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CCHamide-2 (CCHa2) is a protostome excitatory peptide ortholog known

for various arthropod species. In fruit flies, CCHa2 plays a crucial role in the

endocrine system, allowing peripheral tissue to communicate with the central

nervous system to ensure proper development and the maintenance of

energy homeostasis. Since the formation of odor-sugar associative long-term

memory (LTM) depends on the nutrient status in an animal, CCHa2 may play

an essential role in linking memory and metabolic systems. Here we show that

CCHa2 signals are important for consolidating appetitive memory by acting

on the rewarding dopamine neurons. Genetic disruption of CCHa2 using

mutant strains abolished appetitive LTM but not short-term memory (STM).

A post-learning thermal suppression of CCHa2 expressing cells impaired LTM.

In contrast, a post-learning thermal activation of CCHa2 cells stabilized STM

induced by non-nutritious sugar into LTM. The receptor of CCHa2, CCHa2-

R, was expressed in a subset of dopamine neurons that mediate reward for

LTM. In accordance, the receptor expression in these dopamine neurons

was required for LTM specifically. We thus concluded that CCHa2 conveys a

sugar nutrient signal to the dopamine neurons for memory consolidation. Our

finding establishes a direct interplay between brain reward and the putative

endocrine system for long-term energy homeostasis.
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Introduction

CCHamide (CCHa) is the protostome excitatory peptide ortholog known for various
arthropod species, including insects (Roller et al., 2008; Ida et al., 2012), crustaceans
(Toullec et al., 2017; Nguyen et al., 2018), myriapods (Christie, 2015), and chelicerates
(Veenstra, 2016). It has two conserved cysteines and an amidated C-terminal histidine
residue (Hansen et al., 2011; Thiel et al., 2019), forming a cyclic peptide held by an
intramolecular disulfide bond. In the insect lineage, the CCHa system is duplicated into
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two specific peptides with two particular receptors, where each
of the peptides activates its receptor paralog (Hansen et al., 2011;
Ida et al., 2012). CCHa is enriched in the endocrine cells in the
midgut (Roller et al., 2008; Li et al., 2013; Veenstra and Ida,
2014; Hung et al., 2020; Titos and Rogulja, 2020; Zhu et al., 2022)
or periphery adipose tissue (Sano et al., 2015), suggestive of its
role as a part of the enteroendocrine system. The CCHa system
affects various physiological functions and related behaviors,
including feeding, diuresis, reproduction, and metabolism (Ida
et al., 2012; Li et al., 2013; Veenstra and Ida, 2014; Ren et al.,
2015; Sano et al., 2015; Fujiwara et al., 2018; Jayakumar et al.,
2018; Capriotti et al., 2019; Jin et al., 2020; Titos and Rogulja,
2020; Shahid et al., 2021; Havula et al., 2022; Zhu et al., 2022).

In fruit flies, Drosophila melanogaster, CCHa2 is one of
the two CCHa paralogs and is crucial in regulating energy
metabolism (Ida et al., 2012; Li et al., 2013; Veenstra and Ida,
2014; Ren et al., 2015; Jayakumar et al., 2018; Jin et al., 2020;
Havula et al., 2022). CCHa2 is preferentially expressed not
only in the adipose tissue and the midgut (Sano et al., 2015)
but also in the brain (Ren et al., 2015). CCHa2 responds to
glucose nutrition, but not sucralose (Sano, 2015), by increasing
its expression via the polyol pathway that activates the master
metabolic regulator Mondo (Sano et al., 2022). CCHa2-R, the
receptor of CCHa2, is enriched in the brain. Secreted CCHa2
binds to CCHa2-R in the pars intercerebralis, promoting insulin
signaling to control the growth and pupariation of the flies
ultimately (Sano et al., 2015; Havula et al., 2022). In agreement
with this, the bombesin receptor subtype 3, a mammalian
ortholog of the CCHa2-R, also plays a central role in energy
and glucose metabolism (Ohki-Hamazaki et al., 1997) via the
hypothalamus (Piñol et al., 2018). Interestingly, decades of
research critically conjoined the bombesin receptor function in
memory consolidation (Flood and Morley, 1988; Shumyatsky
et al., 2002; Roesler et al., 2004; Ghanbari et al., 2018; Melzer
et al., 2021). Abnormalities in the bombesin receptor pathway in
patients with Alzheimer’s disease (Roesler et al., 2007) suggest an
as-yet-unsolved cognitive feature of the metabolic neuropeptide
family. However, any attributes that signify CCHa2’s function in
the cognitive process are so far unclear.

In flies, a single cycle of associative training with odor and
sugar drives the formation of appetitive short-term memory
(STM) and long-term memory (LTM). The sweetness of the
sugar causes labile STM, while the nutrition causes stable LTM
(Burke and Waddell, 2011; Fujita and Tanimura, 2011) though
a non-nutritious sugar can also induce LTM (McGinnis et al.,
2016). LTM formation involves de novo protein synthesis that is
energetically costly (Mery and Kawecki, 2005; Plaçais and Preat,
2013), urging the memory system to take the metabolic state into
account prior to gating the LTM (Musso et al., 2015; Plaçais et al.,
2017; Sgammeglia and Sprecher, 2022). In accordance, insulin
signaling, a crucial regulator of metabolic homeostasis (Rulifson
et al., 2002), is implicated in the formation of LTM both in larvae
and adult flies (Chambers et al., 2015; Eschment et al., 2020).

Neuropeptide F, another important regulator of feeding (Chung
et al., 2017; Tsao et al., 2018; Landayan et al., 2021), food-
related memory (Krashes et al., 2009; Rohwedder et al., 2015),
and lipid metabolism (Yoshinari et al., 2021), also acts as a
disinhibitory gate for LTM consolidation (Feng et al., 2021).
Thus, metabolic peptide hormones (Lin et al., 2019; Nässel
et al., 2019) appear crucial in linking alimentary and memory
consolidation processes for triggering LTM.

In this study, we investigated the role of CCHa2 in odor-
sugar associative learning. Disruption of the CCHa2 signaling
in a subset of dopamine neurons incapacitated the formation
of appetitive LTMs in flies that depends on sugar nutrition.
Conversely, thermal activation of CCHa2 turned sweetness-
induced labile memory into a long-lasting one. Our findings
shed light on the hitherto-unknown function of CCHa2 in the
mnemonic process, a gatekeeper for stable LTM via an interplay
between brain reward and the endocrine system.

Results

Selective long-term memory defect in
CCHamide-2 mutant flies

To examine the role of CCHa2 in appetitive olfactory
learning, we first employed CRISPR/Cas9-mediated mutant
flies of CCHa2 with null-alleles, which showed characteristic
developmental delay (Sano et al., 2015). In the adult, those
mutant strains appear normal in locomotion, body weight,
and appetitive STM (Figure 1A). However, they exhibited an
impaired LTM (Figure 1B) and largely diminished CCHa2
signal in the brain (Supplementary Figure 1), suggesting a role
of the CCHa2 signal for the mnemonic rather than sensory or
motor processes. The phenotype was recessive, as heterozygous
mutant alleles did not affect the memory (Figure 1B).

CCHamide-2 signaling consolidates
appetitive memory

To understand how CCHa2 regulates LTM, we examined
the temporal requirement of CCHa2 neurotransmission during
learning and consolidation. To genetically manipulate the
activity of CCHa2 expressing neurons, we employed the T2A-
GAL4 knock-in strain in the CCHa2 locus, CCHa2-T2A-GAL4
(Kondo et al., 2020). We first examined whether CCHa2
mediates the reinforcement signal of sugar for triggering LTM.
However, transient thermal blockade of CCHa2 expressing cells
during conditioning barely affected the LTM (Figure 2A). We
then tested the requirement of CCHa2 signaling during memory
consolidation, which occurs within the first 1 h after learning
(Ichinose et al., 2015; Musso et al., 2015). Blocking the CCHa2
neurons right after conditioning only for an hour impaired
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FIGURE 1

Appetitive LTM defect in CCHa2 mutants. Appetitive STM (A) and LTM (B) performances of the wild-type strain, heterozygous, homozygous, and
trans-heterozygous mutant strains of CCHa2. Median and interquartile range is shown hereafter. ns, not significant, ∗p < 0.05 (A: Dunn’s
multiple comparisons test, N = 20, 8, 8, 16, 16, 8, B: Dunnett’s multiple comparisons test, N = 15, 14, 15, 16, 14, 14 and ***p < 0.001).

LTM (Figure 2B). The same blockade did not cause significant
LTM impairment when applied at 22 h after conditioning
(Figure 2C). Those results suggest that CCHa2 regulates the
consolidation of LTM, at least through the post-learning activity
in a specific time window.

We asked whether compelling CCHa2 cells after learning
suffices for LTM formation. Flies can remember an odor paired
with non-nutritive D-arabinose only for a short period of time
(Burke and Waddell, 2011). We found that thermal activation
of CCHa2 cells for an hour after conditioning turned otherwise
labile arabinose memory into a long-lasting one (Figure 3A).
No LTM was observed in the dTrpA1 uninduced control
(Figure 3B). Since CCHa2 mediates sugar nutrient signals
for growth control in larvae (Sano et al., 2015), we assumed
it mediates delayed nutrient signals for appetitive memory
consolidation.

CCHamide-2 neurons in the brain

To map CCHa2 cells, we visualized the expression of
CCHa2-T2A-GAL4. We found robust CCHa2 expression in
the brain neurons (Figure 4A) in addition to previously
reported periphery tissues (Li et al., 2013; Veenstra and Ida,
2014; Ren et al., 2015; Sano et al., 2015). Approximately 130
cells are labeled and are clustered into ca. ten cell types
per hemisphere (Figure 4B). The GAL4 expression replicated
the immunoreactivity of CCHa2, which labels mostly CCHa2
positive cells in the brain at used dilution (Supplementary
Figure 1), at the cellular and synaptic resolution (Figures 4C–
E). Those neurons innervated the antennal lobe, the optic
lobe, and the gnathal ganglia (Figure 4A), implying sensory
modulation by CCHa2. Notably, CCHa2 was absent from the
mushroom body (Figure 4F), where appetitive memory resides
upon learning. Meanwhile, CCHa2 profiles were enriched in
the surrounding neuropils of the mushroom body, such as

the superior medial protocerebrum or the crepine, where most
mushroom body-associated neurons innervate (Figure 4F).
Moreover, the CCHa2 processes projected near the dendritic
profiles of rewarding dopamine neurons (Figure 4G), suggestive
of their interactions. Therefore, the brain CCHa2 neurons could
directly modulate the mushroom body-associated neurons to
affect memory consolidation.

CCHa2-R in a subset of protocerebrum
anterior median neurons for long-term
memory consolidation

The post-learning activity of the LTM-inducing dopamine
neurons regulates appetitive memory consolidation (Ichinose
et al., 2015). We therefore hypothesized that CCHa2 exerts
its memory function by directly regulating those dopamine
neurons’ activity. We thus visualized the expression of CCHa2-
R in the brain by using the CCHa2-R-GAL4 (Sano et al.,
2015). The receptor expression was abundant throughout the
brain (Figure 5A), which included many of the protocerebrum
anterior median (PAM) cluster dopamine neurons (Figure 5B).
The CCHa2-R cells innervate to at least five MB compartments,
including γ4, β’2, β2, β1, and α1 (Figures 5C,D). Among,
colocalization with TH immunoreactivity was most evident in
the α1 compartment (Figure 5E), suggesting that the CCHa2
targets a class of PAM neurons for appetitive LTM consolidation
(Huetteroth et al., 2015; Yamagata et al., 2015). The sparse
innervation in the γ1, in contrast, likely originates from non-
dopamine neurons (Figure 5E).

To examine the function of CCHa2-R in the PAM neurons,
we down-regulated the receptor expression specifically in
them. Expressing the short hairpin RNA of CCHa2-R in
the entire PAM cluster by R58E02-GAL4 abolished appetitive
LTM but not STM (Figures 6A,B). Narrowing down the
short hairpin RNA expression of CCHa2-R by MB299B-GAL4,
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FIGURE 2

CCHa2 is required for the formation of appetitive LTM. (A) Blockade of the CCHa2 neurons in CCHa2-GAL4/UAS-Shibire[ts1] flies during
learning leaves appetitive LTM intact. ns, not significant (Sidak’s multiple comparisons test, N = 17, 15, 16). (B) Blockade of the CCHa2 neurons in
CCHa2-GAL4/UAS-Shibire[ts1] flies for an hour after training impaired appetitive LTM. *p < 0.05 (Sidak’s multiple comparisons test, N = 16, 16,
15). (C) Blockade of the CCHa2 neurons in CCHa2-GAL4/UAS-Shibire[ts1] flies for an hour 22 h after training leaves appetitive LTM intact (Dunn’s
multiple comparisons test, N = 20, 22, 16).

FIGURE 3

CCHa2 signal consolidates labile arabinose memory. (A) The thermal activation of CCHa2 neurons in CCHa2-GAL4/UAS-dTrpA1 flies for an hour
after training compels labile arabinose memory to be long-lasting. *p < 0.05 (Sidak’s multiple comparisons test, N = 13, 18, 17). (B) The arabinose
memory is not observable after 24 h of training without thermal activation. ns, not significant (Sidak’s multiple comparisons test, N = 16, 14, 15).

which predominantly targets PAM-α1, still recapitulated the
knock-down effect by R58E02-GAL4 (Figures 6C,D). The more
substantial RNAi effect than the CCHa2 mutant (Figure 1B)
may imply additional off-target regulation of RNAi or other
effective ligands that regulate CCHa2-R (Ida et al., 2012). Thus,
CCHa2-R on the PAM-α1 neurons was critical for appetitive
LTM. We concluded that CCHa2 mediates the delayed sugar
effect to control the ongoing activity of PAM-α1 neurons during
the memory consolidation phase for appetitive LTM.

Discussion

Previous studies on CCHa2 have mainly focused on its
role in feeding and energy homeostasis. Here, using Drosophila,
we established the active involvement of CCHa2 in stabilizing
appetitive memory. Precisely, it targeted a class of dopamine

neurons for LTM in a time-dependent manner, suggesting the
crucial role of CCHa2 and CCHa2-R in consolidating memory.
Our results unveiled a novel peptidergic link between sugar
metabolism and a cognitive process. The ecological relevance of
the LTM regulation by CCHa2 is yet unclear. However, it could
be adaptive that an endocrine system for energy homeostasis was
related to the consolidation of food-related memory.

We have previously identified that dopamine neurons in
the PAM cluster are central to processing sugar rewards (Burke
et al., 2012; Liu et al., 2012). Two subsets of PAM neurons
mediate parallel rewards for sweetness and nutrition to drive
STM and LTM, respectively (Huetteroth et al., 2015; Yamagata
et al., 2015). In particular, the post-learning activity of the
PAM neurons for LTM, or a specific PAM-α1 class neuron,
consolidates the nascent memory trace into LTM (Ichinose et al.,
2015) depending on sugar nutrition. The PAM neuron forms a
feedback loop with the mushroom body Kenyon cells and the
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FIGURE 4

CCHa2 expression in the brain. (A) Brain expression of CCHa2 visualized in CCHa2-GAL4/UAS-mCD8:GFP flies. Scale bar, 20 µm. (B) Schematic
representation of CCHa2 neurons in the brain. (C,D) CCHa2 expressing cells (green) in CCHa2-GAL4/UAS-mCD8:GFP flies colocalize with
anti-CCHa2 antibody, suggestive of bona fide CCHa2 neurons labeled by the GAL4. Scale bar, 10 µm. (E) Colocalization of immunolabeled
CCHa2 (magenta) and synaptic terminals of the CCHa2 neurons (green) in CCHa2-GAL4/UAS-Syt:GFP flies. Scale bar, 50 µm. (F) Absence of
CCHa2 neurons in the mushroom body. In contrast, they innervate the surrounding neuropils. Neuropils are visualized by n-Cadherin (nCad)
counter-staining. CRE: crepine, SMP: superior medial protocerebrum. Scale bar, 20 µm. (G) Potential interactions between CCHa2 neurons
(magenta) and rewarding dopamine neurons (green) of CCHa2-GAL4, R58E02-LexA/UAS-mCH8:RFP, LexAop-rCD2:GFP flies in the superior
neuropils. SIP: superior intermediate protocerebrum, SLP: superior lateral protocerebrum. Scale bar, 50 µm.

output neurons (Aso et al., 2014; Li et al., 2020). While the
feedback loop is suitable to retain the circuit activity (Ichinose
et al., 2015), any signals that drive the activity remained elusive.
Considering the narrow time window of the requirement for
the CCHa2 neurons (Figures 2, 3), CCHa2 might be a signal
to initiate and maintain the feedback circuit activity for memory
consolidation.

Musso et al. (2017) demonstrated that sugar experiences
without caloric inputs subsequently decrease the reward value
of sugar, so-called caloric frustration memory. Since CCHa2
mutant flies cannot detect sugar nutrition, the caloric frustration
memory can explain, at least partially, the mutant effect of
CCHa2, too. If this is the case, CCHa2 should counteract the
sweetness signal attenuating subsequent sugar responses in the
PAM neurons. Such an integrative process of competitive sugar
sweetness and nutrient signals within PAM neurons would be an
interesting perspective of the current study.

Supplementing nutrient sugar after non-nutritive sugar
learning turns the labile STM into LTM (Musso et al., 2015),
indicative of the delayed sugar effect for LTM consolidation.
Previously, a class of aversive dopamine neurons, PPL1-
γ1pedc (a.k.a. MB-MP1) (Krashes et al., 2009; Aso et al.,
2012), was allocated to the delayed effect. The cell class
exhibits sustained activity after learning depending on sugar
nutrition (Musso et al., 2015). The activity upregulates energy
flux in the mushroom body to gate memory consolidation

(Plaçais et al., 2017). The functional correlation between the
PPL1- and the PAM-mediated consolidation mechanisms is
yet unresolved, though the overlapping narrow time windows
imply their functional interplay. Clarifying the finer temporal
requirement of the CCHa2 neurons, including the early
consolidation phase in the first half an hour after learning
(Musso et al., 2015), may help unveil the complex interaction
between the two MB-associated local circuitries.

The signaling source of CCHa2 that mediates sugar
nutrition to the PAM neurons remains elusive. Our data
suggest that any of the CCHa2 neurons that innervate the
superior neuropils or the crepine (Figure 4F) are the prime
candidate as an upstream mediator of the nutrient signal.
Those candidate neurons may interact with the PAM-α1
dendrites directly (Figure 4G) to regulate the neuronal activity
toward memory consolidation. Alternatively, peripheral CCHa2
may act directly onto the PAM neurons. Because of the
preferential expression of CCHa2 in the peripheral tissue
(Li et al., 2013; Veenstra and Ida, 2014; Hung et al., 2020) and
its permeability to the blood–brain barrier (Sano et al., 2015),
former studies assumed peripheral-brain endocrine action
of CCHa2 (Ren et al., 2015; Sano et al., 2015, 2022). In
mammals, the gut-brain axis for regulating reward, learning,
and memory is prevailing (Han et al., 2018; Suarez et al.,
2018; Davis et al., 2020), suggesting the importance of intestinal
health for proper cognition. The intestinal microbiome is also
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FIGURE 5

Appetitive dopamine neurons express CCHa2-R. (A) Brain expression of CCHa2-R visualized in CCHa2-R-GAL4/UAS-mCD8:GFP flies. Scale bar,
50 µm. (B–D) Double labeling of anti-tyrosine hydroxylase (magenta) and CCHa2 (green) expressing cells in
CCHa2-R-GAL4/UAS-mCD8:GFP flies. Dozens of the protocerebrum anterior medial (PAM) cluster dopamine neuron nuclei are co-labeled,
indicative of CCHa2-R expression in the PAM dopamine neurons (B). Blue shades indicate the mushroom body. (E) Dopamine neurons
innervating the α1 but not the γ1 compartment express CCHa2-R. Scale bars, 10 µm.

associated with various mood and mental disorders (Valles-
Colomer et al., 2019; McGuinness et al., 2022), leading to
new therapeutic strategies. In flies, such a gut-brain axis
is established for feeding regulation (Kobler et al., 2020;
Titos and Rogulja, 2020; Kim et al., 2021), aggression (Jia
et al., 2021), and behavioral switch between courtship and
feeding (Lin et al., 2022), providing valuable prototypes of the
mammalian system to identify key signaling molecules and
their cellular actions. However, critical evidence supporting
the gut-brain axis in learning and memory is scarce (but see
Silva et al., 2021). Future studies should thus follow up on
whether CCHa2 comes from peripheral tissues or brain neurons
expressing it to elaborate circuit dynamism underlying memory
consolidation.

In this study, we have identified the as-yet-unknown
cognitive role of CCHa2 and CCHa2-R. Since the bombesin
receptor subtype 3, the mammalian ortholog of CCHa2-R, is
also implicated in memory consolidation (Flood and Morley,
1988; Shumyatsky et al., 2002; Roesler et al., 2004; Ghanbari
et al., 2018; Melzer et al., 2021), our findings may further
reinforce the evolutionarily conserved function of the CCHa2
system. Moreover, it is noteworthy that the bombesin receptor
is involved in the etiology of Alzheimer’s disease (Roesler
et al., 2007). The notion is supported by the abnormal receptor

signaling observed in the patient’s fibroblasts and a transgenic
mouse model of Alzheimer’s disease (Ito et al., 1994; Huang
et al., 2005). In addition, drugs acting at the receptor enhance
memory and ameliorate cognitive dysfunction in animal disease
models (Roesler and Schwartsmann, 2012). Drosophila models
for Alzheimer’s disease rely on the aggressive fibril formation
through γ- and β-secretase cleavage of the amyloid-beta
precursor peptide (Tsuda and Lim, 2018), which predominantly
affects LTM (Goguel et al., 2011; Bourdet et al., 2015; Rieche
et al., 2018; Silva et al., 2020). The potential role of CCHa2
signaling on the pathogenesis of neurodegenerative diseases
could be an interesting future path for the present study.

Materials and methods

Flies

Canton-S was used as a wild-type strain. w;R58E02-
GAL4 (Jenett et al., 2012; Liu et al., 2012), w;R58E02-LexA
(Liu et al., 2012) w;CCHa2-GAL4 (Kondo et al., 2020),
w;CCHa2-R-GAL4:p65 (Sano et al., 2015), w;MB299B-GAL4
(Aso et al., 2014), w;TH-GAL4 (Friggi-Grelin et al., 2003),
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FIGURE 6

CCHa2-R in LTM-inducing dopamine neurons is required for LTM. (A,B) Cell type specific CCHa2-R silencing in the PAM neurons directed by
R58E02-GAL4, showing LTM specific memory impairment. ns, not significant, **p < 0.01 (A: Holm–Sidak’s multiple comparisons test, N = 10,
10, 14, B: Dunn’s multiple comparisons test, N = 15, 15, 16). (C,D) PAM-α1 specific CCHa2-R silencing directed by MB299B-GAL4, showing LTM
specific memory impairement. *p < 0.05 (C: Sidak’s multiple comparisons test, N = 7, 7, 9, D: Holm–Sidak’s multiple comparisons test, N = 14,
13, 13).

w;UAS-Shibire[ts1] (pJFRC100-20XUAS-TTS-Shibire-ts1-p10)
(Pfeiffer et al., 2012), w;UAS-dTrpA1 (Hamada et al., 2008),
w;UAS-CCHa2-R-shRNA #24 (Sano et al., 2015), w;UAS-
syt.eGFP (BDSC #6926), CCHa2CR−1 and CCHa2CR−3 (Sano
et al., 2015) were previously described. Flies were raised at
24◦C with 12:12 LD cycle. Knock-down flies were prepared
as the F1 progeny of the crosses between females of
w;R58E02-GAL4 or w;MB299-GAL4 or w and males of UAS
effectors or CS (Figure 5). The F1 progeny was raised
at 24◦C, aged 3-12 d after eclosion before experiments.
For immunohistochemistry, a female reporter strain w;UAS-
mCD8:GFP (Figures 4, 5), w;UAS-syt.eGFP (Figure 4E) or
w;LexAop-rCD2:GFP;UAS-mCD8:RFP (Figure 4G) was crossed
to male GAL4 drivers or a reporter strain, w;CCHa2-
R-GAL4:p65, w;R58E02-GAL4, w;R58E02-LexA,CCHa2-GAL4,
w;TH-GAL4, or w;CCHa2-GAL4. Flies used for whole-mount
immunohistochemistry were aged 3–10 days after eclosion.
A complete list of the fly crosses for behavioral experiments is
listed in Supplementary Table 1.

Behavioral assays

The conditioning and testing protocols were as described
previously (Yamagata et al., 2015, 2016). Briefly, a group of
approximately 50 flies in a training tube alternately received
octan-3-ol (3OCT; Merck) and 4-methylcyclohexanol (4MCH;

Sigma-Aldrich) for 1 min in a constant air stream with
or without dried 2M sucrose paper (Figures 1, 5). For the
temperature shift protocol (Figure 2), flies received two odors
and dried sugar alternately either at room temperature or 33◦C
in a heat box. For the post-learning activation protocol, flies
were trained with 3M D-arabinose paper (Figure 3). Then the
conditioned response of the trained flies was measured. Flies
were given a choice between sugar paired (CS +) and unpaired
(CS-) odors for 2 min in a T maze immediately after training
(Figures 1A, 5A,C). Flies were kept in a vial with water-soaked
paper for 24 h before testing LTM. For temperature shift and
post-learning activation protocols, flies were incubated in a heat
box at a defined time and temperature. Odors were diluted to
10% in the paraffin oil and placed in a cup with a diameter of
3 mm (OCT) or 5 mm (MCH). A learning index was calculated
by taking the mean preference of the two reciprocally trained
groups. Half of the trained groups received reinforcement with
the first presented odor and the other half with the second odor
to cancel the effect of the reinforcement order.

Brain dissection and
immunohistochemistry

Dissection of fly brains was performed as previously
described (Kondo et al., 2020) with minor modifications.
Brains of female flies were dissected in PBS, pre-fixed in 1%
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paraformaldehyde (PFA) in PBS on the ice for up to 30 min,
then fixed in 2% PFA in PBS for 1 h at room temperature.
Fixed brains were washed in PBT (0.1% Triton X-100 in PBS)
for 3 × 10 min. Immunostaining was performed by Kondo
et al. (2020). The following primary antibodies were used at
the indicated dilution: rabbit anti-GFP (1:1,000; Invitrogen;
A11122), mouse anti-TH (1:100; ImmunoStar Inc.; 22941),
rabbit anti-CCHa2 (1:1,000) (Ida et al., 2012), and rat anti-N-
cadherin (DN-EX #8; 1:100; Developmental Studies Hybridoma
Bank). The following secondary antibodies were used at the
indicated dilution: AlexaFluor-488 goat anti-rabbit (1:1,000;
Invitrogen; A11034), Cy3 goat anti-rabbit (1:200; Jackson Labs),
Cy3 goat anti-rat (1:200; Jackson Labs), and AlexaFluor-568 goat
anti-mouse (1:1,000; Invitrogen; 11004). 86% Glycerol was used
as a mounting medium, and either native or immunostained
fluorescence was imaged.

Confocal imaging

Imaging was performed on the Olympus FV1200 confocal
microscope with GaAsP sensors. A 30x/1.05 silicone immersion
objective (UPLSAPO30XS, Olympus) (Figures 4A, 5A) or a
60x/1.42 oil immersion objective (PLAPON60XO, Olympus)
(Figures 4C–G, 5B–E) was used for scanning specific regions
of interest. Confocal stacks were analyzed with the open-
source software Image-J (National Institute of Health) and Fiji
(Schindelin et al., 2012). Where appropriate, 2D/3D image
deconvolution was applied using Diffraction PSF 3D and
Parallel Iterative Deconvolution plugins in Image-J.

Statistics

Statistics were performed by Prism5 (Graphpad). For the
data points that did not violate the assumption of normality
and homogeneity of variance (D’Agostino and Brown-Forsythe
test), parametric statistics were applied. The data points that
were significantly different from the normal distribution were
analyzed with non-parametric statistics. A priori power analysis
has been made with G∗Power (Faul et al., 2007, 2009) to estimate
the required N to achieve power (1-β) greater than 0.8 (Cohen,
1988; Supplementary Table 1). Based on the standard practice
in the field, alpha and effect size were set to 0.05 and 0.5,
respectively. The actual effect size was also calculated post hoc
and listed in Supplementary Table 1.

Data availability statement

The original contributions presented in this study are
included in the article/Supplementary material, further
inquiries can be directed to the corresponding author.

Author contributions

NY and HT: conceptualization, writing—review and editing,
and supervision. NY: methodology, formal analysis, writing—
original draft preparation, and visualization. NY, YI, and HW:
investigation. SK and HS: genetic tool. All authors contributed
to the article and approved the submitted version.

Funding

This work was supported by the MEXT/JSPS KAKENHI
(19KK0383 and 17H04765 to NY and 17H01378 and 20H00519
to HT), Toyota Riken Scholar Program (NY), and Takeda
Science Foundation (NY).

Acknowledgments

We thank BDSC for sharing fly stocks.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbeh.
2022.986064/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Antibody staining of CCHa2 in the wild type (upper) and CCHa2 CR1
mutant (lower) brains. The a-CCHa2 signal was largely diminished in the
mutant brain except for a small fraction of cells in the medial
protocerebrum, the optic lobe, the tritocerebrum, and the gnathal
ganglia, suggestive of reasonable specificity of the antibody. No
apparent pattern difference was observed in the two staining conditions,
though there was less background signal in the lower dilution.
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