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Agent-based modeling (ABM) is a powerful simulation technique which describes a complex 
dynamic system based on its interacting constituent entities. While the flexibility of ABM enables 
broad application, the complexity of real-world models demands intensive computing resources 
and computational time; however, a metamodel may be constructed to gain insight at less 
computational expense. Here, we developed a model in NetLogo to describe the growth of 
a microbial population consisting of Pantoea. We applied 13 parameters that defined the 
model and actively changed seven of the parameters to modulate the evolution of the 
population curve in response to these changes. We efficiently performed more than 3,000 
simulations using a Python wrapper, NL4Py. Upon evaluation of the correlation between the 
active parameters and outputs by random forest regression, we found that the parameters 
which define the depth of medium and glucose concentration affect the population curves 
significantly. Subsequently, we constructed a metamodel, a dense neural network, to predict 
the simulation outputs from the active parameters and found that it achieves high prediction 
accuracy, reaching an R2 coefficient of determination value up to 0.92. Our approach of using 
a combination of ABM with random forest regression and neural network reduces the number 
of required ABM simulations. The simplified and refined metamodels may provide insights 
into the complex dynamic system before their transition to more sophisticated models that 
run on high-performance computing systems. The ultimate goal is to build a bridge between 
simulation and experiment, allowing model validation by comparing the simulated data to 
experimental data in microbiology.

Keywords: agent-based model, machine learning, random forest regression, neural network, Pantoea

INTRODUCTION

The Earth may be described as a microbial planet with microbes found in complex communities 
that perform a wide range of important functions, from microbial communities in the human 
gut, to communities in soil that affect the growth of plants (Leveau et  al., 2018). Although, 
advances in genomics, metabolomics, and imaging have provided clues about the organization 
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and composition of microbial communities, our ability to predict 
and manipulate the functions of microbial communities for 
desired outcomes is limited (Kreft et al., 2017). Complementing 
these experimental approaches, simulation techniques, such as 
agent-based modeling (ABM), are moving to the forefront as 
a powerful tool to unravel how interactions between microbes 
lead to emergent traits at the community level (Kreft et  al., 
1998, 2017; Hellweger et  al., 2008, 2016; Leveau et  al., 2018).

As with any simulation technique, the accuracy of an 
ABM is determined by comparing the simulation data to 
the experimental data, a process known as validation. In 
microbiology, the experimental data can exist in many forms, 
such as genomic sequences, metabolite profiles, growth curves 
of individual microbial strains, or images of microbial growth. 
Validating the ABM in a multi-scale manner is possible using 
pattern oriented modeling (POM), but it is also very expensive 
computationally (Grimm et  al., 2005). To reduce the 
computational burden, it is customary to first perform a 
sensitivity analysis (SA) of the ABM (Ligmann-Zielinska, 
2013; Ligmann-Zielinska et  al., 2014; Thiele et  al., 2014; ten 
Broeke et  al., 2016). With SA, one can uncover which 
parameters of the model have the strongest effect on the 
output, and what correlations, if any, exist among them. 
Then, during the validation process, one can focus on varying 
the independent parameters only, thereby reducing the 
computational burden.

We have started building ABMs that are capable of reproducing 
experimental local and global information of microbial growth. 
Local information can be size and shape of the colonies, length 
of the boundaries between colonies, etc. Global information 
is usually represented by the population curves of the whole 
community, where growth is monitored over time. As part of 
this effort, we  have focused on investigating the microbial 
interactions in the rhizosphere of poplar trees (Populus deltoides 
or Populus trichocarpa), a tree that shows promise as a bio-energy 
crop (Cregger et  al., 2021). Pantoea sp. YR343 is a gamma-
proteobacterium that was isolated from the rhizosphere of 
P. deltoides and possesses several plant growth-promoting 
characteristics (Bible et  al., 2016). In the work presented here, 
we  developed the ABM to investigate the growth of Pantoea. 
This model is an improvement to the previous model made 
for investigating a population containing a wild-type and a 
mutant strain of Pseudomonas aeruginosa (Wilmoth et al., 2018).

The ABM developed is written in the language NetLogo 
(Wilensky, 1999). This language was designed for teaching 
complex phenomena to students and thus it is easy to learn. 
This has undoubtedly contributed to its popularity. Further, 
we  have found that NetLogo’s interface allows experimentalists 
to run simulations and explore different scenarios, facilitating 
the exchanges of ideas and further improvement of the model. 
Nonetheless, in general, NetLogo lacks capabilities for performing 
simulations on high-performance computing systems, although, 
recent works have shown that significant improvements in 
performance can sometimes be  attained (Ayllón et  al., 2016; 
Railsback et al., 2017). Despite this, NetLogo can be a powerful 
tool for prototyping ideas before implementing them in more 
sophisticated software, such as NUFEB (Li et  al., 2019).

The model present here contains 13 parameters, thus 
making the SA and validation analysis computationally 
prohibitive. This limitation forced us to turn our attention 
to identifying ways to simplify our model that circumvent 
the need to carry out a large number of simulations (Pereda 
et al., 2017). To this end, we turned our attention to machine 
learning (ML), specifically deep learning (DL). ML and 
particularly DL have undergone significant advances in the 
last 10 years. Using application programming interfaces (APIs) 
such as Keras (Chollet, 2015) and scientific packages such 
as SciPy (Virtanen et  al., 2020), it is relatively simple to 
write code to classify objects, perform regression, or make 
predictions. The Web is also full of blogs and courses that 
flatten the learning curve for these types of techniques. ML 
and DL have also been applied to microbiology, yet the 
confluence of these techniques with ABMs is, to our 
knowledge, not broadly used (Lee et  al., 2020).

Here, the population curves of Pantoea produced by the 
NetLogo ABM are compared to the experiments. The simulated 
population curves are also analyzed using random forest 
regression to study the correlation between the parameters 
and outputs of the ABM and pinpoint the most important 
parameters of the model. Then, we  build a fully dense neural 
network, which we  show is capable of producing results 
statistically similar to that of the original ABM. The choice 
of these ML techniques is due to their consistent robustness 
and accuracy in prediction (Biau, 2012; Abiodun et  al., 2018; 
Couronné et  al., 2018). To improve the efficiency of our ABM 
simulations, we  use NL4Py (Gunaratne and Garibay, 2018), a 
Python wrapper for NetLogo, which permits submitting thousands 
of simulations in a parallel fashion. We  also note challenges 
when comparing simulated and experimental population curves, 
and we  suggest how to circumvent this limitation in the 
Discussion section.

MATERIALS AND METHODS

Agent-Based Modeling Method
The ABM was designed to reproduce the behavior of a Pantoea 
growing in a R2A-rich agar petri dish. This model uses many 
of the implementations in IBM-INDISIM (Ginovart et  al., 
2002), the ABM which has been successfully used to simulate 
microbial cultures in situations such as fermentation, multi-
species composting, and yeast dynamics in aerobic media 
and denitrification processes (Ginovart and Cañadas, 2008; 
Prats et  al., 2010; Portell et  al., 2014; Banitz et  al., 2015; 
Araujo Granda et  al., 2016b). As in IBM-INDISIM, we  use 
a thermodynamic approach to describe microbial metabolism, 
e.g., cellular maintenance and mass production, in the ABM 
for Pantoea. This approach is called the Thermodynamic 
Equivalent Electron model (TEEM), and it relies on a set of 
thermo-chemical reactions that account for the Gibbs free 
energy involved in the overall metabolism, catabolism, and 
anabolism (McCarty, 2007). We  also assume that the growth 
is Monod driven with a maximum growth rate, μmax, ranging 
from 0 to 10.
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Two types of entity exist in our ABM: the bacterium and 
the square patches where it moves and grows. Each bacterium 
has its own unique identification number, biomass, metabolism, 
and reproduction parameters, as well as viability and location 
coordinates, and each one performs the following actions: 
nutrient uptake, cellular maintenance, biomass synthesis, product 
generation, and bipartition (reproduction). The time-dependent 
variables are calculated and updated in each time-step according 
to a time scale of 0.1–1.6 min per time-step. The square patches 
contain the R2A agar growth medium, and growth medium 
actions include changes in metabolite concentration and nutrient 
consumption on each patch. Carbon and nitrogen consumption, 
as well as their generation and accumulation, are controlled 
to ensure mass balance. Additionally, the model includes behavior 
actions that control the overlap of bacteria and the interaction 
after bipartition.

The empirical formula C4.17H8O1.75N (Araujo Granda et  al., 
2016a) was used to describe the elemental composition of 
Pantoea. The bacterium’s dimensions were assumed to have 
length and width at 1.1 ± 0.5 μm and 0.55 ± 0.25 μm (mean ± SD), 
respectively (Kapetas et  al., 2012). The individual mass was 
deduced from the volume and an assumed density of 1.1 g/cm3 
(Gras et  al., 2011). A two-dimensional lattice grid was used 
to describe the environment where the bacteria grow. Each 
grid-cell represents a volume that can be  tuned by changing 
the world dimensions, depth, and length. A volume was 
calculated using a portion of the wells in the experimental 
setup with dimensions of 605 μm × 605 μm × depth, where depth 
ranges from 10 to 50 μm. The initial concentration of glucose 
and ammonium were estimated from commercial R2A 
agar composition.

When doing simulations with ABMs, it is important to 
produce a large number of simulations. This is because ABMs 
are stochastic, and many simulations are needed to obtain 
reliable statistics. We used NL4Py to investigate 3,358 different 
initial configurations. NL4Py (Gunaratne and Garibay, 2018) 
is a Python library that facilitates the control and reporting 
of parallelizable NetLogo workspaces. This allowed us to 
interface ML algorithms implemented in the SciKit-Learn 
(Pedregosa et  al., 2011) and Keras (Chollet, 2015) Python 
libraries with the NetLogo model and provide automated 
simulation deployment and evaluation. For each of the 3,358 
initial configurations, we  ran 4–6 repetitions to ensure 
statistical sampling, which yields around 18,000 simulations 
in total. In these simulations, we  fixed the values of six 
parameters to values generally accepted by the literature or 
based on our experiments: efficiency (McCarty, 2007), energy_
maintenance_pa (Gras et  al., 2011), ammonium (Wushensky 
et  al., 2018), total-length-world based on the experiments 
described above, and lastly, max-time-viability_pa and rep_pa 
based on preliminary tests following a similar application 
by Font Marques and Ginovart (2016). The remaining seven 
parameters, namely pmax, microorganism, depth, umax_pa, 
diffusion-coefficient, glucose, and min/steptime, were 
randomly varied within a pre-defined range. A brief 
description of the 13 parameters and their values that define 
this ABM is listed in Table  1. The Overview-Design  

Concepts-Details (ODD; Grimm et  al., 2010, 2020), the 
NetLogo implementation, and the Python code for the 
simulations using NL4Py are available at https://github.com/
miguel-fc/ABM-Pantoea.

The output of each simulation consisted of a population 
curve, which shows how much the population grew over 
the simulation time. As described by Wilmoth et  al. (2018), 
we  fit the growth part of each population curve to a logistic 
function. From this fitting, three parameters, namely the 
maximum (A), the slope (μ), and the lag-time (τ), were 
obtained, and they are used to identify each population 
curve. An example of a simulated image of bacterial growth 
at t = 0 h and t = 10 h, and a population curve are shown in 
Figures  1A–C, respectively.

It is important to explain why we  chose fitting our 
population curves to a logistic function. Doing this fitting 
seems counterintuitive, given that by assuming from the 
onset that Pantoea grows in a Monod fashion, we  already 
know the shape of the population curves even without 
running the simulations. When a Monod growth is assumed 
from the onset, the power of running ABM simulations 
relies not in determining the growth of a whole population, 
of course, but on determining the local growth, i.e., at the 

TABLE 1 | Parameters in the agent-based modeling (ABM).

Parameters Description
Values [increment] 

(units)

Efficiency Thermodynamic reactions 
efficiency

0.37 (–)*

umax_pa Maximum growth rate of 
Pantoea individuals

0.1–10 [0.1] (h−1)

min/steptime Time-scalable conversion 
from ticks to minutes

0.1–2 [0.5] (min)

diffusion-coefficient Rate of redistribution of 
nutrients on each patch at 
each steptime

0–1 [0.01] (–)*

energy_maintenance_pa Minimum carbon needed by 
Pantoea to survive in time

0.0015  
(gCglucose·gCpantoea

−1·h−1)

rep_pa Minimum time needed by 
Pantoea to get ready for 
reproduction

20 (min)

max-time-viability_pa Maximum time that Pantoea 
can survive without its 
minimum energy requirements

83 (min)

pmax Maximum number of bacteria 
allowed in the same patch

1–10 [1] (#·patch−1)

Ammonium Initial concentration of 
ammonium in patches

18.7 (mM)

Glucose Initial concentration of 
glucose in patches

0–100 [0.1] (mM)

Total-length-world Value of world width and 
world height

605 (μm)

Depth Depth of the first “layer” of 
medium where the bacteria 
grow

10–50 [1] (μm)

Microorganism Initial number of Pantoea 
individuals

10–1,000 [1] (#)

*–, dimensionless.
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level of a few bacteria. At the local level, nutrient concentration 
and microbe-microbe interactions are bound to affect the 
growth in a different way that they do at a global population 
level. Determining these differences, though, requires analyzing 
the images of growth, and extracting metrics that correlate 
microbe-microbe proximity and/or nutrient concentration 
to growth; this is out of the scope of the present work. 
The purpose here is to find a method for refining and 
simplifying our model. It is for this reason that we  decided 
to focus on the population level only, and assumed we knew 
nothing about its growth. In such a scenario, it is common 
to fit the population curves to different functions. We  used 
here one of these functions (Zwietering et  al., 1990) and 
used the parameters that define the curves as the outputs 
of our simulations. By studying the effect of the inputs of 
the ABM on these outputs, we  are then able to understand 
our model better and suggest refinements.

Experimental Methods
Image-based growth curves were performed using a glass bottom 
24-well black plate (CellVis, catalog P24-1.5H-N) with the 

BioTek Cytation 5 high content imaging plate reader. In order 
to visualize bacterial colony growth, we  used R2A media with 
1.5% agarose to make thin agar pads (300 μl spread across 
the well) in each well of the plate and allowed them to solidify. 
We  next prepared a culture of Pantoea sp. YR343 expressing 
GFP by growing them overnight in R2A media (OD at 600 nm 
was approximately 1), then diluting the culture with fresh R2A 
media to 10−4 cells/ml. From the diluted culture, we  added 
300 μl of cells to each well and incubated the plate at 28°C 
for 1 h. Next, we  removed any excess media and allowed the 
plate to dry for 1 h at 28°C. After that, we  placed the 24-well 
plate in the Cytation 5 and set imaging parameters to take 
images and measure fluorescence intensity every hour for a 
total of 18 h. Fluorescence intensity values were used to generate 
growth curves. See Figures 1D–F for an example of experimental  
results.

In experimental studies, we observed a lag phase that lasted 
approximately 6–8 h post inoculation, followed by a period of 
exponential growth that lasted 3–4 h, and ending in stationary 
phase. Parameters from these studies, such as media composition, 
volume of the well, and growth rates were used to inform 
the simulation studies.

A CB

D FE

FIGURE 1 | Simulated and experimental population growth of Pantoea. (A–C) Simulated growth. Snapshots of simulated microbial population at (A) t = 0 h and 
(B) t = 10 h. (C) The corresponding population curve, which shows the typical logistic shape. (D–F) Experimental growth. Representative images of bacterial colony 
growth at (D) t = 0 h and (E) t = 10 h. Images were taken from individual wells for measurements of fluorescence intensity. (F) The corresponding population curve 
shows the changes in fluorescence intensity over time. Fluorescence is measured from Pantoea sp. YR343 expressing GFP and is used to measure the growth of 
these cells over time. Note the different y-axes of (C) and (F).
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Random Forest Regression
We used Random Forest Regression via the Scikit-Learn Python 
Library (Pedregosa et  al., 2011) to understand the correlation 
between the seven input parameters and the three outputs. 
We  first sorted the 3,358 population curves into four subsets 
based on their steptime values. The four steptime values used 
in the simulation were 0.1, 0.6, 1.1, and 1.6 min, which had 
831, 837, 879, and 811 population curves, respectively. Next, 
for each subset, we randomly split the corresponding population 
curves into two datasets, training and test, in a 70/30 ratio. 
Each population curve in a steptime subset was associated 
with a unique set of the remaining six input parameters and 
average values of the three outputs. As the inputs are on 
different scales, we  normalized each of their distributions to 
zero mean and unit variance to allow for efficient training. 
For each output, we first constructed a Random Forest Regression 
model and optimized its hyperparameters by random search 
(Bergstra and Bengio, 2012) with 3-fold cross validation on 
the training dataset. The hyperparameters that were tuned 
included the number of decision trees in the forest, the maximum 
depth of the tree, the minimum number of samples required 
to split an internal node and to be  at a leaf node, the number 
of features considered by each tree to split a node, and whether 
or not bootstrap samples when building trees. We  then used 
each optimized model to predict the corresponding output of 
the test dataset and evaluated the models by their coefficients 
of determination, R2 scores, between the predicted and simulation 
(true) outputs.

Neural Network
The methodology above leads to one Random Forest Regression 
model for each of the three outputs at a particular steptime 
value. With a feed-forward Neural Network, we  aim to build 
one single comprehensive model that is not only capable of 
predicting the three outputs simultaneously but also invariant 
to steptime. Therefore, we  considered all 3,358 population 
curves and randomly split them into training and test datasets 
in a 70/30 ratio. We built the network using the Keras Library 
(Chollet, 2015). The network was composed of two hidden 
layers with 30 and 15 nodes, respectively. The output layer 
had three nodes, one for each output. The total number of 
trainable parameters was 753. We  used a ReLU activation 
function at each hidden layer, mean squared error as the 
loss function and the Adam optimizer with a learning rate 
of 0.01. As the inputs and outputs are on different scales, 
we  normalized each to values between 0 and 1. We  evaluated 
the network using 3-fold cross validation, each fold for 300 
epochs and a batch size of 50. The mean absolute error 
(MAE) over the three folds was 0.018, with a SD of 0.001. 
We then re-trained the network on the entire training dataset 
and validated it on the remaining test dataset using the same 
set of hyperparameters found in the cross validation. The 
MAE was 0.019. To calculate the coefficients of determination, 
R2 scores, of the three outputs, we  applied the final network 
on the test dataset and transformed the predicted values back 
to the original scales.

RESULTS

Pantoea sp. YR343 is a robust colonizer of plant roots in the 
rhizosphere, where it competes with many other microbes for 
both space and resources. In order to better understand how 
competition for resources affects the spatial distribution of 
bacterial growth, we  used microscopy to observe growth of 
bacterial colonies on an agar surface in order to develop the 
simulation tools described in this study. Experimental growth 
curves showed an initial lag time of approximately 8 h before 
entering into exponential phase, where Pantoea sp. YR343 forms 
small, mucoid colonies that grow rapidly, and at later timepoints, 
begin merging with other colonies before they enter stationary 
phase. Data obtained from the experimental growth curves 
were used to inform the parameters for our simulations.

To assess the accuracy of our ABM for Pantoea, we compared 
the populations curves from simulation and experiment; examples 
of these curves are shown in Figure  1. By fitting the growth 
curves to a logistic function, we  extracted the three outputs: 
the maximum A, the slope μ, and the lag time τ. Both 
experiments and simulations have comparable μ, in which the 
averaged values are 5.12 ± 0.95 h−1 and 6.08 ± 0.78 h−1 (±SD), 
respectively. However, τ is shorter in simulations, with an 
average value of 2.62 ± 0.13 h, as compared to 8.29 ± 0.17 h in 
experiments. The difference in the experimental and simulated 
values for τ occurs because in the experiments, τ was measured 
by the time that the bacteria took to adapt to a new medium 
and started growing, while in simulations, τ was calculated 
from the minimum time and biomass needed for each bacterium 
to reproduce. There was no adaption in simulations, and the 
bacteria started growing right away. It is difficult to compare 
A due to the differences in measurements. In simulations, the 
measurement A is the number of bacteria, while in experiments, 
it is the fluorescence intensity; we  elaborate more on this 
discrepancy in the Discussion section. Nonetheless, in general 
the model captures the experimental behavior of overall 
population growth reasonably well.

A comprehensive analysis of model accuracy would require 
thorough exploration of the seven-dimensional input phase 
space and is prohibitively expensive. Accordingly, we determine 
the relationship between input parameters and the model outputs 
by using random forest regression.

The R2 scores and the Gini importance of the six input 
parameters for predicting average values of A (<A>), μ (<μ>), 
and τ (<τ>) for the four steptime test sets are presented in 
stacked bar charts (see Figure  2). We  also calculated the 
permutation importance, and the results are similar to the 
Gini importance results reported herein. For the steptime of 
0.1 min, the R2 scores are 0.93 (<A>), 0.92 (<μ>), and 0.79 
(<τ>). The three most important input parameters for predicting 
all three outputs are depth, glucose, and growth rate (umax_pa), 
which account for 82% of the total for <A>, 78% for <μ>, 
and 80% for <τ>. The importance ranking of these three inputs 
are the same for <A> and <μ>, in which depth is first, followed 
by glucose and umax_pa. Comparably, for <τ> glucose is first, 
followed by umax_pa and depth (Figure  2A). As the steptime 
increases, the R2 scores for prediction of <A> and <μ> decrease 
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and the score for <τ> increases (Figures  2B–D). This trend 
is most evident when comparing the R2 scores from steptime 
of 1.1 min to those from steptime of 0.1 min. For steptime of 
1.1 min, the R2 scores drop to 0.78 and 0.80 for <A> and 
<μ>, respectively, while the score increases to 0.87 for <τ> 
(Figure  2C). Interestingly, as the steptime increases, 
microorganism (micro) becomes one of the most important 
input parameters for predicting the three outputs. For example, 
for the steptime of 1.1 min, the three most important input 
parameters for predicting <A> are micro, depth, and glucose, 
which account for 95% of the total. For <μ>, depth, glucose, 
and micro contribute to 79%, and for <τ>, umax_pa, micro, 
and glucose account for 90%.

To understand better the relationship between the outputs 
and the corresponding important input parameters, we  plotted 
on a heat map each output as a function of the two most 
important inputs (Figure  3). In general, <A> and <τ> depend 
on steptime: when steptime is low (i.e., steptime of 0.1 min), 
<A> is mostly below 300 and <τ> is below 2.5. However, 
when steptime is higher (i.e., steptime of 1.1 min), <A> can 
adopt values above 500 and <τ> above 10. With steptime of 
0.1 min, <A> and <μ> are relatively low and independent of 
glucose when depth is less than 30. As depth increases, <A> 
and <μ> increase rapidly when glucose is above 25. <τ> is 
low regardless of glucose and umax_pa (Figures  3A–C). In 
comparison, with steptime of 1.1 min, <A> increases rapidly 
as depth increases when micro is low but <A> increases slowly 

when micro is high. <μ> follows a similar trend here as it 
does with steptime of 0.1 min. Overall <τ> is low except when 
umax_pa is 0 (Figures  3D–F).

The above results indicate that using Random Forest Regression 
with only three input parameters, it should be  possible to 
predict the values of the three outputs with a R2 score of at 
least 0.59 (i.e., with steptime of 1.6 min, the R2 score of <A> 
0.67 multiplied by 88% contributed by micro, depth, and glucose). 
Unfortunately, this approach requires using one Random Forest 
Regression model per output and per steptime. It is much 
more convenient to predict the three outputs with one single 
model for all four steptime values.

To enable predicting all three outputs with one model only, 
we  constructed a three-layered feed-forward Neural Network. 
Figure  4 shows the performance of this network: it achieves 
R2 scores of 0.89, 0.92, and 0.79 for predicting the values of 
<A>, <μ>, and <τ> of the test dataset, respectively. Taken 
together, we demonstrated the capability of determining values 
of the outputs <A>, <μ>, and <τ> from the input parameters 
using Random Forest Regression and neural network. Based 
on Random Forest Regression Models, we  identified important 
inputs for each output prediction. Besides, from a trained 
neural network model, we further made predictions for multiple 
outputs without compromising the accuracy of the model. Our 
results demonstrate that a metamodel derived from machine 
learning techniques can facilitate efficient ABM of  
microorganisms.

A B

C D

FIGURE 2 | Importance of input parameters to the prediction of average values of A, μ, and τ. Four subsets based on four different steptime values were 
considered: steptime (A) 0.1, (B) 0.6, (C) 1.1, and (D) 1.6 min. The colors of the six input parameters are shown in the legend. The R2 scores of the random forest 
regression models for each subset are included. Note that the importance of the six input parameters sums up to 100%.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Chen et al. Agent-Based Model of Pantoea

Frontiers in Microbiology | www.frontiersin.org 7 September 2021 | Volume 12 | Article 726409

DISCUSSION

Traditionally, bacterial growth curves have been generated by 
measuring the optical density of a liquid culture over time 
and plotting absorbance values over time. Unfortunately, much 
information about how these bacterial colonies are organized 
and how they compete for nutrients within a given space is 
lost with these techniques and therefore remained not well 
understood. The use of ABM to model bacterial growth in a 

given space can yield insights into how competition for resources 
determines, which microbes become dominant within a certain 
environment. This is because ABMs of microbiology produce 
local and global information of microbial growth. Local 
information can be  used to determine how different species 
interact, for example, by tracking the size and shape of their 
corresponding colonies, their boundaries, etc. Global information 
can inform on how a particular microbial population grows 
as a whole. Additionally, the application of ML to the ABM 

A B C

D E F

FIGURE 3 | Correlation between the three outputs and their two most important inputs. (A–C) are the results from the subset with steptime of 0.1 min and (D–F) 
are from that with steptime of 1.1 min. The most important input is shown in the x-axis, whereas the second most important input is shown in the y-axis. The 
average values <A> (A,D), <μ> (B,E), and <τ> (C,F) are illustrated as heat maps.

A B C

FIGURE 4 | Correlation between the predicted and simulated values of the three outputs. The three outputs are (A) <A>, (B) <μ>, and (C) <τ>. The x-axis shows 
the average values of an output derived from the population curves (<>sim), and the y-axis shows the average values predicted by a feed-forward neural network 
(<>pred). The R2 scores of the network model used for the three output predictions are included in the subplots.
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simulation results can provide insights of the important parameters 
of the model and further build metamodels that allow reaching 
length and time scales unattainable by the ABM. However, a 
big question is how to ensure that the ABM and the resulting 
metamodel of a particular microbial system is accurate. The 
answer is to compare the patterns that the simulated and 
experimental system generate at different time and length scales 
(Grimm et  al., 2005). Extracting the patterns from a microbial 
system can be  done by analyzing the images with a variety of 
ML techniques, such as those in OpenCV (Bradski, 2000). DL 
techniques such as segmentation (Stringer et  al., 2021) and 
variational autoencoders (Chen et al., 2020; Kalinin et al., 2021) 
can then be  used to reduce the dimensionality in the system 
and uncover trends. Applying these types of ML and DL 
techniques is out of the scope of this paper, but we  encourage 
the use of such techniques in future studies to improve the 
accuracy of ABMs, and metamodels thereof, in microbiology. 
Here, we  focus on gauging the accuracy of the ABM by 
reproducing global information of growth, e.g., the information 
contained in the experimental population curves. However, due 
to the manner in which the simulated and experimental population 
curves were obtained and what they measured, currently there 
is no appropriate method to directly compare the two results.

Experimental growth curves were generated using microscopy 
as a tool for measuring bacterial growth on a surface in three-
dimensional space. Because this unique method does not allow 
us to easily quantify the number of cells present at various 
timepoints, we  used measurement of fluorescence as a proxy 
for cell density. Factors that likely contribute to discrepancies 
between experimental curves and simulation curves include that 
the experimental curves were obtained by measuring the 
fluorescence intensity, whereas the simulated curves were generated 
by counting the number of bacteria directly. A direct comparison 
between the two requires converting the fluorescence intensity 
to the number of bacteria, which is likely prone to errors. 
Moreover, the experiments were performed in three dimensions, 
while only the colonies close to the surface were being imaged. 
In other words, bacteria growing outside the imaging plane 
were likely to be neglected, and thus precludes correct counting 
of bacteria number. Other issues, such as photobleaching of 
the fluorescence signal, might also affect the measurement 
accuracy. More effort is needed to build the bridge between 
simulation and experiment in microbiology, and we believe that 
this effort includes computer vision tools, as those in OpenCV 

and sophisticated DL techniques such as segmentation and VAEs. 
Using these techniques will allow us to obtain not only global 
but also local information of growth, which can then be  used 
to gauge the accuracy of ABMs. The work we  present here 
demonstrates a route to leverage ML and DL techniques for 
improved ABM development in microbiology.
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