulating cancer progression, metastasis, and reducing immunotherapy success. Most notably,
myeloid-derived suppressor cells (MDSC), a heterogeneous population of immature myeloid cells,
have potent mechanisms to inhibit T-cell and NK-cell activity to promote tumour growth, development
of the pre-metastatic niche, and contribute to resistance to immunotherapy. Accumulating research
indicates that MDSC can be a therapeutic target to alleviate their pro-tumourigenic functions and
immunosuppressive activities to bolster the efficacy of checkpoint inhibitors. In this review, we
provide an overview of the general immunotherapeutic approaches and discuss the characterisation,
expansion, and activities of MDSCs with the current treatments used to target them either as a single
therapeutic target or synergistically in combination with immunotherapy.

Keywords: Myeloid derived suppressor cells; tumour microenvironment; immunotherapy; immune
system; immune checkpoint inhibitors

1. Introduction

The immune system is a complex and dynamic system that operates through an intricate network
of cellular interactions and transient functional states. It is involved in various biological activities
and is the sine qua non for natural defense of the human body against pathological processes.
In cancer progression, the immune system plays a pivotal role where immune cells infiltrate tumours,
co-evolving and cooperating with cancer cells to create an inflammatory and immunosuppressive
microenvironment to facilitate tumour growth and dissemination.

In the early stages of carcinogenesis, immunologically vulnerable neoplasms are contained and
abrogated by immune cells upon detection by immunosurveillance, a process where the immune
system inhibits aberrant cell growth. The elimination of immunogenic neoplasms creates a selective
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pressure that drives the propagation of non-immunogenic clones with adapted mechanisms for
immune evasion and survival. Paradoxically the immunosurveillance process against tumour
cells promotes the immunoselection of poorly immunogenic variants. The continuous cycle of
immune selection for resistant cancer variants leads to tumour escape through multiple mechanisms,
including reduced expression of tumour-associated antigens and co-stimulatory molecules, including
major histocompatibility complex (MHC) [1]. Tumour cells can also hijack mechanisms that confer
survival advantages by increasing proliferation and/or reducing apoptosis [2]. This paradigm of
cancer “immunoediting” describes the evolution and selection of cancer cells to develop clinically
relevant tumours.

The development, survival, and spread of cancer cells involve a myriad of complex interactions
between cancer and immune cells; in which immune cells are involved in both pro-tumourigenic
and anti-tumourigenic roles [3-6]. The diverse immune milieu that exists within the tumour
microenvironment (TME) secretes various signals that orchestrate the development and progression of
cancer through the selection of pro-tumourigenic characteristics such as bypassing apoptotic pathways,
immunoevasion, and maintaining inflammation and angiogenesis [3]. As the TME develops and
evolves, immunosuppressive cells such as T-regulatory cells (Treg) and myeloid derived suppressor
cells (MDSCs) are co-opted to inhibit the proliferation and activity of killer T cells; thereby promoting
tumour progression and metastasis. On the other hand, the immune system can be stimulated to elicit
an immune response that targets the tumour for eradication. Thus, the main theory of immunotherapy
resides on the plasticity of the immune system and its capacity to be re-educated into restoring a potent
anti-tumourigenic response. Thus, immunosuppressive cells within the TME have become a major
target for improving the efficacy of immunotherapy, and multiple therapeutic strategies have been
developed in the last few years.

In this review, we examine the phenotypic characteristics of MDSCs, their immunosuppressive
functions and the mechanisms they employ to suppress anti-tumour response, how a pro-inflammatory
TME drives MDSC expansion, and current treatments that are used to target MDSCs. Finally we
discuss the synergistic treatments of combining immune checkpoint inhibitors with MDSC targeting.

2. Immunotherapy Against Cancer

Over the last few years, there has been increasing interest in developing cancer therapeutics that
target different aspects of the immune system. With the common aim of re-educating or re-activating
the immune milieu to produce a potent immune rejection of cancer cells, different strategies have been
established or are under intense development.

2.1. Cancer Vaccines

Cancer vaccines are generated using different approaches. They are accomplished by exposure to
cancer cells, cell lysates, RNA/DNA, or engineered-viral tumour antigens, but most commonly
developed through tumour-associated antigens (TAA) [7,8]. These vaccines can be used for
prevention—such as the FDA-approved hepatitis B virus (HBV) vaccine for liver cancer and human
papillomavirus (HPV) vaccine for cervical cancer [9,10]—or therapeutically to regulate the progression of
existing tumours. TAA are often used in cancer vaccine development and can be primarily characterised
as either (i) differentiation antigens: tissue-specific proteins that are expressed in the tumour and the
analogous normal tissue, but are aberrantly expressed in the tumour due to hyperproliferation of
particular cell type (e.g. PAP); or (ii) overexpressed antigens: highly expressed proteins in tumours due
to malignancy, but have a baseline expression in healthy tissue (e.g. Her2/neu) [11,12]. As such, the
TAA selected for the vaccine is critical to ensure appropriate specificity and induction of T-cell activity
against the antigen in tumours [13]. Unfortunately therapeutic vaccines have not demonstrated as
successful clinical efficacy as other immunotherapy efforts such as CAR T-cell therapy or checkpoint
inhibitors [14]. This poor outcome can be attributed to diverse antigen expressions due to tumour
heterogeneity, low levels of tumour-infiltrated lymphocytes (TILs), and the evolution of different
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immunosuppressive mechanisms that have developed over the course of the cancer progression.
Dampening the immune response through expansion of immunosuppressive cells, expression of
inhibitory cytokines and proteins, and angiogenesis have all contributed to the disappointing clinical
result [14,15].

2.2. Monoclonal Antibodies

Similar to cancer vaccines, monoclonal antibodies target specific antigens dysregulated in
cancer cells to either elicit an immune response against the tumour or for direct drug delivery [16].
The monoclonal antibodies can be unconjugated, conjugated with chemotherapy or radiolabelled,
or bispecific [8,17]. Unconjugated antibodies mark cancer cells for immune destruction and can also
be used to inhibit antigen functions; for example, targeting HER2 overexpression by Trastuzumab in
the treatment of breast cancer can reduce cancer cell proliferation via HER2 degradation and induce
antibody-dependent cellular cytotoxicity [18,19].

2.3. Adoptive T cell Therapy

Adoptive cell therapy (ACT) enhances anti-tumour rejection by infusing patients with enriched
and modified T cells via two primary methods: i) expanding isolated TILs or ii) genetic modification of
peripheral blood T cells to enhance tumour cell recognition (Figure 1) [20].
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Figure 1. Workflow of adoptive T-cell therapy using TILs or receptor modified T-cells. Adoptive
T-cell therapy can improve anti-tumour response by expanding TIL populations extracted from patient
tumour (left), or genetically modifying the TCR or generating a chimeric antigen receptor (CAR) (right).
With TIL expansion, the patient tumour is surgically resected and the TILs are isolated and expanded
ex vivo. The TIL populations are then further increased through a Rapid Expansion Protocol before
they are intravenously infused back into the lymphodepleted patient. For the genetic modification of
T-cell, the TCR and CAR-T therapy extracts T-cells from the peripheral blood via leukapheresis and
are transduced with viral vectors to express a modified TCR or CAR. In both approaches, the patient
is lymphodepleted with cyclophosphamide before T-cell infusion and is administered with IL-2 to
improve treatment efficacy and longevity.
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In the first method, TILs are cultured from a resected tumour surgically extracted from the patient.
TIL populations are rapidly expanded ex vivo with high levels of interleukin-2 (IL-2). The patient is
preconditioned through a nonmyeloablative lymphodepletion using cyclophosphamide before the
TIL cultures are intravenously infused back into the patient. This preconditioning regimen and the
administration of subsequent IL-2 has been shown to increase the duration and clinical response of TIL
therapy [21]. This form of ACT has resulted in an objective response rate of up to 50% in patients with
metastatic melanoma [22,23], and has extended its application to other forms of solid tumour cancer,
including breast cancer [24].

The second approach of ACT uses T-cells extracted from the peripheral blood via leukapheresis,
which are then genetically modified to improve tumour cell recognition. This is done by transducing
T-cells with retroviral or lentiviral vectors to highly express novel TCRs that target specific TAAs [25,26].
To circumvent immune evasion in cancer cells by MHC aberrant expression or reduction, T-cells can be
alternatively modified to express chimeric antigen receptors (CAR) [27]. CAR T-cells function similarly
to TCR-modified T-cells but can recognise TAA in an MHC-independent manner [26]. CAR T-cell
therapy has reported significant clinical response, with up to 90% complete remission rates in acute
lymphoblastic leukemia targeting the B-cell antigen CD19 [28]; it has also shown high efficacy in
the treatment of leukemia using CD22-directed CAR T-cells [29]. Despite successful clinical trials,
a major challenge in adoptive immunotherapy remains in targeting tumour-specific antigens as most
antigens expressed on tumours are also present on normal tissue [30]. This incites on-target toxicity
through T-cell targeting of shared antigens on both tumours and healthy tissue. As such, other
T-cell modification strategies that employ bispecific antigen detection systems or T-cell redirection
are currently under study. For example, inhibitory chimeric antigen receptor iCAR) or tandem
chimeric antigen receptors (TanCAR) are receptors that can be engineered onto T-cells to enhance their
cytotoxicity and specificity to tumour antigens (reviewed in [31,32]).

2.4. Immune Checkpoint Inhibitors

Checkpoint inhibitors as immunotherapy had elicited an impressive response in the treatment
of melanoma and lung cancer; with so much potential, this type of immunotherapy was considered
as Breakthrough of the Year in 2013 by the journal Science [33] and awarded the Nobel Prize in
Medicine 2018 [34]. Immune checkpoint pathways are co-inhibitory signals that are manipulated
during cancer to downregulate the immune response. Immune checkpoint inhibitors, such as
Ipilimumab and Nivolumab, target the checkpoint pathway of cytotoxic T cells (CTL) though cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) and programmed death 1 (PD-1), respectively. CLTA-4
is a receptor that is expressed on the surface of T cells and inactivates T cell activity by competing
against CD28 to bind to the two T cell activation antigens CD80 and CD86, found on the surface
of antigen-presenting cells (APC). In addition, the PD-1 receptor is also found on T cells, where,
upon binding to the ligand PD-L1, induces a conformational change to an inactive and dysfunctional
state [35]. As such, by targeting these two checkpoint pathways, the baseline of T cell activity can be
restored to reactivate tumour immunosurveillance (Figure 2).

Despite the therapeutic success of checkpoint inhibitors for some cancer types, a primary challenge
of this strategy for widespread anti-cancer application remains the low TILs presented by patients
of many cancer types. Since checkpoint inhibitors rely primarily on pre-existing TILs, patients with
low immunogenic tumours will likely be non-responsive to checkpoint inhibitor therapy [36]. A clear
example is breast cancer, where only the genomically unstable Triple Negative Breast Cancer (TNBC) has
shown limited responses to checkpoint inhibitors [37,38]. As such, the success rates of immunotherapy
are often unpredictable, having significantly variations with different cancer types and even within
cohorts consisting of the same malignancy, for example in advanced ER+ breast cancer [39,40]. However
since checkpoint inhibitors interfere with natural T-cell regulatory mechanisms, they can also lead to
activation of autoreactive T-cells, resulting in autoimmune or autoinflammatory side-effects termed
“immune-related adverse events” (irAEs) [41].
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Figure 2. Immune checkpoint blockade of T-cell activity and mechanism of action of checkpoint inhibitors.

The immune checkpoints regulate T-cell activity and are crucial for maintaining self-tolerance. However,
in cancer, the endogenous T-cell immune checkpoints, CTLA-4 and PD-1, inhibit T-cell activity when
bound to their ligands, CD80/86 (antigen-presenting cells) and PD-L1 (cancer cells), respectively.
Treatments with checkpoint inhibitors can disrupt this regulatory interaction allowing T-cell cytotoxic
activity against cancer cells.

The discrepancy in patient response demonstrates critical limitations in our knowledge of
immunotherapy: (1) why immunotherapy works for some patients and not others; (2) why the
frequency and severity of irAEs varies in patients, though different dosing regimens and strategies
of immunotherapy combination are currently being investigated to reduce toxicity [42]; and (3) how
the immunosuppressive TME plays an extensive role in the efficacy of these types of immunotherapy.
These limitations have driven more research on the interplay of the immune system during the
carcinogenic process. In this regard, new strategies to overcome the immunosuppressive TME have
been a major focus. These strategies include: (1) increasing TIL levels by abolishing the endothelial
barrier, which prevents T-cell infiltration; forcing T-cell accumulation at the adjacent stroma and
reducing their traffic into the tumour [43]; and (2) by eliminating the immunosuppressive TME
to stimulate anti-tumour immunity [44]. Immune cells such as tumour-associated macrophages
(TAM), MDSC, and Tregs can function to stimulate angiogenesis through secretion of VEGFA and
PGE2, thus creating an endothelial barrier [45,46]; and promote immunetolerance via CTL and NK
cell suppression [47-50]. As such, targeting these pro-tumourigenic immune cells to alleviate the
immunosuppressive microenvironment may be key to improving the efficacy of the aforementioned
treatment strategies. An immunosuppressive target that has gained increasing attention in the last few
years is the MDSC. The accumulation of these myeloid progenitors in patients has been attributed
to resistance against checkpoint inhibitors and may potentially be used as a predictive marker for
treatment success [51].
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3. Classification and Function of Myeloid-Derived Suppressor Cells

MDSCs are comprised of a heterogenous immature myeloid cell IMC) population in various states
of transcriptional activity and differentiation [52]. The myeloid lineage is expanded during pathological
conditions, where emergency myelopoiesis increases the production of myeloid leukocytes in the
bone marrow to eradicate potential threats such as pathogens, tissue damage, chronic inflammation,
and cancer [53]. Chronic inflammation in cancer is induced in the TME through the expression of
pro-inflammatory cytokines, such as PGE2, GM-CSFE, G-CSF, M-CSFE, SCEF, 5100 proteins, VEGF, TGFf3,
and TNFa. The combinatorial effects of these cytokines can skew the differentiation in favour of MDSCs
and perturb the maturation of myeloid cells; this can create a spectrum of IMC that is morphologically
analogous to granulocytes and monocytes but can vary in the presence of particular cell surface
markers (Figure 3) [54,55].

Differentiation

_y.
CMP.

-
.o

Figure 3. Stages of myelopoiesis differentiation in cancer. Myelopoiesis is amplified during chronic
inflammation to assist tumour progression and dissemination. The hematopoietic stem cells (HSC)
differentiate into the common myeloid progenitor (CMP), which can further differentiate through
the hematopoietic system. In physiological conditions, CMP can differentiate into neutrophils
or into monocytes, and subsequently into dendritic cells (DC) or macrophages. However, with
chronic inflammation, pro-inflammatory cytokines can skew the monocytopoiesis of CMP into
monocytic-myeloid-derived suppressor cells (M-MDSC) and tumour-associated macrophages (TAM),
and granulopoiesis into polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) and
tumour-associated neutrophils (TAN).
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In addition to chronic inflammation, the amplified state of myelopoiesis is also manipulated
in cancer to promote tumour progression and dissemination [56-59]. MDSCs within the bone
marrow are recruited to the peripheral lymphoid organs and the tumour site by growth factors
secreted by cancer cells; this, in turn, promotes tumourigenesis via different mechanisms by:
permitting immunoevasion by inducing NK cell and T-cell anergy; remodelling the TME to promote
tumour growth; creating and establishing a metastatic niche for cancer dissemination; inducing
epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) transition to
facilitate tumour progression and metastasis; promoting angiogenesis; and improving tumour cell
survival through their immunosuppressive activities [60-65]. As such, MDSCs actively contribute to
an immune-tolerant TME and impede the efficacy of cancer immunotherapies. In a meta-analysis
study conducted by Zhang and colleagues, abundance of MDSC in patients with solid tumours has
been correlated with poorer prognosis and overall survival [66].

3.1. Classification of MDSC

MDSCs can be broadly categorised into two groups: polymorphonuclear (PMN-MDSC) and
monocytic (M-MDSC). In mice, M-MDSCs are mononuclear and express high Ly6C and low or
absent Ly6G (CD11b+Ly6Glow/—Ly6C+), whereas PMN-MDSC consist of multilobed nuclei that
are neutrophil-like and express Ly6G and low Ly6C (CD11b+Ly6G+Ly6Clow) [59]. PMN-MDSCs
and M-MDSCs are phenotypically and morphologically analogous to neutrophils and monocytes,
respectively, and thus using only phenotypic criteria to identify MDSCs is insufficient. The Ly6G
and Ly6C markers are murine-specific and no orthologues exist in humans. In contrast, human
MDSCs are identified based on myeloid cell markers CD11b+, CD33+, HLA-DRlow/- and negative
for lineage-specific antigen (Lin—) and the same two MDSC subsets can be characterised by
CD11b+CD33+HLA-DR~/CD14+CD15- for M-MDSC and CD11b+CD33+HLA-DR-/CD14-CD15+
for PMN-MDSC [56,67]. However, due to the heterogenous nature of the MDSC populations both
biochemically and functionally, distinct subtypes of MDSC have been isolated from different types of
cancer, and combinations of molecular markers used to identify MDSC populations can vary based
on disease context (Tables 1 and 2) [68-70]. MDSCs have been also identified by using different
sets of markers such as CD11b+CD33+CD34+ [71], Lin—/Low HLA-DR—, CD33+CD11b+ [72], and
CD14+HLA-DR-/Low [73]. Thus, there is still no established consensus on the combination of markers
that should be used for determining MDSC presence in tumours [74]. The proportion of infiltrated
M-MDSC and PMN-MDSC varies with tumour type and progression of the disease. For example, in
breast cancer, PMN-MDSC is the predominantly expanded population compared to M-MDSC [52].
Clinically, MDSC sub-classification is essential, as these subsets are functionally different, presenting
different mechanisms of activation and immunosuppression.

Table 1. Markers used to identify MDSC populations and functions in animal models.

Mouse Marker M-MDSC PMN-MDSC Notes References

Involved in MDSC recruitment and expansion.

CCR2 +(high) * Upregulated in MDSCs for multiple cancer types

[75,76]

Involved in MDSC expansion and activation.
Upregulated in MDSCs in melanoma.
High expression of CD1b used by NKT to target

CD1b + - MDSC for anti-tumour immunity. (79

CCR5 + + [77,78]

Transmembrane glycoprotein for leukocyte adhesion
and migration. Commonly used in combination as

CD11b (Mac-1) * * CD11b+, Gr-14, Ly6C+ or Ly6G+ for identifying (801
MDSC.
CDl1l1c - - Marker used to differentiate dendritic cells [81]
Associated in early myeloid differentiation,
D38 + + activation, and migration. High expression may be 182]

associated with immature MDSC and stronger T-cell
suppression
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Mouse Marker

M-MDSC

PMN-MDSC Notes

References

CD39

Surface ectonucleotidase that is paired with CD73

and involved in the adenosine-pathway to inhibit

T-cell and NK-cell activity. Upregulated in Lewis
lung carcinoma and melanoma.

[83,84]

CD40

Immune stimulatory receptor that suppresses T-cell
activation, tumour specific T-reg expansion by
MDSC, CXCR5-induced expansion of MDSC, and
MDSC accumulation by facilitating apoptosis
resistance. Upregulated in MDSC for
collagen-induced arthritis, colitis, and gastric cancer

[85-88]

CD43

Unknown

Involved in neutrophil recruitment. Upregulated in
PMN-MDSC in mammary carcinoma model.

[89]

CD45

Leukocyte common antigen used early in FACS
+ gating to discriminate between tumour cells and
immune cells.

[90]

CD49d (VLA4)

Specific marker for M-MDSC. CD49d+ MDSC were
- primarily monocytic and potent suppressors of
antigen-specific T-cell responses.

[91]

CD54 (ICAM-1)

+ (high)

+ (low) Immunostimulatory molecule that binds to CD11b.

[92,93]

CD62L (L-selectin)

+

Homing molecule that can be used to discriminate
between DC and MDSC.

[94,95]

CD71 (transferrin
receptor)

Marker for early erythroid precursors and
- proliferation. Upregulated in subcutaneous
lymphoma model.

[96,97]

CD73

Surface ectonucleotidase that is paired with CD39
and involved in the adenosine-pathway. Inhibits
+ (high) T-cell and NK-cell activity and expansion of MDSC.
Highly expressed in PMN-MDSC. Upregulated in
Lewis lung carcinoma and melanoma.

[83,84]

CD80 (B7.1)

+ (low)

Ligand of CTLA-4 to inhibit T-cell activity.
+/— (low) Upregulated in MDSC by chronic inflammation in
subcutaneous lymphoma, breast, and ovarian cancer

[81,97-100]

CD86

Ligand of CTLA-4 to inhibit T-cell activity.
+ Upregulated in MDSC by chronic inflammation in
breast cancer and collagen-induced arthritis.

[85,98,99]

CD98

Unknown

Prognostic biomarker in different cancers and
functions in cysteine transportation. May also be
+ associated with prolonging lifespan of MDSC
through mTOR signalling. Upregulated in
PMN-MDSC in mammary carcinoma model.

[89,92]

CD115 (M-CSFR)

+/-

Recruits tumour-infiltrating monocytes.

+/- Upregulated in MDSC in multiple cancer types.

[101-104]

CD120b (TNFR2)

+(low)

Involved in accumulation and activation of MDSC

+(1 o
(low) within the tumour.

[105]

CD124 (IL-4
receptor «)

May be implicated in T-cell suppression by MDSC
+/- and MDSC survival. Upregulated in MDSC in
multiple cancer types.

[106-109]

CD162 (PSGL-1)

Affects T-cell adhesion and entry to sites of
inflammation.

[110]

CD170 Syglec-F
(eosinophil marker)

Eosinophilic marker used to identify new subset of
- Eo-MDSC in chronic Staphylococcus aureus
infection.

[111]

CD244

Cell surface receptor expressed on NK cells, DC cells
+/— and T-cells. Upregulated in MDSC in multiple cancer

types.

[102,103,112]

CD279 (PD-L1)

Inhibitory ligand that suppresses T-cell activation.
+ Upregulated in MDSC in colitis and multiple cancer

types.

[81,113,114]

CX3CR1

Involved in MDSC recruitment and expansion. Can

be recruited by CCL26 that are secreted by hypoxic

cancer cells. Expression levels can change based on
tumour progression.

[115,116]

CXCR1

Involved in MDSC recruitment and expansion.
Upregulated in MDSC in multiple cancer types.

[56,117]
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Mouse Marker

M-MDSC

PMN-MDSC

Notes

References

CXCR2

+

Involved in MDSC recruitment and expansion.
Upregulated in MDSC in multiple cancer types.

[56,117,118]

CXCR4

Involved in MDSC recruitment and expansion.
Upregulated in MDSC in multiple cancer types.

[119]

F4/80

+/-

Marker used to differentiate macrophages and
M-MDSC.

[97,120]

Gr-1

+ (low)

+ (high)

Recognises epitope in both Ly6C and Ly6G

[80]

Ly6C

+ (high)

+ (low)

Differentiation antigen expressed in M-MDSC,
macrophages, and dendritic cell precursors.

[81]

Ly6G

+ (high)

Differentiation antigen expressed in PMN-MDSC,
neutrophils, monocytes, and granulocytes.

[81]

Mac-2 (galectin-3)

+ (high)

+ (low)

Recruits MDSC via GM-CSF pathway and induces
apoptosis in T-cell via TIM-3.

[121,122]

MHC Class I

Important role in antigen processing and
presentation for the activation of adaptive immunity.
Expressed in both subsets of MDSC.

[123]

MHC Class II

+/— (low)

+/— (low)

MHC Class II expression varies based on disease
context and mouse model used. Usually low
expression or similar to tumour-free mice.

[124,125]

Sca-1, Ly6A/E

Marker for hematopoietic stem cells. Expression can
be highly variable.

[97,126]

VEGFR

Receptor for VEGF, which stimulates angiogenesis
and recruits MDSC. MDSC-expressing VEGFR
Ppossesses stronger immunosuppressive activities
compared to other MDSCs in ovarian cancer.

[127]

Table 2. Markers used to identify MDSC populations and functions clinically.

Human Marker

M-MDSC

PMN-MDSC

Notes

References

CCR2

+ (high)

Involved in MDSC recruitment and expansion.
Upregulated in MDSC in multiple cancer types, such
as breast, ovarian, gastric, and melanoma.

[128,129]

CXCR4

Involved in MDSC recruitment and expansion.
Upregulated in MDSC in ovarian cancer patients.

[130]

CD11b

Transmembrane glycoprotein for leukocyte adhesion
and migration. Used as a myeloid marker similar to
CD33.

[131]

CD13

+ (low)

Myeloid marker involved in cell motility.

[132,133]

CD14

+ (high)

Differentiation antigen expressed in M-MDSC,
macrophages, and dendritic cell precursors.

[134]

CD15

Differentiation antigen expressed in PMN-MDSC,
neutrophils, monocytes, and granulocytes

[81]

CD16 (FcyR)

+ (high)

+/— (low)

Discriminating antigen to exclude PMN-MDSC. Can
be used to separate immature MDSC (CD16—) from
PMN-MDSC (CD16+) in whole blood.

[135]

CD33

+ (high)

+ (low)

Myeloid marker that is more highly expressed in
M-MDSC and dimly expressed in PMN-MDSC

[131]

CD34

+ (high)

+ (low)

Marker for hematopoietic progenitor cells used to
discriminate immature MDSC.

[70,123,136]

CD38

Associated with poor prognosis. Advanced stages in
cancer patients have been found to have expansion
of CD38+ MDSC in head and neck, and colorectal
cancer.

[82,137]

CD39

Surface ectonucleotidase that is paired with CD73
and are involved in the adenosine-pathway. Inhibits
T-cell and NK-cell activity and exerts tumour cell
protection against chemotherapy; for example,
rapamycin. Upregulated in ovarian cancer and
NSCLC.

[138,139]

CD45

Leukocyte common antigen used early in FACS
gating to discriminate between tumour cells and
immune cells.

[102,103,112]
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Table 2. Cont.

Human Marker M-MDSC PMN-MDSC Notes References
Homing molecule involved in MDSC circulation.
CD62L (L-selectin) + + Lower expression in MDSC compared to neutrophils. [140]
Found in renal cell carcinoma patients.
CD66b - + Differentiation marker expressed in PMN-MDSC. [131]

_ Macrophage specific marker used to discriminate ; )
€Des * between TAM and M-MDSC [131,141]

Surface ectonucleotidase that is paired with CD73
and is involved in the adenosine-pathway. Inhibits
T-cell and NK-cell activity and exerts tumour cell
protection against chemotherapy; for example,
rapamycin. Upregulated in ovarian cancer and
NSCLC.

Activation marker and ligand of CTLA-4 to inhibit
_ _ T-cell activity. Expression can vary/no expression. m 1A
D80 + Upregulated in advanced melanoma patients and [80,143,144]

breast cancer patients.

CD73 + + [138,139,142]

Marker used for mature dendritic cells. Can also be
CD83 +/— - expressed in B and T lymphocytes. Has functions in [143-145]
immune cell activation and suppression

Activation marker and ligand of CTLA-4 to inhibit 1A
D86 + T-cell activity. Upregulated in breast cancer patients. [142,144]

Recruits tumour-infiltrating monocytes. Found in

CD115 (M-CSFR) */- +/- MDSC subset similar to precursor myeloid cells. [146]
_ Granulocyte-monocyte progenitor marker. ey
CD117 (cKIT) + * Upregulated in colorectal cancer. [146,147]
CD124 (IL-4 May be implicated in T-cell suppression by MDSC

+ + and MDSC survival. Expression can greatly vary [106,135,146,148]

receptor «) depending on disease type.

_ Macrophage specific marker used to discriminate /
CD163 + between TAM and M-MDSC (131,141]

Involved in MDSC recruitment and expansion.

CXCRI * * Upregulated in MDSC in multiple cancer types. [149,150]
Involved in MDSC recruitment and expansion. )
CXCR2 + * Upregulated in MDSC in multiple cancer types. [149,150]
HLA-DR _ _ Important role in antlge.n processing and [67,81]
presentation.
Lin +/- (low) +/~ (low) MDSC are generally negative or have very low [67]

expression for mature cell lineage markers.

Receptor for VEGE, which stimulates angiogenesis
VEGFR + (low) + (low) and recruit MDSC. Upregulated in patients with [151]
renal cell carcinoma.

3.2. MDSC Recruitment and Pro-Tumorigenic Activation

The recruitment and expansion of MDSCs to the primary and metastatic tumour sites are regulated
by a combination of tumour-derived factors secreted by the TME and cancer cells, and it continuously
evolves and develops (Figure 4). These factors can be categorised as (1) trafficking signals used by
cancer cells to induce MDSC expansion and recruitment into the tumours, and (2) activation signals of
MDSCs secreted by tumour stroma and T-cells [61].

PMN-MDSC and M-MDSC recruitment to tumours is essentially governed by the same factors
that regulate the migration of neutrophils and monocytes. M-MDSC and inflammatory monocytes are
recruited to tumours through a CCL1, CCL2, and CCL5-induced chemokine cascade that is propagated
by cancer cells and has been found to be retained within primary tumours by CCL3 produced via CCR-2
activated mechanism in metastasis-associated macrophages [152-154]. Similarly, PMN-MDSC and
neutrophils are also recruited to tumours by CCL2 and CCL3 [155,156]. Hypoxia at the primary tumour
site has also been linked to the recruitment and activation of MDSCs to promote an immunosuppressive
environment and the establishment of a pre-metastatic niche in secondary organs [65].
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Figure 4. Schematic of MDSC recruitment and role in cancer progression and metastatic spread. MDSC
are recruited to the tumour site by the same factors that mobilise neutrophils and monocytes. Within
the tumour microenvironment, the MDSC population expands and exerts their immunosuppressive
functions to induce T-cell and NK cell anergy through different mechanisms, such as through the
enzymes IDO, ARG, iNOS, and NOX2. MDSC can also assist in cancer cell dissemination through the
promotion of angiogenesis, EMT and MET transition, and secretion of tumourigenic factors.

During metastasis, MDSC populations are recruited in the pre-metastatic lungs in mice with
mammary carcinoma through the chemoattractants CXCL1, CXCL2, CXCL5, and S100A8/9 [157]. It is
believed that these MDSCs arrive initially to create a pre-metastatic niche to condition distal organs for
tumour dissemination [157]. MDSCs promote cancer cell invasion by establishing an immune-tolerant
and inflammatory environment through the downregulation of IFNy, overexpression of inflammatory
cytokines, and inducing leaky vasculature by expressing matrix metalloproteinase 9 (MMP9) and
other remodelling factors to diminish the integrity of the extracellular matrix (ECM) and the basal
membrane [62]. Cancer cells are then recruited to the metastatic site via TNFx, CXCL2, TGFf3, and
S100A8/9 [158]. MDSCs also express factors, such as TGF, HGF, and IL-6, to facilitate EMT-MET
transition in cancer cells [157].

The chemoattractants expressed by cancer cells to recruit MDSC are ubiquitous in different types
of cancers. As such, therapeutic blockade targeting chemokine receptors will be a more effective target
than targeting the ligands themselves as a single receptor may interact with multiple chemokines [131].
For example, CXCR2 is highly upregulated in tumour recruited neutrophils and MDSCs, and abrogation
of CXCR2 signalling significantly improved T-cell infiltration and extended survival in both cancer
patients and mice models [118], especially in combination with other immune checkpoint blockades
such as PD-1 treatments [150,159].

MDSC activation and survival are regulated by the signal transducer and activator of transcription
(STAT) family, such as STAT1, STAT3, STAT6, and NFkB [47]. Cancer cells, tumour-associated stromal
cells, and activated T-cells play a role in initiating these signalling pathways involved in MDSC
activation via the expression of TLR4, IL-13, TGFf3, IFNy and IL-4 [67]. The transcription factor STAT3
has been associated as one of the main drivers of MDSC expansion, and together with other factors
such as GM-CSF, M-CSF and VEGEF, contribute to the increase of MDSC levels within the tumour [67].
Since the downstream targets of STAT3 are primarily affiliated with genes that regulate proliferation
and pro-survival, such as survivin, BCL-XL, and cyclin D1, it is unsurprising that upregulation of
STATS3 facilitates MDSC expansion by inhibiting IMC differentiation into mature myeloid cells and
increasing proliferation [67,160]. In addition, STAT3 also upregulates the SI00A8/9 pro-inflammatory
proteins, which drive a feedback loop in the migration and result in accumulation of MDSCs. S100A8/9
are found ubiquitously in most tumours and increased S100A8/9 has also been shown to prevent the
differentiation of myeloid progenitor cells and deactivation of T-cell in breast, ovarian, and gastric
cancer [161-163]. Thus, S100A8/9 has been implicated as playing a vital role in the link between
inflammation and immunosuppression [47].

Downregulation of STAT3 has also been previously reported to drive the pathological
differentiation of M-MDSCs into M2-like TAMs [164]. Some studies have indicated that MDSC
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exposure to a hypoxic TME allows CD45 protein tyrosine phosphatases (PTP) or hypoxia-inducible
factor (HIF1c) to induce inflammatory monocytes and MDSC differentiation into TAM, which permits
their immunosuppressive functions to be exerted [164-166]. However, MDSC differentiation still
remains unclear and other studies have suggested that M-MDSCs and PMN-MDSCs may have distinct
routes of pathological differentiation within the TME.

3.3. Immunosuppression of MDSC

Activated MDSCs have an array of mechanisms that are utilised to create an immunosuppressive
microenvironment, inducing anergy in NK cells and in CD4+ and CD8+ T-cells, and thus promoting
immunetolerance in cancer. These include metabolic-based mechanisms that deplete essential amino
acids for T-cell activity and proliferation, and mechanisms based on the secretion of specific factors
involved in immunesuppression, such as the expression of PD-L1 by MDSCs [167]; expression
of immunosuppressive cytokines such as IL-10 and TGFf [114,168]; and recruitment of Tregs via
expression of CD40 by MDSCs [87].

Metabolically, MDSCs can sequester cysteine and compete against T-cell [169]. This amino acid
is essential for T-cell activation and proliferation and cannot be synthesised de novo by T-cells; as
such, T-cell function is reliant on exogenous supplies of cysteine [92]. The accumulation of MDSCs
within the TME consumes and reduces the level of environmental cysteine, resulting in T-cell inhibition
via cysteine depletion [169]. In addition, MDSCs can further deplete the TME of essential amino
acids by catabolising L-arginine and L-tryptophan. L-arginine is metabolised by the expression of
arginase-1 (ARG1) and inducible nitric oxide synthase (iNOS) [170]. The high expression of ARG1 and
iNOS in MDSCs depletes L-arginine by catabolising it into L-ornithine and urea (ARG1) or into NO
(iNOS) [47,171]. L-arginine starvation and production of NO within the TME is detrimental for T-cell
function and proliferation, as it can downregulate the expression of TCR (-chain, inhibit MHC class
II expression, lead to G0-G1 cell cycle arrest by inhibition of cyclin D3 and cyclin-dependent kinase
(CDK4), and induce T-cell apoptosis [170,172-175]. Furthermore reactive oxygen species (ROS) level
can be increased in the form of superoxide anion (O, ~) by MDSCs through the upregulation of NADPH
oxidase (NOX2), which can react with NO to form peroxynitrite (ONOQ"), a strong superoxide that
abrogate antigen-specific response and migration in CD8+ T-cells and CTLs [176,177]. This increase in
oxidative stress within the TME by MDSCs contributes to both the immunosuppressive environment
and prevention of MDSC differentiation into non-suppressive myeloid cells [178,179]. In addition,
high levels of ROS and peroxynitrite has been shown to be associated with T-cell deactivation by
downregulating the TCR (-chain expression and chemically modifying the TCR through nitrosylation,
and by excluding T-cell infiltration by nitration of CCL2 (N-CCL2), which has been found to trap T
lymphocytes in the stroma that surrounds the tumour and prevent their infiltration into the tumour
core [180]. In general, elevated ROS levels are toxic to cells; however, MDSCs have endogenous
protection from oxidative stress regulated by the transcription factor Nrf2, mitigating the toxicity
caused from both the environmental and intracellular-generated ROS [181]. L-tryptophan is catabolised
to produce kynurenine-based bioproducts by upregulation of indole amine 2,3 dioxygenase (IDO),
a STAT-3 dependent mechanism. Consequently, the reduction of L-tryptophan and production of
kynurenine have been shown to induce anergy and apoptosis in both T-cells and NK cells, and drive
the differentiation of CD4+ T cells to Tregs [182-186]. IDO has also been implicated in the recruitment
of CD4+ CD25+ Treg cells into the primary tumour and lymph nodes in breast cancer [153,187].

MDSCs express high levels of PD-L1 to restrain anti-tumour T-cell response. This upregulation of
PD-L1 expression has been associated with the SI00A9 inflammatory protein and HIF1« [167,188].
In addition, overexpression of PD-L1 has also been reported to induce aberrant hematopoiesis [188].
Another mechanism employed by MDSCs to suppress T-cell activity is through the recruitment of
Tregs by the expression of immune stimulatory receptor CD40 on MDSCs [87]. Pan et al. reports that
CD40 is necessary for MDSCs to both inhibit T-cell proliferation via the ligation of the ligand CD40L
on T-cells and recruit Tregs [87]. Finally, MDSCs can also express immunosuppressive cytokines such
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as TGFf to inhibit NK cell cytolytic activity by reducing IFNy production [74] or IL-10 to regulate
T-cell phenotype and activity [189].

Based on the subtype, MDSCs contribute to immunoevasion using different mechanisms to
abrogate anti-tumour immunity (Figure 5) [90,190]. M-MDSC predominantly employs nonspecific
T-cell deactivation through higher expression of ARG1, iNOS, and TGFf3; whereas PMN-MDSC
produces elevated levels of ROS comparatively and exerts immunosuppressive functions by cell-to-cell
contact with T-lymphocytes, rendering T-cells unresponsive to antigen-specific stimulation, but still
reactive to nonspecific stimuli [176]. As such, the ratio of PMN-MDSCs and M-MDSCs populations is
a major component in determining the primary mechanisms that will be used by MDSCs to abrogate
immunosuppression. Generally, PMN-MDSCs are usually the predominant populations in most
cancers [128,191]. However, preferential expansion of a particular MDSC subtype is influenced by
numerous factors in the TME; for example, in prostate cancer M-MDSC populations outnumber
PMN-MDSC, but this proportion is reversed in breast cancer [90,190]. Per cell, M-MDSC have been
found to possess more potent suppressive activity compared to PMN-MDSC, but the overall strength
of immunosuppression is governed by the GM-CSF secreted by tumours [192,193]. Tumour-infiltrated
MDSC were also reported to possess more potent suppressive function compared to peripheral
MDSCs [194].
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Figure 5. Mechanisms of T-cell suppression with phenotypic and functional differences between
M-MDSC and PMN-MDSC. Both M-MDSC and PMN-MDSC display different cell surface markers
and mechanisms for immunosuppression. Various mechanisms are used to suppress T-cell activity
or induce T-cell apoptosis. (Top to bottom) L-tryptophan catabolism by IDO results in tryptophan
starvation, leading to T-cell anergy, cell cycle arrest, and promotion of CD4 T-cells to differentiate
into Tregs. Similarly, kynurenine, a tryptophan-derived catabolite by IDO inhibits T-cell and NK cell
proliferation and promotes their apoptosis. In addition, kynurenine can bind to the aryl hydrocarbon
receptor on T-cells to induce differentiation into Tregs. MDSCs can also induce T-cell exhaustion
through elevated expression of PD-L1 to interact with the immune checkpoint PD-1. L-arginine is an
essential amino acid that regulates T-cell cell cycle progression. Depletion of L-arginine by iNOS and
ARGI results in GO-G1 arrest in T-cells and downregulation of the TCR {-chain. The TCR will also
undergo nitrosylation leading to impaired TCR signaling that is necessary for T-cell function. TCR
nitrosylation results from high concentrations of NO, generated by iNOS catabolism of L-arginine, and
ROS, a by-product of NOX2. MDSC can also recruit Tregs and induce their expansion via the secretion
of cytokines such as IL-10 and TGFB.

4. Targeting MDSCs in Cancer

The reduction in T-cell responsiveness by MDSCs is often associated with resistance against treatments,
reducing the efficacy of immunotherapies, and ultimately in patient outcomes [55,191,195]. In breast
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cancer, circulating MDSCs were associated with cancer stage and metastatic burden, ultimately resulting in
poor patient outcomes [72]. Clinical trials have also revealed the correlation between patient response to
CTLA-4 and PD-1 checkpoint inhibitors, and the abundance of MDSC populations [150,196-198]. Studies
on MDSCs have been more focused on assessing the dynamic roles of MDSC in immunosuppression
and tumourigenesis, characterising their relationship with other cell species within the TME, and
identifying new targetable pathways to deplete MDSC populations or inhibit their function [199].
MDSCs can be targeted by (1) depletion of circulating and tumour-infiltrated MDSCs; (2) prevention
of MDSC recruitment and trafficking; (3) inhibition of MDSC immunosuppressive functions; and (4)
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differentiation of MDSCs into a non-suppressive immune state (Figure 6).
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Figure 6. Treatments used to target different mechanisms associated with pro-tumourigenic MDSC.
There are multiple therapeutic approaches against MDSC to restore anti-tumour functions in immune
cells and improve immunotherapy, in particular checkpoint inhibitors. These approaches include:
(1) depleting MDSC populations through low-dose chemotherapy and tyrosine kinase inhibitors;
(2) preventing MDSC recruitment to the TME by targeting chemokine receptors responsible for the
recruitment and migration of MDSCs; (3) attenuating the immunosuppressive mechanisms of MDSC
by downregulating the expression of ARG1 and iNOS, and reducing ROS generation; (4) inducing
the differentiation of MDSC into mature myeloid cells to reduce MDSC population and remove

their immunosuppression.

4.1. Depleting MDSC Populations

Low dose chemotherapy has been shown to be effective in eliminating MDSC populations in
tumour-bearing mice; treatments with chemotherapy such as 5-fluorouracil (5FU), paclitaxel, cisplatin,
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and gemcitabine were found to deplete MDSCs and enhance anti-tumour immune activity [200-203].
However, a contrasting effect in the use of chemotherapy against MDSC was observed where
MDSCs were transiently induced following cyclophosphamide treatment in tumour-bearing mice and
patients [204,205].

Signalling cascades involved in MDSC expansion has also been a target in reducing the
amplification of MDSC populations. For example, VEGF promotes the expansion of MDSCs,
recruitment of Tregs, angiogenesis, and tumour progression. To target this, the tyrosine kinase
inhibitor Sunitinib have been used successfully to deplete MDSC in patients suffering from renal cell
carcinoma via blockade of VEGF and c-KIT signalling [184,206,207]. In addition, Sunitinib was found
to also inhibit STAT3, and renal cell carcinoma patients treated with Sunitinib showed a reversal in
MDSC accumulation and consequently T-cell suppression [206]. Finally, through a unique peptibody,
Qin et al. developed a novel therapeutic peptide-Fc fusion protein that targeted the S100A family
proteins to selectively deplete MDSCs without targeting other proinflammatory immune cells [208].

4.2. Blockade of MDSC Migration

As mentioned previously, it is strategically more effective to use therapeutic blockade to target
chemokine receptors on MDSCs owing to ligand redundancy. The chemokines receptor CCR5 plays
a crucial role in the chemotaxis of MDSC into the TME via the ligands CCL3, CCL4, and CCLS5 [51].
However, the expression is not ubiquitous to all MDSCs; in melanoma mouse models and patients,
MDSCs that express CCR5 were found to have more potent immunosuppressive mechanisms compared
to the ones that do not express CCR5 [77]. Blattner et al. demonstrated that the blockade of CCR5
inhibited the recruitment and immunosuppressive activity of MDSC and improved survival in
melanoma [77]. Similarly, CCR5 antagonists inhibited the metastatic potential of basal breast cancer
and reduced tumour growth [209,210].

Elevated levels of CCL2 and CCL5 are present in the TME to recruit MDSC through the chemokine
receptor CXCR2 [118,211]. CXCR2+ MDSC promoted tumour expansion, metastasis, EMT, and
T-cell exhaustion in breast cancer [212]. By targeting CXCR2, MDSC populations were reduced and
reported to decrease metastasis, promote T-cell infiltration into the tumours, improve anti-PD1 therapy,
and extend survival in pancreatic cancer [159]. Additionally, CXCR2 antagonists against MDSCs
have been shown to enhance the therapeutic efficacy of PD-1 immunotherapy, T-cell transfer, and
chemotherapy [150,213,214].

CSF-1R has also been a primary target to inhibit MDSC recruitment to the tumour site to constrain
tumourgenesis. CSF-1R is a tyrosine kinase receptor that when bound with its ligand CSF-1 promotes
the differentiation and expansion of myeloid cells into MDSC and TAMs in addition to promoting their
migration to tumours [215]. CSF-1R has been found to be upregulated in several types of cancer, such
as pancreatic and breast [216,217]. Treatments targeting the receptor or its ligand CSF-1R/CSF-1 has
been found to improve T-cell responses and combining CSF-1R inhibition with checkpoint blockades
or adoptive T-cell transfer therapy resulted in improved anti-tumour T-cell activity and tumour
regression [215,218,219]. CSF-1R inhibition and CXCR2 antagonism has also been used in combination
to reduce TAM and PMN-MDSC populations and improve anti PD-1 efficacy [220].

Currently the following MDSC inhibitors are in clinical trials [221]: Reparixin (CXCR?2) is in
Phase 2 clinical trials for TNBC (NCT02370238); AZD5069 (CXCR2) is in Phase 1b/2 for advanced solid
tumours and metastatic squamous cell carcinoma (NCT02499328); Plexidartinib (CSF-1R) is in Phase 2
for recurrent glioblastoma (NCT01349036); and Maraviroc (CCR5) is in Phase 1 for metastatic colorectal
cancer (NCT01736813).

4.3. Attenuating MDSC Immunosuppressive Functions

Mitigating the potent immunosuppressive mechanisms of MDSCs have been a major therapeutic
target to re-establishing T-cell activity and immunotherapy success. PGE2, as mentioned previously,
is involved in inflammation, angiogenesis, tumour progression via recruitment of MDSC, and is
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also involved in the expression of one of the primary immunosuppressive mechanisms employed by
MDSC: ARGI [222-224]. Since cyclooxygenase-2 (COX-2) is upstream of the PGE2 synthesis pathway,
therapies targeting COX-2, such as celecoxib, have been of great interest as a form of immunoregulatory
treatment to suppress MDSC function whilst enhancing immunotherapy [225]. Disruption of the
COX-2/PGE2 signalling has been successful in reducing MDSC recruitment and differentiation,
repressing MDSC-associated suppressive factors such as ARG1 expression and ROS production,
and shifting an inflammatory tumour profile to more anti-cancer immune rejection; consequently, COX-2
inhibition has resulted in improved CTL frequency and immune response, delayed tumour growth, and
synergy between checkpoint inhibitors and dendritic cell-based immunotherapy [71,222,223,225,226].

Phosphodiesterase-5 (PDE-5) inhibitors are also able to abrogate MDSC immunosuppressive
mechanisms by targeting MDSC expression and function of ARG1 and iNOS. Administration of
PDE-5 inhibitors, such as sildenafil and tadalafil, have reportedly reduced inflammation in the TME,
restabilised anti-tumour immune rejection through T-cell and NK cell activity, and prolonged survival
in vivo [227-229]. Clinical trials with PDE-5 inhibitors have also shown positive results in head and
neck squamous cell carcinoma and metastatic melanoma patients [230,231], abatement of MDSC and
T-reg populations, enhanced intra-tumour T-cell activity, and improved patient outcome [231,232].

Anti-inflammatory triterpenoids have been used to activate the Nrf2 gene in MDSCs. Nrf2
is involved in modulating expression of antioxidant enzymes, including NADPH, NQO1, and
hemeoxygenase, and conferring cytoprotection against oxidative stress [233]. Selective activation
of Nrf2 using synthetic triterpenoids, such as CCDO-IM and CCDO-Me, has reduced intracellular
ROS production (abrogating MDSC-driven immunosuppression), reduced metastasis, and has shown
promising anticancer results in Phase 1 clinical trials that are well-tolerated with patients [234-236].
Another target to reduce oxidative stress is NO. Nitroaspirin targets iNOS to reduce ROS build-up;
treatments have resulted in improved T-cell proliferation, function, invasion into the tumour core, and
suppressed tumourigenesis [180,237].

STAT3 inhibition is another promising target. The antisense oligonucleotide STAT3 inhibitor,
AZD9150, has been used in conjunction with immune checkpoint inhibitors in Phase 1b clinical trials
for the treatment of diffuse large B-cell lymphoma. Systemic administration of AZD9150 in patients
showed a marked decrease in granulocytic MDSC within the peripheral blood mononuclear cells
(PBMC) [238].

4.4. Inducing MDSC Differentiation

Promoting the differentiation of IMC is another successful strategy in reducing MDSC populations
and abolishing their immunosuppressive functions. All-trans-retinoic acid (ATRA), an agonist
of retinoid receptors, inhibits retinoic signalling to shift the differentiation of MDSC into mature
myeloid cells, such as macrophages and dendritic cells. ATRA treatment has resulted in reduction
in T-cell suppression by directly inducing differentiation of MDSCs into mature antigen-presenting
precursor cells [239]. This reduction in MDSCs and improvement in T-cell response have been
observed in both mice and patients in various cancer types, such as renal cell carcinoma and
small cell lung carcinoma [240,241]. The improvement by ATRA administration was reported to
reduce circulating MDSC, enhance cancer vaccine treatments, improve dendritic cell function, and
ameliorate antigen-specific T-cell response [240,241]. The mechanism of ATRA-induced differentiation
of MDSC was reported to be mediated by glutathione synthase and neutralising ROS generation [242].
In addition, the casein kinase inhibitor tetrabromocinnamic acid was also shown to restore myeloid
cell differentiation in tumour-bearing mice through improved Notch signalling [243].

Finally, epigenetic reprogramming is a novel avenue to target the pro-tumorigenic properties
of MDSCs. The class I histone deacetylase inhibitor (HDAC), entinostat, has shown positive results
in neutralising MDSC through epigenetic reprogramming in mouse models of pancreatic, breast,
and lung cancers; and renal cell carcinoma [244,245]. Combination of entinostat with immune
checkpoint inhibitors have resulted in prolonged survival, expansion of CD8" T cells, and inhibition of
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immunosuppressive functions in both M-MDSC and PMN-MDSC via downregulation of ARG1, iNOS,
and COX-2; overall, this resulted in a shift of the tumour dynamic into a more immune-susceptible
TME [244,245]. Clinical trials involving entinostat are currently underway. However, clinical trials
ENCORE 602 (NCT02708680) and ENCORE 603 (NCT02915523) for TNBC and ovarian cancer,
respectively, have failed to increase progression-free survival. Another similar effect was observed
with the use of the DNA demethylating epigenetic agent 5-azacytidine, which resulted in a reduction
of MDSC and Argl expression [246].

Application of other chemotherapies was also reported to induce MDSC differentiation into
non-immunosuppressive cell types. For example, docetaxel had a novel chemoimmunomodulatory
effect by inhibiting STAT3 phosphorylation and polarising MDSC differentiation into M1-like
macrophages [247]. Comparably, paclitaxel was also reported to reduce MDSC populations by
promoting MDSC differentiation into dendritic cells that were independent of TLR-4 [248].

5. Combining MDSC-Targeted Treatments with Immunotherapy

To improve the success of immunotherapy, there has been a paradigm shift—both the innate and
adaptive layers of the immune system are simultaneously targeted to alleviate the immunosuppressive
TME and re-elicit the anti-tumour response [67]. As MDSCs are one of the primary immunosuppressive
cells acting as an escape mechanism for cancer cells by subverting immunosurveillance and abrogating
T-cell activity, treatment strategies have been shifting towards a combination of both targeting MDSCs
and immunotherapy. Indeed, targeting MDSCs may be key in diminishing tumour expansion and
resensitising tumours to immune governance, thus overcoming MDSC-driven immunosuppression
(Figure 7). Targeting myeloid populations alone is often insufficient as an immune-based monotherapy;
however, there is compelling research and clinical trials that have shown promising results for
combination therapy.
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Figure 7. Treatment of MDSC to alleviate an immunosuppressive environment as an approach
to enhancing immunotherapeutic treatments by shifting towards an immunosupportive TME.
The immunosuppressive TME is propagated by various suppressive cells such as MDSCs and Tregs.
Recruitment of MDSC within the TME can promote tumour expansion through various mechanisms
(developing a pre-metastatic niche to help cancer cell metastasis, inducing resistance to immunotherapy
by preventing the infiltration of T-cell into the tumour, suppressing and deactivating T-cell function,
and inducing T-cell apoptosis) and recruitment of Tregs to further amplify immunosuppression. Thus,
MDSC is often associated with poor prognosis in patients. Anti-MDSC treatments have become a
major clinical target to re-establish immune control against cancer. By creating an immunosupportive
environment, T-cell activity is restored, which leads to improved immunotherapy efficacy. Overall, this
has resulted in prolonged survival and reduction of metastasis and tumour regression.
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5.1. Checkpoint Inhibitors Combined with MDSC Depletion

Pre-clinical studies have demonstrated successful results when combining checkpoint inhibitor
treatment with MDSC depletion. Kim et al. showed that co-treatment using the epigenetic modulatory
drugs, entinostat and 5-azacytidine, with checkpoint inhibitors, anti-PD1 and anti-CTLA4, resulted in
complete tumour regression and metastatic progression in the aggressive TNBC model 4T1, with over
80% survival rate 100 days post-implantation of the tumour [249]. Interestingly, when entinostat and
5-azacytidine were used together but not in combination with checkpoint inhibitors and vice versa, the
primary tumours and metastasis remained, pointing to the synergistic effects of combination therapy
in targeting MDSC and immune checkpoints. Similar results were observed in murine models of lung
and renal cell carcinoma [244]. In an HER?2 transgenic breast cancer and a metastatic pancreatic cancer
mouse model, the entinostat-driven inhibition of MDSC activity with checkpoint inhibitor treatment
resulted in an upregulation of granzyme B-producing CD8* T-cells and improved the infiltration and
function of adaptive immune cells. Tumour-free survival was significantly improved in these highly
aggressive cancer types [245].

5.2. Immunotherapy Combined with Obstructing MDSC Trafficking Therapy

CXCR2+ MDSC were found to promote immune suppression when migrated to the TME; the
efficacy of checkpoint inhibition in a mice model of rhabdomyosarcoma was severely limited by
MDSC [150]. Disruption of CXCR2-mediated migration in MDSC was demonstrated to significantly
improve anti-PD1 treatments. CXCR2+ MDSCs were also found to have potent immunosuppressive
properties in human paediatric sarcoma, and thus CXCR2 may serve as a target to prevent MDSC
recruitment to improve immunotherapeutic intervention. Furthermore, targeting CXCR2 improved
T-cell infiltration and when combined with anti-PD1 treatment, mice bearing pancreatic cancer showed
significantly extended survival [159]. SX-682, a small molecule CXCR1 and CXCR2 inhibitor, was
reported to substantially reduce PMN-MDSC trafficking and infiltration to the tumour in mice [214].
Reduction in intratumour PMN-MDSC populations enhanced the accumulation of both endogenous
T-cells and T-cells from adoptive transfer. Similarly to epigenetic agents, SX-682 had little anti-tumour
effect as a monotherapy, but in combination therapy with checkpoint inhibitors and adoptive T-cell
transfer therapy, it greatly enhanced their efficacy by inhibiting the recruitment of tumour-infiltrated
CXCR2+ PMN-MDSCs [214]. SX-682 has been tested in conjunction with Pembrolizumab in P1 clinical
trials for metastatic melanoma (NCT03161431).

6. Concluding Remarks

The identity of MDSCs is highly controversial as they can only be functionally defined. Thus, it
is unsurprising that the phenotypic heterogeneity in the MDSC population had led to ambiguity in
their description and characterisation between investigators, an issue that is compounded by a lack of
specific markers in both mouse and human MDSCs [54,67]. MDSC are typically defined as immature
myeloid cells and, during the carcinogenic process, the combination of markers expressed in MDSCs
are reflective of the diversity of the myeloid lineage, which are also influenced by the type of cancer
and specific TME. The definition of the phenotypic markers that encompass functional changes is
vital in evaluating MDSCs’ role in tumour progression and immune evasion [131]. The application of
newly developed high-throughput single-cell multi-omics techniques to understand the phenotypic
and functional composition of the MDSC population will contribute to unraveling MDSC diversity
and defining effective markers.

In summary, MDSCs play a vital role in promoting tumour progression, metastasis, and creating
an immunosuppressive TME; in addition, their role in resistance against immunotherapy makes them
a promising therapeutic target. As we continue to develop our understanding on the characterisation
and clinical value of MDSC, more selective anti-MDSC therapies will emerge. Currently, research has
demonstrated the value of targeting MDSC populations as part of a combination therapy to enhance
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the potency of immune checkpoint inhibitors and other forms of immunotherapy. This strategy was
shown to be effective in reducing tumour burden and metastasis, to the extent of improving overall
survival. As such, we are now beginning to see the critical role that MDSC plays in determining patient
response to treatments and their outcomes. Targeting these cells may be the key to development of a
next generation of immunotherapies with improved therapeutic outcomes.
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