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Abstract 

Background: The protein chromogranin A (CgA) is stored and co-released with catecholamines from the stimulated 
adrenal glands. Increased plasma concentrations of CgA have been shown in people with heart disease. The aim of 
the study was to investigate whether plasma concentrations of the CgA-derived biologically active peptides catesta-
tin and vasostatin were associated with the severity of myxomatous mitral valve disease (MMVD) in dogs and to assess 
potential associations between these blood variables and dog characteristics, echocardiographic variables, heart rate 
(HR), blood pressure (BP) and plasma N-terminal-proBNP (NT-proBNP) concentration. Sixty-seven privately owned 
dogs with or without MMVD were included. The dogs underwent physical examination, blood pressure measurement, 
blood sample collection, and echocardiographic examination. Plasma concentrations of catestatin and vasostatin 
were analyzed using radioimmunoassay.

Results: Catestatin concentration decreased with increasing left atrial and ventricular size  (R2 ≤ 0.09, P ≤ 0.019), and 
increased with increasing systolic and diastolic blood pressures  (R2 ≤ 0.08, P ≤ 0.038). Regression analyses showed no 
significant associations for vasostatin. No differences in plasma concentrations of catestatin or vasostatin were found 
between the disease severity groups used in the study.

Conclusions: In the present dog population, the catestatin concentration showed weak negative associations with 
left atrial and ventricular sizes, both of which are known to increase with increasing severity of MMVD. Furthermore, 
the catestatin concentration showed weak positive associations with blood pressure.
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Background
Chromogranin A (CgA) is an acidic, soluble secretory 
protein, belonging to the granin family. The protein has 
a widespread distribution in neuroendocrine and endo-
crine tissues as well as in the central and peripheral 
nervous systems, and is also abundant in the chromaffin 

cells of the adrenal medulla. Chromogranin A co-exists 
in secretory granules with catecholamines, with which 
it is co-released during exocytosis [1–3]. Chromogranin 
A is also produced in the human myocardium and has 
been found co-localized with B-type natriuretic peptide 
(BNP) in the myocardium of people with heart disease 
[4]. Chromogranin A is a precursor of several biologically 
active peptides, including catestatin and vasostatin [5], 
which modulate cardiac hemodynamics during adrener-
gic stimulation and seem to protect the cardiovascular 
system against excessive beta-adrenergic stimulation [6].
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In contrast to catecholamines, which degrade rapidly in 
plasma [7], CgA has a high stability [8] and is considered 
a useful marker of sympathetic nervous activation [9, 
10]. In people, plasma CgA has been shown to increase 
in  situations of pronounced sympathetic stimulation 
such as in critically ill patients [11]. High plasma CgA 
concentrations have been found in people with conges-
tive heart failure (CHF) due to coronary artery disease, 
arterial hypertension, dilated cardiomyopathy (DCM), 
hypertrophic cardiomyopathy and valvular disease [4, 
12–14] and plasma CgA concentration has been shown 
to increase with increasing severity of different human 
cardiac diseases [12]. Furthermore, studies in people 
with acute myocardial infarction have shown increased 
catestatin concentrations in plasma [15–17] as well as 
in serum [18], while one study showed decreased serum 
vasostatin-2 concentrations in patients with chronic 
heart failure due to previous myocardial infarction, com-
pared to in healthy controls [19].

In dogs, myxomatous mitral valve disease (MMVD) 
is the most common heart disease [20–22]. The disease 
is characterized by slow progressive degeneration of the 
mitral valve apparatus, leading to mitral regurgitation 
(MR). With progressive degeneration of the valve leaflets, 
the regurgitation increases, leading to volume overload 
and subsequent dilation of the left atrium and ventricle, 
and risk of developing CHF [20, 23]. During progression 
of the disease, neuroendocrine activation takes place [24, 
25], and increased plasma norepinephrine concentra-
tions have been found in dogs with DCM and in dogs 
with advanced MMVD [26, 27].

Plasma concentrations of CgA or derived peptides have 
not been investigated in dogs with heart disease. A radio-
immunoassay (RIA) for measurement of the peptides cat-
estatin and vasostatin, which both have cardiovascular 
functions [5], has been validated for canine plasma [28]. 
Hence, the aims of the present study were to investigate 
whether plasma concentrations of catestatin and vasosta-
tin were associated with severity of MMVD in dogs and 
to assess potential associations between plasma concen-
trations of catestatin and vasostatin and dog characteris-
tics, echocardiographic variables, heart rate (HR), blood 
pressure (BP) and plasma N-terminal-proBNP (NT-
proBNP) concentration.

Methods
Animals
Client-owned dogs were examined at the cardiology 
unit at the University Teaching Hospital of the Swed-
ish University of Agricultural Sciences in Uppsala, 
Sweden according to a pre-specified protocol. To be 
included, dogs had to either have evidence of MMVD 
or be free from physical or echocardiographic evidence 

of cardiac disease. Dogs in need of heart failure therapy 
were allowed into the study. Dogs with congenital heart 
disease, other acquired cardiovascular disorders or signif-
icant organ-related or systemic diseases were excluded.

Examinations
Dogs underwent physical examination, blood pressure 
measurement, blood sample collection, and echocardio-
graphic examination, all performed during the same con-
sultation. Blood pressure was indirectly measured using 
an automated oscillometric device (Vet HDO monitor, 
S + B med Vet GmbH, Babenhausen, Germany). Once 
reliable consecutive readings were obtained, five con-
secutive blood pressure recordings were performed and 
the mean was calculated. Blood was collected by jugular 
venipuncture into EDTA-tubes; plasma was separated by 
centrifugation within 30  min of collection, transferred 
to plastic cryotubes and stored at −  80  °C for batched 
analysis.

Echocardiography, performed by an ultrasonographic 
unit (iE33, Philips Ultrasound, Bothell, WA, USA), was 
used to verify the diagnosis of MMVD and to exclude 
other cardiac diseases. Assessment of mitral valve struc-
tures was performed and degree of MR was assessed 
by color Doppler. The MR was subjectively assessed as 
the area of regurgitant jet relative to the area of the left 
atrium [29] with slight modifications [30]. Measurements 
of the left ventricle (five consecutive cardiac cycles) and 
left atrial to aortic root (LA/Ao) ratio (three consecutive 
cardiac cycles) were performed as previously described 
[31, 32]. The mean value for each variable was used in 
the statistical analyses. Diagnostic criteria for MMVD 
included characteristic 2-dimensional valvular lesions 
of the mitral valve apparatus (thickened and/or prolaps-
ing mitral valve leaflets) and demonstrated MR by color 
Doppler [29, 33]. Estimation of MMVD severity was 
based on obtained LA/Ao ratio and MR jet size, and dogs 
were classified as follows: Healthy (LA/Ao < 1.5 and non 
to minimal MR jet), mild (LA/Ao ≤ 1.5 and MR jet < 30%), 
moderate (LA/Ao < 1.8 and MR jet ≤ 50%), and severe 
(LA/Ao ≥ 1.8 and MR jet > 50%) MMVD [30, 34, 35]. Val-
ues for percent increases of end-diastolic left ventricular 
internal dimension  (LVIDdinc) and end-systolic left ven-
tricular internal dimension  (LVIDsinc) were calculated as 
previously described [30, 36].

Analyses of catestatin and vasostatin
Analyses of plasma catestatin and vasostatin concentra-
tions were performed by RIAs specific for catestatin and 
vasostatin [37, 38], validated for use in dogs [28]. The 
coefficient of variation was 3.6% and 8.8% for catesta-
tin and vasostatin, respectively. The samples had been 
thawed and refrozen once before the analyses.
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Statistical analyses
Statistical analyses were performed using commercially 
available software (JMP Pro, version 14.0.0, SAS Insti-
tute Inc, Cary, NC, USA). Data are presented as medians 
and interquartile ranges (IQR). A P-value < 0.05 was con-
sidered significant, unless otherwise indicated. The non-
parametric Kruskal–Wallis test was used to investigate 
overall differences between MMVD groups in plasma 
catestatin and vasostatin concentrations. If a significant 
difference was detected, pair-wise breed comparisons 
were performed by Mann–Whitney U-test with Bonfer-
roni adjustment (adjusted P < 0.008). The same statistical 
methods were used to assess differences between MMVD 
groups in all basic variables for dog characteristics, clini-
cal, and echocardiographic data, Table 1.

Potential differences between dogs in CHF and dogs 
without CHF in plasma catestatin and vasostatin con-
centrations were evaluated by Kruskal–Wallis test, as 
was potential sex differences in plasma catestatin and 
vasostatin concentrations.

Univariable regression analyses were performed to 
evaluate potential associations between age, body weight, 
systolic (SBP) and diastolic (DBP) blood pressure, HR, 
NT-proBNP concentration and echocardiographic 
variables (LA/Ao, LVIDd inc%, LVIDs inc%, fractional 
shortening (FS)), and plasma catestatin and vasostatin 
concentrations. To evaluate if potential associations were 
preserved in dogs not affected by decompensated CHF, 

the same univariable regression analyses were repeated 
excluding dogs in decompensated CHF (n = 5). For the 
univariable regression analyses catestatin, vasostatin, LA/
Ao and NT-proBNP concentrations were logarithmically 
transformed to correct for non-normality.

Results
Sixty-seven dogs, 38 females and 29 males, with median 
age 7.7 (IQR 5.9–9.6) years and median body weight 
9.6 (IQR 7.7–10.3) kg were included. Summary statis-
tics for the different MMVD severity groups are shown 
in Table 1. Among the 16 dogs with severe MMVD, five 
were in decompensated CHF at the time of inclusion, 
while five dogs had previously been diagnosed with 
CHF, stabilized by heart failure therapy, and were in 
compensated CHF at the time of inclusion. In dogs with 
decompensated CHF at sampling, heart failure therapy 
was initiated. At the time of sampling, the following 
number of dogs were treated with furosemide (n = 8), 
pimobendan (n = 4), ACE-inhibitor (n = 3), digoxin 
(n = 2) and spironolactone (n = 1).

Median catestatin concentration in all dogs was 1.13 
(IQR 1.00–1.23) nmol/L, with no differences in concen-
tration between MMVD groups. Median vasostatin con-
centration in all dogs was 0.19 (IQR 0.13–0.30) nmol/L, 
with no differences in concentration between MMVD 
groups. Catestatin concentration did not differ between 
dogs with or without CHF, but was numerically higher 

Table 1 Dog characteristics, clinical and echocardiographic data in 67 dogs grouped by severity of myxomatous mitral 
valve disease (MMVD)

Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), echocardiographic data; ratio of left atrium to aortic root (LA/Ao), percentage increase 
in end-diastolic left ventricular internal dimension,  (LVIDdinc) and end-systolic left ventricular internal dimension  (LVIDsinc), fractional shortening (FS), N-terminal-pro 
B-type natriuretic peptide (NT-proBNP). Values are reported as median and interquartile ranges (IQR). Within each row, values with the same superscript letter did not 
differ significantly (P > 0.008)

Group Healthy Mild Moderate Severe

Number 20 23 8 16

Sex (female/male) 14/6 15/8 5/3 4/12

Age (years) 4.9 (2.8–6.4)a 7.2 (6.2–10)b 9.1 (7.0–10)b 9.2 (8.7–11)b

Body Weight (kg) 8.8 (7.0–10.1)a 9.6 (8.0–10.6)a 8.9 (7.6–10)a 10 (7.7–12)a

HR (bpm) 100 (93–111)a 100 (92–112)a 100 (100–120)ab 120 (100–150)bc

SBP (mmHg) 134 (119–138)ab 139 (132–152)a 139 (127–153)ab 123 (116–134)b

DBP (mmHg) 75 (65–80)ab 78 (70–86)a 75 (72–80)ab 68 (64–75)b

LA/Ao 1.2 (1.1–1.2)a 1.3 (1.2–1.4)b 1.6 (1.5–1.6)c 2.1 (2.0–2.6)d

LVIDd (cm) 3.0 (2.7–3.4)a 3.4 (3.1–3.7)ab 3.5 (3.4–3.9)b 4.4 (4.1–4.8)c

LVIDdinc (%) 4.0 (− 2.4 to 15)a 14 (4.5–24)ab 24 (16–38)b 45 (41–59)c

LVIDs (cm) 2.1 (1.8–2.5)a 2.3 (2.1–2.7)a 2.3 (2.2–2.7)ab 2.7 (2.5–3.2)bc

LVIDsinc (%) 8.4 (− 0.4 to 30)a 21 (12–41)a 22 (17–42)ab 43 (25–58)bc

FS (%) 31 (27–34)a 29 (25–34)a 35 (31–37)ab 37 (31–41)bc

Catestatin (nmol/L) 1.2 (1.0–1.3)a 1.1 (1.0–1.2)a 1.1 (0.9–1.3)a 1.1 (0.9–1.2)a

Vasostatin (nmol/L) 0.23 (0.15–0.33)a 0.18 (0.13–0.28)a 0.22 (0.14–0.44)a 0.16 (0.11–0.30)a

NT-proBNP (pmol/L) 549 (375–800)a 473 (386–690)a 529 (420–836)a 3000 (2129–3000)b
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in dogs in decompensated CHF compared to in dogs 
in compensated CHF (statistical comparison not per-
formed due to low number of dogs) (Fig.  1). Catestatin 
concentration decreased with increasing left atrial size 
and left ventricular diastolic dimension both in all dogs 
(n = 67) and when dogs in decompensated CHF were 
excluded (n = 62); (LA/Ao,  R2 = 0.08, P = 0.019 in all 
dogs;  R2 = 0.12, P = 0.005, decompensated excluded) and 
(LVIDd inc%,  R2 = 0.09, P = 0.017 in all dogs;  R2 = 0.10, 
P = 0.015, decompensated excluded). Furthermore, cat-
estatin concentration increased with increasing SBP both 
in all dogs (n = 67) and when dogs in decompensated 
CHF were excluded (n = 62)  (R2 = 0.08, P = 0.022 in all 
dogs;  R2 = 0.08, P = 0.030, decompensated excluded). 
Catestatin concentration also increased with increasing 
DBP in all dogs  (R2 = 0.06, P = 0.038), but did not reach 
significance for DBP when dogs in decompensated CHF 
were excluded (P = 0.052). For vasostatin, univariable 
regression analyses were non-significant for all included 
variables and the concentration did not differ between 
dogs with or without CHF. Catestatin and vasostatin con-
centrations did not differ between sexes.

Discussion
In this study of dogs with different severities of MMVD, 
the plasma catestatin concentration decreased with 
increasing left atrial and ventricular size, while it 
increased with increasing systolic and diastolic blood 
pressure.

The weak negative associations between catestatin con-
centration and indices of left atrial and ventricular size 

 (R2 ≤ 0.09, P ≤ 0.019), were accompanied by a slightly 
numerically lower catestatin concentration in dogs with 
CHF compared to dogs without CHF. The small numeri-
cal difference was however not significant (Fig. 1).

Several studies have shown increased catestatin con-
centrations in people with acute myocardial infarction 
[15–18]. In contrast to the acute course in human myo-
cardial infarction, the common canine cardiac disease 
MMVD is characterized by a slow but progressive dis-
ease development, usually over several years, eventually 
leading to development of CHF in some dogs [20, 23]. 
As expected, all indices of left atrial and ventricular size 
increased gradually with increasing disease severity and 
the severe MMVD group had significantly higher con-
centration of NT-proBNP compared to the other groups 
(Table  1), [39, 40]. The median NT-proBNP concentra-
tion of the severe group was approximately six times 
higher than the other three MMVD severity groups, 
indicating increased intra-cardiac pressure and volume 
overload in this group of dogs [41, 42]. Ten of the 16 dogs 
in the severe group were in CHF and out of these, five 
were in decompensated CHF. Comparing dogs in decom-
pensated CHF to dogs in compensated CHF, numerically 
higher catestatin concentration was found in dogs with 
decompensated CHF (Fig. 1). Due to the small number of 
dogs (n = 5) in each group, this could not be statistically 
evaluated, but is in agreement with previous findings of 
higher plasma norepinephrine concentrations in dogs in 
decompensated compared to compensated CHF, attrib-
utable to MMVD as well as DCM [26, 27]. Hence, the 
neurohormonal activation in our dogs in decompensated 
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Fig. 1 Catestatin concentration in a dogs with (n = 10) and without (n = 56) congestive heart failure (CHF) at the time of examination and b in 
dogs in decompensated (n = 5) versus compensated (n = 5) CHF at the time of examination. The top, bottom, and line within each box correspond 
to the 75th percentile (top quartile), the 25th percentile (bottom quartile), and the 50th percentile (median), respectively. The whiskers extend from 
the bottom 2.5th percentile to the top 97.5th percentile. Catestatin concentration did not differ between dogs with and without CHF (a), P = 0.10. 
Due to the low number of dogs in each group in b statistical comparison could not be performed
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CHF could contribute to their catestatin concentration, 
but other sources of CgA likely also contribute. Stud-
ies suggest that CgA has a widespread distribution in a 
variety of polypeptide hormone producing human and 
bovine tissues [3, 43], and certain studies imply that the 
sympathochromaffin system may be the major source of 
circulating chromogranin A only in  situations of high-
intensity sympathetic stimulation, such as in people with 
sepsis or cardiac arrest [11, 44]. One study in people sug-
gested that at basal to moderate stress levels, norepineph-
rine and epinephrine concentrations accounted for only 
10–15% of the variance in plasma chromogranin A lev-
els [44]. In our dogs, HR was higher in the severe group 
compared to the healthy and mild groups (Table 1), indi-
cating increased sympathetic activation. However, the 
median HR in the severe group was only 120 bpm, which 
is not considered particularly high in dogs in a clini-
cal situation [45]. Thus, potentially the relatively modest 
sympathetic activation in our dogs could explain the lack 
of difference between disease severity groups in catesta-
tin and vasostatin concentrations.

Weak positive associations were found between cates-
tatin concentration and systolic as well as diastolic blood 
pressure  (R2 ≤ 0.08, P ≤ 0.038). Both SBP and DBP were 
significantly lower in dogs with severe MMVD compared 
to the mild group (Table 1), which was an expected find-
ing [34, 46, 47]. In human essential hypertension, CgA 
has been shown to be elevated while catestatin has been 
shown to be diminished [48, 49]. This is in contrast to 
the positive associations between catestatin concentra-
tion and BP in this group of dogs. However, the BP values 
were within or at the upper end of normal limits for all 
MMVD severity groups [50].

The lower SBP and DBP in dogs with severe MMVD, 
compared to the mild group, was accompanied by 
increasing left atrial as well as left ventricular size with 
increasing disease severity (Table  1). During progres-
sion of MMVD, the regurgitant fraction over the mitral 
valve increases [51], and despite compensatory mecha-
nisms, the left ventricular forward stroke volume might 
decrease, leading to a decrease in cardiac output and 
thereby potentially a decrease in SBP [34, 46, 47]. Inter-
estingly, the negative associations between catestatin 
concentration and indices of left heart size as well as the 
positive association between catestatin concentration 
and SBP were maintained even when dogs in decompen-
sated CHF were excluded. This might indicate a potential 
role of catestatin during progression of the disease. How-
ever, the associations found in the present study were 
weak, and this hypothesis would need to be tested in a 
larger study population.

The study has limitations. Samples had been thawed 
and re-frozen once before analysis, which could have 

affected results. However, because CgA has been shown 
stable to freezing and thawing [8], this should not have 
had major effect on the results. While it would have been 
interesting to measure full-length CgA, only the CgA 
fragments catestatin and vasostatin have been validated 
for canine plasma by the RIAs used in our laboratory 
[28], which precluded that analysis. At the time of sam-
pling, 3 of the 67 dogs were treated with ACE-inhibitors, 
which might indirectly attenuate sympathetic activity. 
Excluding these 3 dogs from statistical analyses had no 
significant effect on the results. Finally, the study popula-
tion was relatively small with proportionally few dogs in 
CHF.

Conclusions
In this population of dogs, the catestatin concentration 
showed weak negative associations with left atrial and 
ventricular size, both of which are known to increase 
with increasing severity of MMVD. Furthermore, the cat-
estatin concentration showed weak positive associations 
with blood pressure.
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