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Abstract: Human activity recognition (HAR) is a popular and challenging research topic, driven by
a variety of applications. More recently, with significant progress in the development of deep learning
networks for classification tasks, many researchers have made use of such models to recognise human
activities in a sensor-based manner, which have achieved good performance. However, sensor-based
HAR still faces challenges; in particular, recognising similar activities that only have a different
sequentiality and similarly classifying activities with large inter-personal variability. This means
that some human activities have large intra-class scatter and small inter-class separation. To deal
with this problem, we introduce a margin mechanism to enhance the discriminative power of deep
learning networks. We modified four kinds of common neural networks with our margin mechanism
to test the effectiveness of our proposed method. The experimental results demonstrate that the
margin-based models outperform the unmodified models on the OPPORTUNITY, UniMiB-SHAR,
and PAMAP2 datasets. We also extend our research to the problem of open-set human activity
recognition and evaluate the proposed method’s performance in recognising new human activities.

Keywords: human activity recognition; deep learning; margin mechanism; open-set classification

1. Introduction

Human activity recognition (HAR), the goal of which is to identify specific activities carried out
by a person (or persons), has gained much attention recently due to its wide range of applications
in many fields, such as healthcare [1], athletic competitions [2], and smart cities [3]. HAR methods
can be divided as two categories: vision-based and sensor-based. Due to the complex backgrounds of
images and strict demands of environmental conditions, the actual application range of vision-based
HAR remains limited. Sensor-based methods are more robust in variable environments and have high
recognition accuracy and low power consumption, allowing these methods to be more widely used.

In traditional sensor-based HAR methods, hand-crafted features are crafted such that the classifier
can recognise different activities. The drawback of these methods is that they rely heavily on human
experience or domain knowledge. In recent years, with the rapid development of deep learning
technology, the classification performance of HAR based on deep learning networks has increased
substantially [4,5]. Compared with traditional methods, deep learning networks can automatically
extract high-dimensional features from raw sensor inputs. Although recent studies have achieved good
classification performance [6–8], current HAR systems are still far from ideal. The first issue which we
deal with in this work is that some human activities have intra-class diversity and inter-class similarity.
Intra-class diversity occurs when the same activities have large variability when carried out by different
people. Inter-class similarity means that different activities are highly similar, such as the "Open Door"
and "Close Door" classes in the OPPORTUNITY dataset. Meanwhile, some researchers have also
found that softmax loss does not acquire discriminative features [9–11]. The second problem which
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often appears in classification tasks is that, in practice, new activities are likely to appear in an HAR
system. This means that HAR can be regarded as an open-set classification problem. Open-set HAR is
essentially a metric learning problem, where the effective solution obtains discriminative large-margin
features. In view of these challenges, we incorporate a margin mechanism with softmax loss to improve
the discriminative power of deep learning networks. We use the deep learning models proposed by [5]
to prove the effectiveness of our method on three open human activity datasets: OPPORTUNITY [12],
UniMiB-SHAR [13], and PAMAP2 [14]. We also design a framework to deal with open-set HAR and
evaluate the effectiveness of this framework on the PAMAP2 dataset. Our contributions are as follows:

• We add a margin mechanism to the softmax loss to learn more discriminative feature
representations which enhance intra-class compactness and inter-class diversity.

• We use four deep learning models to carry out comparison experiments on three widely used
public datasets and prove that the margin-based method can improve the recognition ability of
the deep learning networks. Furthermore, we also conduct experiments to compare three machine
learning classifiers trained using hand-crafted features and features from the unmodified and
margin-based deep learning networks.

• We illustrate how the margin-based networks outperformed the unmodified models with different
hyperparameters. Additionally, we carry out experiments to visualise the cosine similarity and
2-D learning features of the softmax and additive angular margin losses.

• We extend our study to the open-set HAR problem. To the best of our knowledge, our work is
the first to treat HAR as an open-set classification problem. We confirm the effectiveness and
performance of our method using the PAMAP2 dataset.

The rest of this paper is organised as follows: Section 2 provides a brief overview of related
works on HAR, including traditional methods for HAR, deep learning for HAR, and metric learning.
In Section 3, we propose our selection of deep learning models and margin-based loss, as well as
explaining our method for dealing with the open-set HAR problem. We introduce three benchmark
datasets, the performance metrics, and experimental settings in Section 4. Section 5 provides evaluation
results, in terms of the three datasets, and the open-set HAR results. We present our conclusions in
Section 6.

2. Related Work

According to the different processes of feature extraction in HAR based on wearable sensor
data, the related works can be mainly summarised as belonging to two categories: hand-crafted
feature-based traditional methods and auto-extracted feature-based deep learning methods. Traditional
methods attempt to completely describe the input data with some machine learning models, such as
Support Vector Machines (SVM), Naive Bayes (NB), k-nearest Neighbours (KNN), Random forest (RF),
and so on. Chen et al. [15] proposed an online-independent support vector machine (OISVM) to update
the parameters of SVM online based on a small portion of data and experimentally demonstrated the
effectiveness of the OISVM algorithm. Hossain et al. [16] compared the recognition performance of
NB and RF based on some statistical features in the presence of different levels of random missing
data. The results showed that NB provides better performance than RF in both simulated and real data
of the HASC dataset. Mobark et al. [17] collected data about breakfast scenarios and divided them
into three levels, according to their complexity. They carried out experiments in seven classifiers and
the best results were achieved by the KNN classifier. Xu et al. [6] proposed a novel human activity
recognition method based on RF. Their method achieved an overall accuracy of about 90% on wearable
device data.

In contrast to machine learning methods with shallow statistical features, deep learning methods
can extract deep features automatically and have achieved superior performance in HAR. The
deep learning networks used in HAR tasks include Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), Multi-Layer Perceptrons (MLPs), Autoencoders (AEs), and so on.
Panwar et al. [7] designed a CNN model for three activities using a single wrist-worn accelerometer
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sensor. Their experiments showed that the CNN model outperforms SVM, K-means, and LDA.
Huang et al. [8] proposed a two-stage end-to-end CNN network and a data augmentation method.
Their proposed method achieved significant recognition accuracy, compared with the state-of-the-art
methods, as well as reduced computational complexity. Vepakomma et al. [18] extracted hand-crafted
features from sensor data and fed them into a MLP model. This model could recognise 22 complex
daily actions with high average test accuracy (90%). Almaslukh et al. [19] designed a stacked AE
and first adopted the greedy layer-wise pre-training technique. RNNs, which are good at capturing
intrinsic time dependencies of data, are popular in speech recognition and natural language processing.
However, they suffer from the vanishing gradient problem; a variety of RNN, called Long Short-Term
Memory (LSTM), has been proposed to deal with this problem. Many works have used LSTM for HAR
tasks. For example, Yu et al. [20] designed a deep LSTM network with residual connections, which
achieved an F1-score of 90.8% on the OPPORTUNITY dataset. A hybrid network is a combination
of deep models, which can integrate the advantages of different networks. Ordóñez and Roggen [4]
designed a hybrid network based on CNN and LSTM layers. The accuracy of recognition on two
datasets achieved by this hybrid architecture was higher than other models by as much as 9%.

Margin mechanisms belong to the field of metric learning. Metric learning aims to learn a similarity
(distance) function which maps image pixels to embedding feature vectors modelling the similarity
between images [11]. Metric learning forces deep learning models to be more discriminative and has
been successfully applied to many tasks, including face recognition [21,22], person re-identification [23,
24], and visual searching [25,26]. Liu et al. [11] designed a large margin softmax by adding angular
constraints to each identity, in order to learn discriminative face features. However, the loss function
needed many approximations, which led to uneven network training. CosFace [21] modified the
softmax loss by adding a cosine margin penalty, outperforming SphereFace and greatly simplifying
the implementation. Deng et al. [22] proposed an Additive Angular Margin Loss (ArcFace) to improve
feature discrimination. Their experiments showed that ArcFace outperforms the state-of-the-art and
is easily implemented with negligible computational overhead. Wojke N and Bewley [23] applied
deep cosine metric learning to learn a feature space and confirm its effectiveness on two large-scale
pedestrian re-identification datasets.

Several studies have focused on the issues of intra-class diversity and inter-class similarity [27,28].
Younes et al. [27] proposed a novel classifier, called the "Classifier for Activities with Variations" (CAV),
to deal with complex activities that could be performed in a wide variety of ways. The effectiveness
of CAV was illustrated on eight complex activities collected by a Qualisys video motion capture
system. Kim et al. [28] proposed an ensemble method using hidden Markov models to deal with the
difficulty in classifying some activities due to their intra-class variations and inter-class similarities.
The proposed model achieved about 83.51% accuracy on the UCI Human Activity Recognition dataset.
These two methods classify activities depending on template matching with cluster centers. When the
number of activities increases, the complexity of the HAR system also increases. Our proposed method
does not depend on precise data acquisition equipment or cluster methods and can be widely applied
to a variety of classification models which use softmax loss, in order to increase the discriminative
power of the models.

3. Framework

First, we briefly describe the four deep learning models we employed. Then, we introduce the
margin mechanism with which we modify the softmax function, the result of which is called the
Margin-based Loss function. The overall architecture is depicted in Figure 1. Finally, the framework
designed to deal with open-set HAR is detailed in Section 3.3.

3.1. Deep Learning Models

A MLP is the simplest artificial neural network. It includes at least three dense layers: an input
layer, one or more hidden layers, and an output layer. The output of each dense layer is sent as
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the input to the next layer. A softmax or an arcmargin layer, which includes a fully-connected layer
followed by a softmax or margin-based loss, respectively, serves as the output layer and provides
predictions (in terms of probabilities) for the input data.

A CNN consists of an input layer, at least one convolutional layer followed by activity (non-linear)
and pooling layers, and at least one fully-connected layer. For the convolutional layer, a local domain
in a previous layer is connected to a convolution kernel to automatically learn local and short-term
features. The convolution operation functions like a feature extractor coupled with an activity layer.
The pooling layer applies a function (e.g., max-pooling or average-pooling) to perform downsampling,
which produces translational invariance. The feature maps must be flattened before being passed
through one or more of the fully-connected layers. Finally, a softmax layer computes the probability of
each class.

Figure 1. Architecture of margin-based deep learning networks.

A LSTM is used to exploit temporal dependencies within data. The design of LSTM employs
gating to describe the temporal correlation between instantaneous and historical information.
The LSTM model is similar to the architecture of a CNN: Input data is passed to stacked LSTM
layers, and the output of the last LSTM layer is sent to a fully-connected layer. A softmax layer
generates the classification probability.

A Hybrid Convolutional and Recurrent Network extracts both short- and long-term
time-dependent features in the data. A hybrid model typically contains several convolutional
blocks. The output of the last convolutional layer is sliced along the time dimension, with each
slice subsequently flattened. The flattened vector is used as the input to the LSTM layer.

3.2. Margin-based Loss Function

Softmax loss has been widely used for classification problems. It aims to separate features of
different classes by maximising the predicted probability of the ground-truth class. The Equation for
this loss is

Lso f tmax = − 1
m

m

∑
i=1

log
e fyi

∑n
j=1 e fyj

= − 1
m

m

∑
i=1

log
eWT
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j=1 e
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yj xi+bj

, (1)
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where Wyi is the weight matrix of class yi, xi are the feature maps, and fyj denotes the output of
a fully-connected layer with weight matrix Wyj and bias bj. We can express fyj as the product of norms
and intersection angles, setting the bj to 0 for simplicity. The Equation is

fyj = WT
j x = ‖WT

j ‖‖x‖ cos θj, (2)

where θj is the angle between class Wyj and x. The Equation shows that the predicted probability
benefits from both the norm and angle of vectors. To simplify our analysis, we apply L2 regularisation
to fix ‖W∗yj

‖ = 1 and ‖x∗‖ = 1. To rescale the product of these two normalised vectors, we multiply s
by it. We can formulate this as

‖WT
j ‖‖x‖ = s‖W∗j

T‖‖x∗‖. (3)

The normalisation operation makes the predicted probability merely rely on the cosine of the angle.
The following Equation is the modified loss function:

L = − 1
m

m

∑
i=1

log
es(cos θyi )

es(cos θyi ) + ∑n
j=1,j 6=yi

es(cos θj)
. (4)

Therefore, the model learns separable features in the angular space. However, the modified
softmax loss can not extract discriminative features, as the loss only emphasises correct predictions.
To deal with this problem, we introduce margin-based loss [22], which adds an angle interval m for
the ground-truth class into the preceding Equation. We express this as

LArcFace = −
1
m

m

∑
i=1

log
es(cos (θyi+m))

es(cos (θyi+m)) + ∑n
j=1,j 6=yi

es(cos θj)
. (5)

Compared with softmax loss, the optimisation target changes from cos (θyi ) to cos (θyi + m). If the
network wishes to obtain the same predicted probability for a target class, the angle θ should be made
smaller. This operation enhances intra-class consistency and inter-class diversity. The margin-based
method is illustrated in Figure 9. The margin-based loss function is embedded in an arcmargin layer,
which is shown in Figure 1.

3.3. Open-set Classification Problem for HAR

A closed-set classification problem requires all categories to be predefined for the training and
testing sets. It is natural to classify a testing dataset for such given categories. In practice, however,
all categories existing in the testing dataset may not appear in the training set, which makes the
problem more challenging. For HAR, it is possible to add a new activity in an online HAR system.
The features extracted using the softmax loss are not separable enough to manage open-set HAR and,
so, we introduce the Additive Angular Margin Loss to learn discriminative large-margin features.

We now present our proposed framework in terms of training and testing processes for open-set
HAR, as shown in Figure 2. In the training stage, we use a training set with predefined classes
to train the margin-based deep learning models described in Section 3. The models learn the
discriminative features after training. We remove the arcmargin layer from the models and then extract
high-dimensional features of the training data from the first fully-connected layer for subsequent
comparison.

In order to build the feature database, representative features must be extracted from each class
feature set. We propose two methods for acquiring these features: The first is the center method,
which calculates the cosine similarity of each feature in a set to the other features in the same set. We
assign the one with the average highest similarity as the center-seed feature and randomly select
several other features as random-seed features. The second method is the cluster method. In this
method, we use K-Means++ [29] to select several cluster centers as representative features for each
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class, which we call cluster-seed features. We construct the feature database by performing one of
these two processes on the training dataset. For every class, we set a threshold, which is used to accept
or refuse the prediction label of data as belonging to the class. For each predefined class, we calculate
the cosine similarity between the feature of class data and the chosen seeds in the validation set. Then,
we choose [0.1− 0.9] (in increments of 0.1) as candidate values for the threshold. The best value of
the threshold for each class is decided according to highest F1-score. For a new human activity, we
calculate the cosine similarity of each sample and the other samples. We set the first quantile of these
cosine similarities as the value of the new threshold (the first quantile was chosen due to it achieving
the best results experimentally).

Figure 2. Framework for open-set human activity recognition.

If a new human activity (i.e., one whose class cannot be found in the training set) appears
in the HAR system, we first collect several samples and send them to the model to obtain deep
features. After this, feature representations are chosen using the preceding two methods and added to
the feature database to recognise the new activity. Then, the classes of the feature database include
the classes in the training set and the new human activity. When it receives new data, the system
obtains the deep features of the data using the model and calculates the cosine similarity between the
features and the feature database. As shown in Example 1 of Figure 3, if the corresponding class for
the maximum of these similarities belongs to classes in the training set and the max value is smaller
than the threshold of this class but larger than the threshold of the new activity, the predicted labels of
the new data form the new activity. In other cases, such as Example 2 of Figure 3, the predictions are
determined by the maximum similarity.

Figure 3. Examples of recognising an activity in open-set human activity recognition.
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4. Experiment

We used three benchmark datasets—OPPORTUNITY, UniMiB-SHAR, and PAMAP2—to prove
the effectiveness of the proposed method. In this section, we first introduce the three experimental
datasets. Depending on the existence of class imbalances, we further adopt two performance metrics
to eliminate the influence of such imbalances. Finally, we present the parameters of four deep learning
models, along with the parameters used in the training stage.

4.1. Benchmark Datasets

Human activities, whose features are always unique and cyclical, contain various gestures such as
running, walking, sitting, and so on. Therefore, a benchmark dataset should include a variety of human
activity types. Researchers have created several datasets for HAR, such as the OPPORTUNITY [12],
UniMiB-SHAR [13], PAMAP2 [14], and Skoda [30] datasets. We used three datasets for the closed-set
HAR problem and one for the open-set HAR problem.

The OPPORTUNITY dataset consists of four subjects performing 17 different activities in a kitchen
scenario. The data was obtained using seven wireless body-worn inertial measurement units (IMUs)
and 12 additional accelerometers at a sampling frequency of 30 Hz. Each subject performed six rounds:
in the first five rounds, they performed scripted activities; in the last round, they repeated each activity
20 times. The data were stored in 5 ADL files and 1 Drill file. To deal with the problem of missing data,
we removed 38 sensor channels, including accelerometer recordings from the left and right hands along
with all quaternion channels acquired from the IMU. We used the remaining 107-dimensional data for
our experiments, filling missing values from the last non-missing data.We chose the ADL1–3 and Drill
files of all four subjects as the training set and the ADL4–5 files as the testing set. For frame-by-frame
analysis, the length of the sliding window was 2 s and the sliding stride was 3. The resulting training
and testing sets included about 211,000 and 78,000 frames, respectively.

The UniMiB-SHAR dataset was built from the recordings of a Samsung Galaxy Nexus I9250
smartphone with an embedded 3D-accelerometer. A total of 30 volunteers performed 17 activities
wearing the smartphone in their left or right pocket. The data was sampled at a constant sampling rate
of 50 Hz. Following previous work, we used a energy-based segmentation technique with a fixed-width
sliding window of 151 (about 3 s) to slice the data [13]. The dataset consisted of approximately
11,000 frames. We carried out 30-fold leave-one-subject-out cross validation for experiments with the
UniMiB-SHAR Dataset.

The PAMAP2 dataset consists of data from nine subjects (eight male and one female) arranged to
perform 18 activities, including a protocol of 12 activities (e.g., lying down, cycling, and jumping rope)
and six optional activities (e.g., computer work and playing soccer). Over 10 h of data were collected
by IMUs worn on the hand, ankle, and chest. The resulting dataset has 52 dimensions. We chose runs 1
and 2 for subject 5 as the validation set and runs 1 and 2 for subject 6 as the test set. The remaining data
was used as our training set. To obtain a temporal resolution similar to the OPPORTUNITY dataset,
we downsampled the sensor data to 33.3 Hz and sliced it using sliding windows of 5.12 s with 78%
overlap between adjacent windows. This yielded approximately 14,000, 2000, and 2000 frames for the
training, validation, and testing sets, respectively.
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Table 1. Settings of the models used on the OPPORTUNITY, UniMiB-SHAR, and PAMAP2 datasets. 1 and 2 indicate the number of LSTM cells used in the
OPPORTUNITY and PAMAP2 datasets, respectively.

OPPORTUNITY1 and PAMAP22 UniMiB-SHAR

Model Parameter Value Parameter Value

MLP Neurons in fully-connected layers 1, 2, and 3 2000 Neurons in fully-connected layers 1, 2, and 3 6000

CNN Convolutional kernel size for blocks 1, 2, and 3 (11,1), (10,1), (6,1) Convolutional kernel size for block 1 (32,3)
Convolutional sliding stride for blocks 1, 2, and 3 (1,1), (1,1), (1,1) Convolutional sliding stride for block 1 (1,1)
Convolutional kernels for blocks 1, 2, and 3 50, 40, 30 Convolutional kernels for block 1 100
Pooling sizes for blocks 1, 2, and 3 (2,1), (3,1), (1,1) Pooling sizes for block 1 (2,1)
Neurons in fully-connected layer 1000 Neurons in fully-connected layer 6000

LSTM LSTM cells in layers 1 and 2 641, 641, 1702, 1702 LSTM cells in layers 1 and 2 151, 151
Output dimensions of LSTM cells in layers 1 and 2 600, 600 Output dimensions of LSTM cells in layers 1 and 2 1000, 1000
Neurons in fully-connected layer 512 Neurons in fully-connected layer 6000

Hybrid Convolutional kernel size for block 1 (11,1) Convolutional kernel size for block 1 (32,3)
Convolutional sliding stride for block 1 (1,1) Convolutional sliding stride for block 1 (1,1)
Convolutional kernels for block 1 50 Convolutional kernels for block 1 100
Pooling sizes for block 1 (2,1) Pooling sizes for block 1 (2,1)
LSTM cells in layers 1 and 2 271, 271, 802, 802 LSTM cells in layers 1 and 2 60, 60
Output dimensions of LSTM cells in layers 1 and 2 600, 600 Output dimensions of LSTM cells in layers 1 and 2 1000, 1000
Neurons in fully-connected layer 512 Neurons in fully-connected layer 6000



Sensors 2020, 20, 1871 9 of 19

4.2. Performance Metrics

Human activity datasets are often highly unbalanced. The NULL class of the OPPORTUNITY
dataset represents more than 75% of the total data, which leads to an extremely imbalanced data
distribution. For this dataset, the overall classification accuracy is not a suitable metric for measuring
performance, as a classifier that predicts as many instances as possible as belonging to the majority
class could have a high performance. Instead, we used the weighted F1-score to assess the models,
which simultaneously considers precision and recall for each activity. Precision and recall are defined
as TP

TP+FP and TP
TP+FN , respectively, where TP, FP, and FN represent the number of true positives,

false positives, and false negatives. To deal with data imbalance, the weighted F1-score calculates the
F1-score of each class and then multiplies it by a weight value:

Fw = ∑
c

2 ∗ wc
precisionc · recallc

precisionc + recallc
, (6)

where c is the class index and wc = nc/N represents the proportion of samples of the cth class. We also
evaluated two other metrics for comparison, as used by Li [5]: the overall accuracy and the average
F1-score. The average F1-score is independent of the class distribution and defined as

Fm =
2
|c|∑c

precisionc · recallc
precisionc + recallc

. (7)

4.3. Model Settings

Table 1 shows the settings of the deep learning models introduced in Section 3. These are the
same as [5], for the sake of fair comparison. For the closed-set HAR problem, the hyper-parameters of
these models for the OPPORTUNITY and PAMAP2 datasets were kept consistent, but differed from
those used with the UniMiB-SHAR dataset.

For all three datasets, we placed a batch normalisation layer [31] after the input of each model, in
order to avoid internal covariate shift, as it demonstrated the best performance [5]. The fully-connected
layers shown in Table 1 were followed by a REctified Linear Unit (RELU) activation layer to provide
non-linear expression. Each of the CNN blocks in Table 1 included convolutional, RELU, and
max-pooling layers. The number of cells in the LSTM layers were determined by the size of the sliding
window. The LSTM cells used a sigmoid function for gate activation and a hyperbolic tangent for other
activations. We placed either a softmax layer or an arcmargin layer after the last fully-connected layer
to provide predictions for each class.

Table 2. Classification performance results (in percent) of the various models under the OPPORTUNITY,
UniMiB-SHAR, and PAMAP2 datasets. ’-M’ represents models utilising an arcmargin layer.

OPPORTUNITY UniMiB-SHAR PAMAP2

Method Acc Fw Fm Acc Fw Fm Acc Fw Fm

HC [5] 89.96 89.53 63.76 32.01 22.85 13.78 - - -
CBH [5] 89.66 88.99 62.27 75.21 74.13 60.01 - - -
CBS [5] 90.22 89.88 67.50 77.03 75.93 63.23 - - -
AE [5] 87.80 87.60 55.62 65.67 64.84 55.04 - - -

MLP [5] 91.11 90.86 68.17 71.62 70.81 59.97 82.63 80.83 72.92
CNN [5] 90.58 90.19 65.26 74.97 74.29 64.65 91.51 91.35 83.34
LSTM [5] 91.29 91.16 69.71 71.47 70.82 59.32 84.00 82.71 74.00

Hybrid [5] 91.76 91.56 70.86 74.63 73.65 64.47 85.12 83.73 76.10
MLP-M 91.28 91.03 68.09 73.94 73.55 61.59 82.47 82.09 74.43
CNN-M 90.88 90.47 66.85 74.86 74.42 63.30 93.74 93.75 92.95
LSTM-M 92.30 91.99 70.45 74.17 72.93 59.43 86.00 84.60 83.75

Hybrid-M 91.92 91.87 71.08 77.88 77.29 65.31 93.52 93.52 93.09



Sensors 2020, 20, 1871 10 of 19

4.4. Model Training

Our deep-learning models were implemented using the PyTorch [32] library. The computing
platform was equipped with an Intel E5-2620 at 2.10 GHz, 9.6 GB RAM, and an 11 GB NVIDIA 1080 Ti
GPU. All parameters of the models were randomly orthogonally initialised and updated using the
ADADELTA optimiser with default patameters (i.e., initial learning rate of 1) for 50 epochs. The batch
size was set to 100.

5. Results

5.1. Performance Comparison

Table 2 presents a summary of the performance results of the deep learning and margin-based
models, in terms of the accuracy (acc), weighted F1-score (Fw), and average F1-score (Fm). In terms
of overall performance, the margin-based methods achieved the highest scores on all three datasets.
Specifically, LSTM-M obtained the highest accuracy and weighted F1-scores (92.30% and 91.99%,
respectively), while the best average F1-score of 71.08% was obtained by Hybrid-M on the
OPPORTUNITY dataset. The NULL class of this dataset is almost 70%, while other activities are
rarely more than 2%. This problem led to inadequate training in all tested models. However, matters
improved for the UniMiB-SHAR and PAMAP2 datasets. The accuracy, weighted F1-score, and average
F1-score of Hybrid-M increased to 77.88%, 77.29%, and 65.31%, respectively, on the UniMiB-SHAR
dataset. Meanwhile, we note that the CBS method ranked second, with the margin-based methods
markedly improving performance compared with the corresponding non-margin deep learning models.
For the four deep learning models, our proposed methods improved performance by about 2% on
average for accuracy and weighted F1-score and about 10% on average for F1-score on the PAMAP2
dataset. Taken as a whole, each deep network using a margin-based method demonstrated a visible
performance improvement.

In order to show the effectiveness of our proposed margin-based methods more intuitively,
we compared each class of the benchmark dataset between the different models. We selected only the
PAMAP2 dataset for this experiment, as we trained all models reported by Li [5] using this dataset
and directly used the reported performance of these models with the other two datasets. Without
loss of fairness and generality, we chose the F1-score of each class as a metric. Figure 4a shows the
F1-scores of each class for the deep learning models and our proposed models. Although the F1-scores
of the margin-based models were very close to other models for some activities, they still performed
better in all classes overall. Most notably, the highest F1-scores achieved by the Hybrid-M model
were 79.08% and 94.26% for standing and vacuum cleaning, respectively; in contrast, the Hybrid
model achieved only 42.31% and 64.29%, respectively. These results shows strong support for the
effectiveness of our proposed methods. Our models also worked well for the minority classes of the
PAMAP2 dataset. The descending stairs class accounted for only 5.7% of the total dataset, but the
LSTM-M model attained an F1-score of 69.66%—an increase of 20.61%, compared with the plain LSTM
model.

Figure 4b shows the confusion matrices of all networks, from which we can see that the
margin-based models obtained consistently better performance than the deep learning models and
had better generalisation ability for recognising complex human activities. These results might be
because the learned discriminative large-margin features powerfully enhanced intra-class compactness
and inter-class diversity.

Furthermore, in Table 3, we display the performance metrics of three other classifiers and the
LSTM-M network on the OPPORTUNITY dataset. LSTM-M achieved excellent performance on the
OPPORTUNITY dataset, as shown in Table 2. We used 18 hand-crafted features, which were computed
on each sensor channel independently, according to the suggestion in [5]. From the results, we can see
that the deep learning-based feature extraction method could achieves better performance, compared
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with the hand-crafted feature extraction methods. Furthermore, we also extracted features from
the first fully-connected layer of the LSTM and LSTM-M networks, and trained the three machine
learning classifiers with these features. There was a significant performance improvement for the
three classifiers, especially Naïve Bayes. Classifiers which used features from the LSTM-M network
outperformed the same classifier using features from the LSTM network, which also illustrates that the
margin mechanism can enhance the discriminative power of deep learning methods.

(a)

(b)

Figure 4. (a) The F1-score (in percent) of each class of different models on the PAMAP2 dataset. (b)
Confusion matrix of each model on the PAMAP2 dataset. The horizontal and vertical axes represent
the predicted and true classes, respectively. 1, lying; 2, sitting; 3, standing; 4, walking; 5, running; 6,
cycling; 7, Nordic walking; 8, ascending stairs; 9, descending stairs; 10, vacuum cleaning; 11, ironing.
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Table 3. Classification performance results (in percent) of three machine learning classifiers on the
OPPORTUNITY dataset. ’-DF’ and ’-DF-M’ mean that the features used to train the three classifiers
were obtained from the LSTM model and the LSTM-M model, respectively.

Method Acc Fw Fm

SVM 89.96 89.53 63.76
Random Forest 89.21 87.08 52.45

Naive Bayes 44.79 52.61 32.81
SVM-DF 91.81 91.62 70.24

Random Forest-DF 91.84 91.63 70.24
Naive Bayes-DF 91.15 91.29 69.03

SVM-DF-M 91.88 91.62 70.43
Random Forest-DF-M 91.93 91.64 70.42

Naive Bayes-DF-M 91.68 91.62 70.08
LSTM-M 92.30 91.99 70.45

5.2. Evaluation of Hyperparameters

5.2.1. Length of Sliding Window

The length of the sliding window has a large influence on the performance of deep learning
models. Human activity features are often various and cyclic. When the length of the sliding window is
short, models can not extract enough features if the duration of an activity is long. However, when the
length of the sliding window is too long, it contains a lot of redundant information. Therefore, we
investigated the influence of different sliding window lengths on our proposed method. Besides T =

64, we conducted experiments with data sequence segments of duration T = 32 (approximately 1 s)
and T = 96 (approximately 3 s).

Table 4 and Figure 5 illustrate the performance of the three metrics of the unmodified and
margin-based models with different sliding window lengths on the OPPORTUNITY dataset. Viewed as
a whole, the margin-based method can inspire the potential of deep learning models without being
affected by the various window lengths. It can also be noted that the result became better with
an increase of length. This phenomenon reveals that the margin-based models could extract more
discriminative features, as bigger frames probably contain more useful and redundant information.
Furthermore, we also found that performances of the LSTM and Hybrid models were enhanced by the
margin-based method, which proves that the proposed margin-based loss helps LSTM-based models
to obtain more temporal dependencies.

Table 4. Classification performance results (in percent) using different sliding window lengths on the
OPPORTUNITY dataset.

T = 32 T = 64 T = 96

Method Acc Fw Fm Acc Fw Fm Acc Fw Fm

MLP [5] 90.79 90.40 66.33 91.11 90.86 68.17 90.94 90.65 66.37
CNN [5] 90.34 89.71 62.10 90.58 90.19 65.26 90.38 89.98 63.38
LSTM [5] 90.88 90.60 67.20 91.29 91.16 69.71 91.33 91.21 68.64

Hybrid [5] 91.10 90.75 67.31 91.76 91.56 70.86 91.44 91.25 69.04
MLP-M 91.13 90.77 66.80 91.28 91.03 68.09 91.34 91.10 67.42
CNN-M 89.97 89.87 64.20 90.88 90.47 66.85 91.47 91.16 67.78
LSTM-M 91.34 91.10 68.52 92.30 91.99 70.45 92.02 91.93 71.72

Hybrid-M 92.06 91.77 71.36 91.92 91.87 71.08 92.45 92.22 71.03
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Figure 5. Classification performance results (in percent) using different sliding window lengths on the
OPPORTUNITY dataset.

5.2.2. Number of Sensor Channels

Human activity recognition can use multi-modal data but, for practical purposes, we should
consider portability, flexibility, and power consumption. Therefore, we sought to illustrate that
margin-based models are not affected by variations in sensor channels. In this evaluation, we chose
different subsets of the 107 sensor channels as our datasets, based on Principal Component Analysis
(PCA), from the OPPORTUNITY dataset. By obtaining the top n sensor channels according to their
variance rank results, we carried out experiments with subsets for n ∈ {20, 50, 80}. The other settings
were kept the same as in previous experiments.

The average F1-scores are shown in Table 5 and Figure 6. Comparing the deep learning and
margin-based models, the average improvements in average F1-score for n = {20, 50, 80, 107} were
1.03, 2.30, 2.21, and 0.61, respectively. This reveals that more rich features can be acquired when the
number of sensor channels increases. The margin-based method obviously improved the ability of the
networks.

Table 5. The average F1-score (in percent) using different numbers of sensor channels on the
OPPORTUNITY dataset.

Method 20 50 80 107

MLP [5] 39.29 62.68 65.82 68.17
CNN [5] 38.47 57.08 63.23 65.26
LSTM [5] 41.89 62.23 67.36 69.71

Hybrid [5] 46.11 63.70 68.79 70.86
MLP-M 40.16 63.09 66.87 68.09
CNN-M 40.33 60.07 65.47 66.85
LSTM-M 42.72 65.80 70.78 70.45

Hybrid-M 46.68 65.92 70.93 71.08
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Figure 6. The average F1-score (in percent) using different numbers of sensor channels on the
OPPORTUNITY dataset.

5.2.3. Margin Value

Further, the angle interval m as a hyper-parameter varied with the network. Therefore,
performance plots with different angle interval values on the OPPORTUNITY dataset are shown
in Figure 7. The margin value varied for distinct models, which means that a large margin value
heavily enhanced intra-class compactness and inter-class diversity uncertainly, which had a large
impact on the classification performance of HAR models. The margin values were tailored to the
different deep learning models. We set m for MLP-M, CNN-M, LSTM-M, and Hybrid-M to 0.5, 0.2,
0.5, and 0.3, respectively, for the OPPORTUNITY dataset. For the UniMiB-SHAR dataset, we used a
margin value of 0.1 for CNN-M and left the others unchanged. We set m for MLP-M and CNN-M to 0.1
and 0.3, respectively, for the PAMAP2 dataset. As the margin value was increased, the discriminative
power of the extracted features could be significantly enhanced.

Figure 7. The weighted F1-score (in percent) of the margin-based models for different margin values
with the OPPORTUNITY dataset.
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5.2.4. Comparison with Softmax Loss

To show that margin-based loss can obtain more discriminative features, compared with softmax
loss, we carried out an experiment to calculate the cosine similarity (i.e., intra-class and inter-class)
on the PAMAP2 testing dataset. Due to its better performance on the PAMAP2 dataset, the CNN-M
model was used for this experiment. We extracted features from the first fully-connected layer for
margin-based and softmax losses, respectively. Then, we calculated the cosine similarities within and
between classes. A heatmap of these similarities is pictured in Figure 8. Compared with the similarities
obtained by softmax loss (Figure 8b), the similarities gained through margin-based loss (Figure 8a)
were larger intra-class and smaller inter-class. The results of this experiment demonstrate that our
margin-based method can improve the discriminative power of networks, which is significant for deep
learning networks which attempt to distinguish similar human activities.

Figure 8. Heatmaps of cosine similarity of all classes using the CNN model on the PAMAP2 testing
dataset: (a) softmax loss; and (b) additive angular margin loss.

To better visualise the features and prove the effectiveness of our approach, we performed a
experiment using the CNN-M network on the PAMAP2 validation dataset. We selected data segments
from 12 classes, including 1200 samples (100 samples/class), to train 2D feature embedding networks
with the softmax loss and margin-based loss with different margin values. In Figure 9, the 2D feature
distributions in Euclidean space and angular space are shown in the first and second row, respectively.
We can observe that the softmax loss did not provide separable features, while the margin-based loss
enforced an evident gap among different classes.
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Figure 9. Testing softmax and arcmargin losses on the PAMAP2 validation dataset with 2D features.
In this experiment, we used a CNN model to learn 2D features on the validation set of the PAMAP2
dataset. To realise this, we set the output dimension of the first fully-connected layer to 2. The first
and second rows are the features in Euclidean space and angular space, respectively. Dots of different
colours represent the features of different classes.

5.3. Performance of Open-Set HAR

We used the PAMAP2 dataset to evaluate open-set HAR performance. For each class of the
PAMAP2 dataset, we chose data of the class as a new activity and trained our model using data from
only the other classes. Based on the performance of the margin-based models on the PAMAP2 dataset,
as shown in Table 2, we selected CNN-M as the base model. Figure 10 shows the F1-score of each new
class using the center and cluster methods described in Section 3. The mean F1-score, which calculates
the mean value of all new classes of PAMAP2, was 90.92% for the closed-set HAR problem using this
procedure. In the case of the open-set HAR problem, the center and cluster methods achieved 86.06%
and 85.58% mean F1-scores, respectively. The performance of our CNN-M model with open-set HAR
data dropped a little, but it is a more practical method in realistic situations. Further, the F1-scores of
the CNN-M model were 97.33% and 96.23%, respectively, for the running class that accounted for only
3.59% of all data considered as a minority class. However, CNN achieved an F1-score of only 96% with
closed-set HAR. The results of this experiment demonstrate that our margin-based model is robust in
the presence of changing data quantities.
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Figure 10. The F1-score (in percent) of each class in the PAMAP2 dataset evaluated by the CNN-M
model for open-set human activity recognition. Among, the horizontal axis represents the number of
chosen seed. The two lines represent the center and cluster methods. The markpoints of different lines
represent the highest F1-score.

6. Conclusions

This paper applied a margin mechanism to deal with two well-known issues in HAR. The first
one is intra-class diversity and inter-class similarity. We added the proposed margin mechanism
to four different deep learning networks and conducted experiments on three benchmark datasets.
The results demonstrated that the proposed method could improve the classification performance
of the four networks. The proposed method outperformed three machine learning classifers on
the OPPORTUNITY dataset. When the classifiers were trained with features extracted from deep
learning networks, their performances were significantly improved. It was revealed that the margin
mechanism could obtain discriminative features. We also carried out experiments with various
hyperparameters on the OPPORTUNITY dataset, which demonstrated the effectiveness of the proposed
method under different settings. Furthermore, we visualised the cosine similarity and 2-D features
of the softmax and margin-modified losses. The figures revealed that the margin mechanism could
learn more feature representations which have small inter-class scatter but large inter-class separation.
Finally, we attempted to solve the second problem: open-set human activity recognition. We conducted
experiments on the PAMAP2 dataset with our CNN-M model, and the results showed strong
performance when treating each class as a new activity. The results of this experiment illustrate
that our approach is, indeed, useful for open-set HAR.
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