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Technological approaches to streamline vaccination schedules,
progressing towards single-dose vaccines
Giuseppe Lofano 1✉, Corey P. Mallett 1, Sylvie Bertholet1 and Derek T. O’Hagan1

Vaccines represent the most successful medical intervention in history, with billions of lives saved. Although multiple doses of the
same vaccine are typically required to reach an adequate level of protection, it would be advantageous to develop vaccines that
induce protective immunity with fewer doses, ideally just one. Single-dose vaccines would be ideal to maximize vaccination
coverage, help stakeholders to greatly reduce the costs associated with vaccination, and improve patient convenience. Here we
describe past attempts to develop potent single dose vaccines and explore the reasons they failed. Then, we review key
immunological mechanisms of the vaccine-specific immune responses, and how innovative technologies and approaches are
guiding the preclinical and clinical development of potent single-dose vaccines. By modulating the spatio-temporal delivery of the
vaccine components, by providing the appropriate stimuli to the innate immunity, and by designing better antigens, the new
technologies and approaches leverage our current knowledge of the immune system and may synergize to enable the rational
design of next-generation vaccination strategies. This review provides a rational perspective on the possible development of future
single-dose vaccines.
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INTRODUCTION
In May 2015, Doctors Without Borders along with the South Sudan
Ministry of Health and the National Cholera Taskforce had to face
a tough decision. In Juba, South Sudan, a Vibrio cholerae outbreak
had just been declared, but only 250,000 doses of the Shanchol
vaccine were available for the over 500,000 citizens of Juba.
Clearly there were not enough doses to fully protect the entire
population with the recommended two-dose regimen. With
minimal help from epidemiological evidence, the healthcare
workers and government agreed to offer a single dose of the
Shanchol vaccine to high-risk city areas in order to rapidly
immunize as many persons as possible. After the outbreak, a
vaccine effectiveness study showed that the single-dose interven-
tion had 80.2% effectiveness (unadjusted, 95% CI 61.5–100.0), with
a remarkable positive impact on public health of Juba1. This is an
important lesson that highlights the need to focus on achieving
maximal vaccine coverage during an outbreak. Reducing the
number of doses administered to achieve the necessary levels of
protection helped to save many lives in Juba and highlights the
social and economic value of the potential of next-generation
single-dose vaccines.
Vaccines are typically administered to children and require

multi-dose series of injections to induce an adequate level of
protection. Although the value of vaccination is unquestionable,
UNICEF and WHO, that monitor the completion of the vaccine
series worldwide, warn that we are still far from achieving a
universal immunization coverage; for example, in 2018, at least
19.4 million children worldwide did not complete the recom-
mended three-dose series of the Diphtheria, Tetanus, and
Pertussis (DTP) vaccine2. The DTP vaccine is one of the most
widely used vaccines in the world and it is considered a
benchmark for comparing the quality of national healthcare
systems in providing routine immunization services2. Almost 6
million children worldwide started but did not complete the DTP
series suggesting that all those children could be fully protected if

a single-dose vaccine course was available (https://www.who.int/
immunization/monitoring_surveillance/data/en/). Strikingly, there
are many vaccines for which children worldwide do not reach
full compliance with the recommended schedules (https://
www.cdc.gov/nchs/fastats/immunize.htm, https://www.who.int/
immunization/policy/immunization_tables/en/)3,4, underlining the
importance of renewed efforts toward the designing of single-
dose vaccines. On top of that, children are typically naïve for any
foreign antigen and may have suboptimal immune responses, all
of which makes any vaccine design effort more challenging. How
then to induce a strong priming and long-lasting immunity in
children with a single-dose vaccine? Vaccinologists are currently
exploring a number of technological solutions to this challenge.
Vaccines that require a lower number of doses are typically

made with a live attenuated form of the target pathogen against
which the vaccine will confer protection. For example, the MMR
vaccine is a live attenuated vaccine against measles, mumps, and
rubella, and confers protection in children after a single
vaccination; a second dose is recommended only several years
later (https://www.who.int/immunization/policy/immunization_
tables/en/). Another example is represented by the live attenuated
yellow fever vaccine: a single dose is enough to confer sustained
protective immunity against yellow fever disease; a booster dose
is not necessary (https://www.who.int/immunization/policy/
immunization_tables/en/). Although those vaccines were once
believed to confer lifelong immunity with just few doses,
accumulating evidence suggest that a silent natural infection
from the circulating pathogen may instead be required to acquire
long-term protection5. Live attenuated vaccines can bring safety
challenges to some segments of the population such as
immunocompromised individuals, and sometimes they provide
suboptimal efficacy for certain diseases, such as varicella6. In
the past 30 years, the use of subunit antigens coupled with the
advances in the recombinant DNA technology have enabled the
development of a new generation of safe and effective vaccines.
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Subunit vaccines typically include two components: the antigen, a
part of the pathogen against which to generate protective
immunity, and the adjuvant, a substance that enhances the
body’s immune response to the antigen. Subunit vaccines are
considered safer but generally less effective than live attenuated
vaccines and require multiple doses to induce protective
immunity.
In this review we discuss the approaches that vaccinologists are

considering for the design of next generation subunit vaccines
and how to induce potent immune responses with fewer
injections, ideally just one. Reducing the number of vaccine doses
brings remarkable value to society but is not an easy task and
poses a big challenge for clinicians and lab scientists. It has been
at least 40 years that vaccinologists have been testing several
approaches to design potent single-dose vaccines. So far, all the
attempts have been unsuccessful, but have helped to reveal the
limitations of past approaches and guide the development of new
ones. Today we have a better understanding of the spatio-
temporal dynamics of the immune responses after priming, all of
which is being applied for the rational design of vaccines that
ideally induce more potent immune responses after just one
administration. Furthermore, the delivery of appropriate immune
stimuli and the design of better antigens is also helping to come
up with better vaccines. The immunological mechanisms of the
vaccine-specific immune responses and the technologies to
modulate those mechanisms are reviewed.

VALUE OF SINGLE-DOSE VACCINES
In general, the design of single-administration vaccines aims to
achieve three major objectives: (1) to improve the likelihood of
worldwide coverage of vaccination, (2) to decrease the costs
associated with multi-dose regimens, and (3) improve patient
convenience. Incomplete immunization coverage is a major cause
of preventable illness and death in both high-income and low-
income countries (3,6). A study on vaccination coverage among
US children under 2 years old has reported that only 30% receive
all the six recommended vaccinations on time, indicating that too
many children do not receive vaccines at age-appropriate times or
never complete the recommended vaccine schedules3,4. Several
socioeconomic factors have been associated with low country
vaccination coverage including government health spending,
difficulty to deliver the vaccines and educational variables4,7,8,
indicating that additional country-specific policy, educational, and
clinical interventions—not only technological innovation—are
required to facilitate vaccine uptake. The complexities in achieving
global vaccination coverage and immunization equity are many
and have been discussed elsewhere9–11. Clearly, reducing the
number of vaccine injections may maximize vaccination coverage
and improve vaccine effectiveness as ease of vaccine uptake may
sometimes help to compensate for vaccines with less-than-ideal
efficacy12,13, especially for those pathogens for which a highly
effective vaccine is difficult to design such as the influenza
virus14,15. Single-administration vaccines might also help to
decrease the costs associated with multi-dose regimens and
improve patient convenience, as fewer injections and healthcare
visits will be needed to provide immunity, especially in certain
target populations that require quick and protective immune
responses, including travelers, patients expecting imminent
surgery, and during outbreaks.
Historically, a great approach to simplify immunization sche-

dules and improve vaccine coverage has relied on the adoption of
combination vaccines. Two of the most used combination
vaccines are the Diphtheriae, Tetanus and acellular Pertussis
(DTaP), a subunit vaccine, and the Measles, Mumps and Rubella
(MMR) a live attenuated vaccine. Although combination vaccines
have helped a lot in improving vaccine coverage and extending
efficacy against the pathogens included in the vaccines16, not all

vaccines can be combined into a single-injection. Indeed, there is
always the risk that the efficacy (or safety) of the combination
might be less than that seen with the administration of the
vaccines separately17,18. A commonly reported example of
immune interference occurs in the MMRV vaccine. The MMRV
vaccine, a combination of MMR and Varicella vaccines, does result
in fewer injections than if the two vaccines were administered
separately, but it is also associated with higher risk of fever within
42 days after vaccination, when used as a first dose at ages
12–23 months19,20; indeed, the CDC advices that MMR vaccine and
varicella vaccines might be administered as separate injections for
the first dose in children 12–47 months of age. In another
example, a reduction in Hib-specific antibody titers is typically
reported for the hexavalent vaccine DTaP-HBV-IPV/Hib. The
mechanisms of immune interference are not completely under-
stood, but it seems that the Hib antigen is not compatible with
alum, the adjuvant present in the vaccine15,18,21; nevertheless, the
Hib compatibility problem seem to be solved with a new vaccine
formulation22. In general, a combination of multiple antigens
often results in big challenges for vaccine scale up and
development.
Because of a combination of the above reasons, there is a clear

value in the designing of vaccination strategies with fewer vaccine
doses. But how to do that? A key approach aims at translating our
current knowledge of the mechanisms of the immune responses
into technological innovation for a rational design of potent
single-dose vaccines. This approach so far has shown to be
problematic, mostly because of the technical challenges that
vaccinologists face when trying to elicit strong immune responses
with few vaccine doses, all of which is discussed in the next
sections.

CLINICAL EVIDENCE FOR OPTIMIZED VACCINATION
SCHEDULES
Vaccination schedules are typically based on series of 3–4 doses
within 4–6 months, with some vaccines requiring a booster dose
through lifetime. Multi-dose series are used for at least two
reasons: (1) to drive desired immune response in an individual to
an adequate level of protection and (2) equally if not more
important from a public health perspective, to increase the
percentage of the vaccinated population that are no longer
susceptible and achieve an “herd effect”. When trying to optimize
the vaccination schedules, it is often difficult to determine
whether fewer doses of the same vaccine would still confer
protection, because for most vaccines the immune correlates are
not well defined, making it difficult to predict the level of
protection that would be reached with a vaccine schedule that is
different from the one assessed during the clinical trials. None-
theless, post-marketing epidemiology studies, meta-analysis and
ad-hoc clinical trials comparing different schedules side-by-side,
have provided important evidence that certain vaccines can be
protective after fewer doses and some regulatory authorities have
updated their recommended vaccine schedules accordingly. Here
are a few examples. The schedule of the AS04-adjuvanted HPV
vaccine (Cervarix from GSK), initially approved with a three-dose
schedule, was updated with a two-dose schedule following several
post-marketing studies in 9–25-year-old women in which the level
of safety and immunogenicity was observed to be similar between
the two vaccine regimens23–26. The adjuvant AS04, which has a
composition of aluminum hydroxide and 3-O-desacyl4′-monopho-
sphoryl lipid A (MPL-A), is believed to be responsible for the high
level of vaccine-induced antibody titers, a surrogate of protection
for HPV, and persist for several years in vaccinated women, even
after a single vaccine dose24–27; Cervarix is currently recom-
mended with a two-dose schedule as well as another HPV vaccine,
Gardasil (Merck), which contains aluminum hydroxy phosphate
sulfate as an adjuvant. Another example of an updated
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vaccination schedule is Prevnar 13 (Pfizer), an aluminum-
adjuvanted pneumococcal vaccine, for which it has been shown
that for 9 of the 13 serotypes included in the vaccine, the post-
booster responses after a single priming are equivalent or superior
to those seen following the standard 2 priming+ 1 boost
schedule, indicating that a schedule with fewer doses still confers
protection28. Another recent example is represented by Heplisav-
B, a CpG ODN-adjuvanted vaccine against Hepatitis B virus, which
is administered with a two-dose schedule and shows similar safety
and immunogenicity profile to three doses of other HBV
vaccines29. A key commonality among all those vaccines is that
they use well-optimized adjuvanted formulation, all of which
highlights the importance of using vaccine adjuvants not only to
modulate the vaccine-specific immune responses, but also to
reduce the number of doses required to reach protection with
subunit-based vaccines. Interestingly, Cervarix, Gardasil, and
Heplisav-B also present a nanoparticle-based antigen structure,
suggesting that a combination of multicopy antigen display and
immune adjuvant formulations may provide key strategies for the
rational design of streamlined vaccination schedules.
Several decades ago, when vaccinologists began to dissect the

mechanism of action of the first successful vaccines, it became
clear that the development of new technologies and approaches
would have been essential to design vaccination strategies with
fewer injections. Since then, extensive research has been
generated, new technologies and approaches have been
explored, but no potent single-dose vaccine has yet reached the
clinic. In the next sections we discuss major historical accomplish-
ments and challenges for vaccinologists, and we summarize the
new technologies that are enabling the preclinical development of
single-dose vaccines.

HISTORY OF ATTEMPTS TO DEVELOP SINGLE-DOSE VACCINES
The concept of single-dose vaccines dates back nearly 40 years
and received most attention with the WHO Special Program for
Vaccine Development initiated in the 1980s30. The WHO initiative
focused on the development of single-dose vaccines for the low-
income countries and a key strategy involved the use of controlled
release technologies for a slow release of vaccine antigens, with
the scope of mimicking multi-dose regimes or natural infections.
The primary target to employ the new release technologies was
neonatal tetanus, at that time a major threat for public health
because of the hurdles to reach full compliance with the multi-
dose vaccine schedule required to confer protection30,31. The
WHO initiative led to the evaluation of biodegradable polymer-
based microparticles for the delivery of antigens including tetanus
toxoid (TT), diphtheria toxoid, hepatitis B antigen and HIV
envelope glycoprotein gp12031.
In the late 1970s Langer et al. first showed that a single

vaccination with a polymer-based vaccine formulation could
induce long-lasting antibody titers in animal models32,33. The
polymer was bio-erodible and allowed for slow and sustained
antigen release, whilst also providing an adjuvant effect. Subse-
quently, extensive research has focused on the development of
single-dose vaccines, mostly using the established biodegradable
polymer, poly(lactide-co-glycolide) (PLG) nanoparticle technolo-
gies for controlled antigen delivery. O’Hagan et al. showed long-
term vaccine-specific antibody responses in mice following
subcutaneous immunization with ovalbumin entrapped in PLG-
based biodegradable nanoparticles34. In another study Men et al.35

prepared nanoparticles with entrapped TT that induced high TT-
specific antibody and T cell responses in mice following a single
immunization, with TT-specific IgG titers similar to those observed
after three injections of TT adsorbed to alum35. Many other groups
reported similar findings with antigens, such as diphtheria toxoid,
hepatitis B antigen, and HIV envelope glycoprotein gp120
(reviewed by Siddhartha, J. et al. and O’Hagan, D.T. et al.33,36)

demonstrating that controlled antigen release can provide a
successful approach in small animal models.
Although preclinical testing provided promising results for the

use of PLG nanoparticles, technical limitations in the manufactur-
ability of such vaccines arose. Unfortunately, the process to
prepare PLG particles typically damaged the stability of the
antigen and impaired its immunogenicity37,38. In most groups, PLG
microparticles were prepared through a process of antigen
encapsulation that involved the use of organic solvents, agitation,
and the creation of interfaces. Moreover, upon degradation
in vivo, the polymer created a low pH environment, all of which
led to protein unfolding and aggregation, with subsequent loss of
functional epitopes and antigenicity39–42. Furthermore, clinical
manufacturing of vaccines requires the product to be either
produced under aseptic conditions or terminally sterilized, all of
which may endanger antigen stability in PLG nanoparticles.
Several research groups in the past decades have tried to address
these manufacturability issues and have made many attempts to
stabilize entrapped antigens, with limited success. As an
alternative approach, Singh et al. successfully developed a way
to obviate the need for encapsulation, by preparing the PLG
particles separately and then adsorbing the antigen on the
particles; while the surface adsorption of antigen does not allow
for controlled release of antigen, such an approach does take
advantage of the adjuvant properties of particulate antigen
delivery43–45. In another study, Malyala et al. developed a two-
stage process in which PLG microparticles were first sterilized by
γ-irradiation, avoiding the need for aseptic manufacturing, and
then incubated with reconstituted, sterile antigens to allow
surface adsorption; the adsorbed PLG vaccines induced potent
immune responses46. Most recently, Tzeng et al. showed a process
for PLG encapsulation of an inactivated polio vaccine that
involved the use of excipients to stabilize the formalin-fixed
antigens and helped to preserve its stability47. Nevertheless,
although this is an important advance which could contribute to
the eventual eradication of polio, it should be appreciated that the
complex formulation challenges required to stabilize a multi-
component combination vaccine in PLG microparticles still
represent a potentially insurmountable problem. However, biode-
gradable PLG-based vaccines remain attractive and if the
technology can be combined with other new approaches for
the development of potent and efficient single-dose vaccines,
promise remains.

BETTER ANTIGEN DESIGN
The design of optimal vaccination strategies begins with the
selection of the right antigen. In the past, vaccine antigens were
typically selected through an empirical approach in which the
pathogen (or a component of it) was isolated, inactivated and
injected to induce protective immunity; many vaccines in use
today have been developed with this empirical approach. In the
last two decades a new and rational approach, named reverse
vaccinology48, has enabled the development of new vaccines for
which an empirical approach had not been successful, including a
licensed vaccine against serogroup B meningococcus and many
others are in clinical development48,49. By combining the most
advanced technologies in genome sequencing, proteomics and
bioinformatics, the reverse vaccinology approach has provided a
framework to select the right vaccine antigens starting from the
pathogen’s genome. Reverse vaccinology has pioneered new
ways of thinking about vaccine development, including a new
structural vaccinology approach, and represents a milestone in the
history of vaccinology50,51.
Structure-based antigen design, also known as structural

vaccinology, is today a key driving force in vaccine innova-
tion48,49,52. It relies on bioinformatics and computational tools to
design optimized protein antigens for an efficient display of
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protective epitopes to B cells. The structural vaccinology approach
has been used in at least three new vaccine design strategies. One
strategy aims to stabilize proteins or polypeptides in a protective
antibody-inducing conformation, typically a conformation that is
not very stable by itself, but it can be stabilized by modifying the
sequence of the protein; this approach has led to the develop-
ment of an RSV candidate vaccine and is helping in the
development of the first universal influenza vaccine and HIV
vaccine53–55. A second approach aims to merge multiple variants
of the same protective epitope into a single chimeric protein or
polypeptide chain; such approach has been successful to provide
vaccine candidates including Factor H binding protein (FHbp)
from serogroup B meningococcus and the backbone protein of
pilus from serogroup B streptococcus52,56. A third approach aims
to design self-assembling proteins (nanoparticles or virus-like
particles) that display multiple copies of protective epitopes,
which is a very efficient way to induce potent B cell responses57–59.
Nanoparticles have been successfully used to develop HBV and
HPV vaccines and can be used as scaffolds to design highly
immunogenic multivariant antigens. For example, in the works
from Yassine et al. and Kanekiyo et al., ferritin, a self-assembling
protein nanoparticle with robust thermal and chemical stabilities,
has been used as a scaffold to present a multivalent array of
influenza virus hemagglutinin (HA) with its native trimeric
conformation intact; this structure-based design strategy has led
to the development of a potent and broad-coverage influenza
vaccine that is now being tested in a phase I clinical trial60–63. In
another study from Marcandalli et al. a single-immunization with a
nanoparticle-based RSV vaccine outperformed the non-
nanoparticle formulation in inducing T follicular helper (Tfh) cells
and germinal center (GC) B cells64, highlighting the value of
adopting a strategy of multi-copy antigen display in the designing
of next-generation vaccines. More recently, a study by Tokatlian
et al. has shown that nanoparticles induce potent GC responses in
an immunogen glycan-dependent manner, suggesting that heavy
glycosylated nanoparticles may have an advantage over the less
glycosylated ones in promoting strong B cells responses65. Overall,
a wide body of evidence indicates that nanoparticle-based
antigens are more immunogenic than monovalent recombinant
antigens. Nonetheless, it is unlikely that a single dose of a
nanoparticle antigen would be adequate to induce robust and
long-lasting immune responses in a clinical setting, especially in
naïve subjects; however, a combination of all the strategies
presented below may succeed66–68.

STIMULATING THE INNATE IMMUNITY
Potent and long-lasting vaccine-specific adaptive immune
responses occur only after adequate stimulation of the innate
immunity. In the past century, during the early studies on the
mechanisms of action of live attenuated vaccines, it became clear
that a key aspect of the robust immunogenicity of these vaccines
was their ability to stimulate innate immune cells through pattern
recognition receptors (PRRs). PRRs are a series of germline-
encoded host proteins, mostly expressed by innate immune cells,
that may recognize pathogen-associated molecular patterns
(PAMPs), which are molecules associated with microbial patho-
gens, or damage-associated molecular patterns (DAMPs), which
are molecules associated with components of host’s cells that are
released during cell damage or death. In the past 30 years, there
has been a revolution in our understanding of the cells, receptors,
and molecules that contribute to innate immunity and in the ways
that the innate response directs the subsequent adaptive immune
responses69,70, all of which has led to design immunological
adjuvants to include in subunit vaccines and induce potent
antigen-specific immune responses. Most adjuvants directly target
PRRs, including TLR-agonists such as monophosphoryl lipid A
(MPL-A), a component of AS04-adjuvanted and AS01-adjuvanted

vaccines; other adjuvants, including MF59, AS03, and QS-21,
activate tissue inflammation pathways with mechanisms that
involve DAMPs71,72. We refer to other reviews for a comprehensive
description of the mechanisms of action of adjuvants, but we
would like to highlight that a key advantage offered by vaccine
adjuvants is that they can be used not only to increase the
quantity, but also to modulate the quality of the vaccine-specific
immune response. For example, it is well known that the oil-in-
water emulsions MF59 and AS03 may help to expand the antigen-
specific antibody repertoire, whereas, for example, AS01 adjuvant
may help to stimulate both humoral and cell-mediated immu-
nity73–78. Although there are limited data on the immune
responses measured after just a single dose of adjuvanted
vaccines, it was shown that a single dose of an MF59-
adjuvanted H5N1 vaccine was enough to induce a 3-fold increase
in the frequency of virus-specific total CD4+ T cells which
accurately predicted the rise of neutralizing antibodies against
pandemic influenza, supporting the use of MF59 adjuvant in
single-dose pre-pandemic influenza vaccines79. Adjuvants help to
modulate the vaccine-specific immune response toward a desired
immunological phenotype or a correlate of protection, and
represent an outstanding tool for the designing of more potent
single-dose vaccines73,80,81.
Viral vector-based vaccines mimic viral infections, display a

constellation of immune evasion mechanisms, and activate PRRs
that ultimately lead to potent immune activation82–98. As an
example, most adenoviruses enter cells upon binding to the
coxsackievirus and adenovirus receptor (CAR)99, and the viral
double-stranded DNA is sensed by TLRs in the endosome and by
NOD-like receptors in the cytoplasm leading to a pro-
inflammatory cytokine response50,52. However, in some cases
innate immunity is less important than antigen persistence in
driving potent vector-induced immunity, as shown in the work of
Quinn et al. in which adenoviral vaccine potency was independent
of IFN and STING signaling100. Not only viral vectors, but also DNA
and RNA vaccines can be sensed by PRRs on innate immune cells
and bring an intrinsic adjuvant effect that contributes to the
potent immune responses observed with these vaccines101–103.

MODULATING THE RELEASE KINETICS OF THE VACCINE
COMPONENTS
Two observations led scientists to speculate that antigen
persistence after vaccination is an important factor for potent
vaccine-specific immune responses. One observation came from
studies on viral infections or live attenuated vaccines in which viral
replication makes the antigen available for extended time and this
is typically associated with strong antibody responses104–108. A
second observation came from studies on the mechanisms of
action of alum, the most widely deployed vaccine adjuvant, which
was initially thought to deliver a slow release of the antigen, a
mechanism called “depot” effect71,109–111. Although more recent
studies have challenged this paradigm for alum mechanism of
action, today it is widely accepted that prolonged antigen
exposure leads to strong vaccine-specific immune
responses82,112–117. Many recent works have provided further
evidence: antigen exposure in draining lymph nodes over periods
of at least several days induces an optimal cytokine profile118,
enhances the differentiation of Tfh cells119–121, stimulates potent
germinal center responses and improves the quality of the
antibodies114,120,122–124. For example, a recent study from Cirelli
et al., in which an HIV antigen was delivered with osmotic pumps
over up to 4 weeks under the skin of non-human primates, shows
that persistent antigen availability induces improved HIV-specific
GC responses and antibody quality, probably with a mechanism
that involves enhanced immune complex deposition on follicular
dendritic cells114,124. All of this provides a better understanding of
the immunological mechanisms after vaccination and raises key

G. Lofano et al.

4

npj Vaccines (2020)    88 Published in partnership with the Sealy Center for Vaccine Development



questions on how to translate preclinical concepts into clinical
applications.
Multiple materials and technologies, each coming with specific

biophysical properties and antigen release kinetics, are currently
being explored in preclinical settings to enable a programmed
antigen release after a single vaccination. How long antigen
persistence should be, and if there is an optimal release kinetic,
are still unclear points. Evidence suggests that antigen persistence
should be maintained for more than 2–3 weeks in order to
appreciate an improved immune response when compared to a
single bolus injection: there seems to be a “lag” phase in which
the presence of extra antigen does not make the immune
responses stronger; this phase seems to last for around 14 days
after the first antigen exposure, until the peak of the GC
reactions69,112,114. Instead, 2–3 weeks of continuous antigen
exposure not only is associated with stronger immune responses
but also may help to preserve subdominant protective epitopes in
the appropriate conformations124. The kinetic of antigen persis-
tence also plays an important role: “exponential increase” outper-
forms a “nearly constant” release kinetic112. Although it is still
difficult to design a vaccine that may allow for an exponentially
increased delivery of the antigen in vivo, some materials, such as
PLGA microparticles, can be programmed with a “pulsatile” release
kinetic, in which the antigen is released in multiple sequential
waves after a single vaccination, somehow mimicking a multi-
bolus schedule. Alternatively, most of the technologies enable a
“zero-order kinetic” in which a nearly constant release of the
antigen persists for days or weeks. The most relevant materials
and technologies that are being evaluated for the development of
single dose vaccines are described below.
Although a variety of materials have been approved in humans

for controlled release of small drugs and hormones125,126, none
has been approved for controlled release of vaccines. Major
obstacles that have limited the adoption of selected materials for
vaccine development include: (a) difficulties in maintaining
stability of the antigen (on-shelf and in vivo after injection); (b)
challenges in controlling desired release kinetics; and (c)
manufacturing constraints36,82,127. Nonetheless, a variety of
materials and devices have been tested in preclinical studies
and seem promising for clinical applications. PLG was the first
biopolymer to be tested in the attempts to develop single-dose
vaccines. As discussed above, although several technical limita-
tions so far have prevented widespread clinical application of PLG-
based vaccines, PLG microspheres have been widely published
and clinically validated for the controlled release of proteins,
peptides, and small molecules36,82,126,128, with the potential of co-
delivering antigens and adjuvants129–131. A single-dose vaccine of
stabilized PLG microparticles may allow for a pulsatile release of
the antigen and the timing of the “bursts” can be potentially
modulated by changing the biochemical and biophysical proper-
ties of the PLG microparticles36,132; however, a continuous release
kinetic is also possible133–135. Other relevant materials that offer an
alternative to the use of the PLG polymer are silica, dextran,
collagen, chitosan, hydrogels, and fibroin from silk82,136–139; these
materials are biodegradable, appear safe, can encapsulate a
protein antigen and typically release it with zero-order release
kinetics that can last for weeks after a single dose injection82. As
examples, collagen minipellets can induce continuous antigen
release for up to 14 days140, chitosan up to 35 days134. Although
very few preclinical immunogenicity studies have been reported
so far with these materials, they are in the toolkit for the
development of future vaccine formulations for controlled antigen
release.
Although the polymers described above are mostly used in the

form of microparticles for intramuscular antigen delivery, they can
also be engineered to design devices that deliver the antigens
through the skin. The best example for this approach is
represented by microneedle skin patches which encompass an

array of solid pyramidal or cylindrical projections of few microns in
size and are designed to mechanically perforate the stratum
corneum to enter the epidermis and/or upper dermis upon
application to the skin. Microneedles can be coated with dried
vaccine formulations, or the microneedles themselves can
comprise dissolving polymers that release the vaccine with
programmable kinetics. Vaccine administration via microneedles
provides several key advantages over traditional intramuscular
injections by allowing for minimal pain and discomfort, by
targeting the myriad of innate immune cells in the skin141, and
by providing a way to encapsulate the bioactive molecules in a
stable and lyophilized state prior to use142. Several types of
microneedle patches that can tailor vaccine kinetics have been
designed and tested in mice, NHPs, and early clinical trials,
including microneedles composed of polymers that swell or
dissolve at controlled rates when applied to the skin, releasing
encapsulated vaccines136,143–145. For example, a type of dissolving
microneedle patch made of carboxylmethylcellulose and trehalose
was used to deliver cell-culture-derived influenza vaccine146;
another type of patch used silk protein-based microneedles to
release vaccines with extended kinetics in the skin, promoting T
cell and humoral responses following vaccination136.

ALTERNATIVE APPROACHES TO PROMOTE PERSISTING
ANTIGEN AVAILABILITY
Other than biodegradable materials, at least three more
approaches can be used to induce a programmable delivery of
the antigen after vaccination; those approaches are based on the
use of nucleic acids, viral vectors, or adjuvants. Although each of
them has complex mechanisms of action, here we focus on
reviewing their properties as antigen delivery systems.
For many years, DNA and RNA have been used in vaccination

strategies, indeed nucleic acids can be efficiently engineered with
the sequence of an antigen of interest and used to induce long-
term in vivo expression of the antigen101,102,147. Mode of action
studies of DNA-based and RNA-based vaccines have been
extensively reviewed102,103,148 and are outside the scope of this
review, however it is very important to note that both DNA-based
and RNA-based vaccines potentially induce long-term antigen
expression in vivo with kinetics that can resemble a zero-order
antigen release, and may generate strong immune responses after
a single dose; for example studies with luciferase-encoding DNA
have shown that the luciferase can be detected for at least
3–4 weeks after a single vaccine injection149–155, suggesting that a
DNA vaccine would be suitable to replace at least the second dose
in a two-dose, 1-month apart vaccination schedule. Nevertheless,
after its initial emergence in the 1990s, the level of interest in DNA
as a vaccine modality gradually decreased as it became clear that
the technology lacked potency when used in human subjects.
RNA vaccines are a more recent and more potent tool to induce

persistent antigen expression and several works have been
published in the recent years showing that one immunization of
RNA vaccines may be sufficient to induce strong and protective
immunity. For example, using a nucleoside-modified RNA plat-
form, Pardi et al. have shown that a single dose RNA vaccine can
protect from Zika virus infection156; in another work, by using a
different platform with lipid-nanoparticle RNA vaccine, Bahl et al.
have shown that an influenza vaccine was very immunogenic after
just a single dose157,158; furthermore, recent clinical data have
shown that a single vaccination with an mRNA-based vaccine
boosted pre-existing serum neutralization titers against hMPV and
PIV3, two significant causes of severe respiratory diseases for
infants and children. Another very promising RNA vaccine
platform is based on self-amplifying mRNA (SAM) vaccines which
employ a modified version of the alphavirus genome and encode
for the RNA replication machinery together with the gene of the
antigen of interest103. SAM vaccines have several advantages over
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single-copy RNA vaccines, indeed SAM vaccines not only enable a
large amount of antigen production from an extremely small dose
of vaccine, but also allow for persistent antigen expression that
seems to last for many weeks after a single vaccination159,160. SAM
vaccines have been shown to provide strong B and T cell
immunity against a variety of pathogens including influenza, HIV,
RSV, Ebola, CMV, and Dengue161. Although RNA vaccines degrade
faster than DNA vaccines, several modifications on the RNA
structure and optimized delivery systems, including cationic
nanoemulsions and lipid nanoparticles, can be used to improve
RNA stability, in vivo sustained protein translation and the
antigen-specific immune responses102.
Viral vectors represent the closest model to live attenuated

vaccines, a benchmark for vaccine potency. Viral vectors enable
potent stimulation of the innate immune system and persistent
antigenic stimulation, all of which ultimately leads to potent
humoral and cell-mediated immunity82–90,100,162,163. Factors that
have limited the wide-spread use of viral vectors for clinical
applications include: (a) the presence of pre-existing immunity
against the viral vector which may limit its potency or give rise to
unwanted side effects164; (b) evidence suggests that years of
antigen stimulation may lead to exhaustion of the immune
responses165,166, (c) replication-competent vectors may lead to
chronic infections and pathogenesis167. In order to circumvent
these potential limitations, several vectors have been developed
for safe and effective use in humans including vectors based on
replication-defective adenoviruses82–90,168, single-cycle adeno-
viruses91–93, vesiculoviruses169, herpes viruses94, or adeno-
associated viruses (AAV)95,170. The most used class of viral vectors
is represented by the replication-defective adenoviruses, small
double-strand species-specific DNA viruses of human or non-
human origin that are unable to establish chronic infections and
may provide antigen persistence for months, depending on the
animal model or viral strain considered82–87,171. For example, in a
mouse model of immunization with a viral vector encoding for the
SIV-Gag antigen, the number of antigen transcripts has been
detected for at least 15 days after vaccination and most likely
persist for longer100. In another study from Tatsis et al. using the
AdC68 vector, antigen sequences were detected at the site of
injection for at least 1 year after administration83. In both these
studies a single immunization was sufficient to induce potent B
and T cell responses, with a mechanism that seems independent
of the vector-induced activation of innate immunity100. All of this
evidence strongly supports the use of replication-defective
adenoviruses as one of the best tools to induce strong immune
responses with a single immunization. The replication-competent
adeno-associated viruses (AAV) represent another class of
extremely attractive vaccine carriers as they are highly versatile,
they can readily be produced to high titers, they only encode the
transgene product and are appear tolerated, even if given at very
high doses94,95. AAVs have also been engineered as a gene
therapy tool to deliver antibodies or other functional proteins,
providing remarkable results in term of long-term gene expres-
sion. For example, AAVs have been shown to induce durable
transgene expression for at least 12 months in mice170–172 and
4 months in rhesus macaques173. The only viral vector-based
vaccines that has reached approval for clinical use so far is the
rVSV-ZEBOV Ebola vaccine, which is based on the replication-
competent vesicular stomatitis virus (VSV), a virus in the family
Rhabdoviridae; the rVSV-ZEBOV vaccine has been recently used
during the Ebola outbreak in the Democratic Republic of Congo in
2018, showing 97.5% vaccine effectiveness. We refer to a
reference from Lauer et al. for a more detailed discussion on viral
vectors used for clinical applications174.
A major potential weakness in using viral vectors as delivery

systems is linked to the possibility of inducing immune cell
exhaustion, a phenomenon sometime observed with chronic viral
infections and in theory possible with any antigen persistence

system. Immune cell exhaustion defines a state in which immune
cells, typically T cells, following continuous and prolonged
exposure to the antigen, become less responsive and
exhausted175,176. T cell exhaustion usually manifests with several
characteristic features, such as progressive and hierarchical loss of
effector functions, sustained upregulation and co-expression of
multiple inhibitory receptors, altered expression and use of key
transcription factors, metabolic derangements, and homeostatic
hypo-responsiveness177. Although it is not clear how long the
exposure needs to occur before triggering an unfavorable
exhausted immune phenotype, it is important that any vaccine
strategy designed to induce persistent antigen exposure carefully
evaluate and limit the occurrence of this phenomenon.
Vaccine adjuvants mediate immunostimulatory signals to the

body’s immune system and promote potent vaccine-specific B
and T cell responses. Although those signals are key for adjuvant
mechanisms of action, we have evidence that certain adjuvants
may form an antigen “depot” at the site of injection hereby
promoting antigen slow release after vaccination. Initially a “depot
effect” was hypothesized to explain the mechanism of action of
alum-adjuvanted vaccines71,178; instead new findings of the past
decades have suggested that an antigen depot might be far less
important than alum-induced inflammasome activation in the
modulation of alum adjuvanticity71,109–111. Importantly, a recent
paper from Moyer et al. has shown that if the absorption of the
antigen on alum is very strong, this may form antigen
nanoparticles that slowly traffic to the lymph nodes—peaking
up to 8 days after injection—and prolongs antigen bioavailability
in vivo; this mechanism seems to be very important in shaping
both the quantity and the quality of the antigen-specific immune
responses of alum-adjuvanted vaccines179. A “depot effect” was
also hypothesized to be important for the mechanisms of action
of the oil-in-water emulsion MF59 adjuvant, but by using an
immunization model with a labeled antigen, it was shown that the
presence of MF59 did not significantly modify the distribution of
the antigen132. Nonetheless, MF59 has been shown to induce
antigen-specific GC B cells for at least 4 months after last
immunization180, suggesting that antigen is retained in its native
form for long-term GC activation all of which might contribute to
the strong and broad B cell responses typically seen with MF59-
aduvanted vaccines71. Adjuvants that may form an antigen depot
at the site of injection also include the cationic adjuvant
formulations (CAF platform) and the IC31 adjuvant. The principal
component of the CAF adjuvant platform is the surfactant
dioctadecylammonium (DDA) formulated into liposomes or
emulsions, which modulate antigen biodistribution at the injec-
tion site181; Schmidt et al. have shown that intramuscular injection
of a CAF-adjuvanted vaccine activates classical migratory dendritic
cells that slowly transport the antigen to the draining lymph
nodes and elicit strong T cell responses182,183. IC31 is another
adjuvant that combines the immunostimulatory effects of an
antibacterial peptide with the biochemical properties of a
synthetic oligodeoxynucleotide (ODN1a, an agonist of the Toll-
like receptor (TLR)-9) in order to induce potent antigen-specific
immune responses184; Schellack et al. reported that an OVA
peptide co-administered with IC31 adjuvant formed a depot at the
injection site, which was still detectable 58 days after injection and
was potentially responsible for the strong immune responses
typically observed with IC31-adjuvanted vaccines185. CAF and IC31
adjuvants are currently in clinical trials for the development of a
tuberculosis vaccine.

TARGETING SITE-SPECIFIC DELIVERY OF THE VACCINE
COMPONENTS
Although having a programmable system of antigen delivery is
helpful, it might not be enough to efficiently stimulate all the
players of the vaccine-specific immune responses. Indeed,
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appropriate stimuli—including the antigen—need to be displayed
not only at the right time, but also in the right place. In general,
there are two compartments that are particularly important in the
context of vaccination: the site of injection, typically the muscle,
and its draining lymph node (Fig. 1). A potent single-dose vaccine
is required to induce the appropriate stimuli in each of those two
sites.
To begin with, the skeletal muscle is typically where the vaccine

first enters in the body: a resting muscle usually contains few
immune cells, but vaccine administration triggers the recruitment
of tissue resident and infiltrating immune cells, including
professional antigen-presenting cells (APCs), which activate after
vaccine administration186. With regard to vaccines platforms that
are based on DNA or RNA delivery systems, they employ the
expression machinery of the muscle cells in order to express the
antigen at the injection site, which promotes the recruitment of
immune cells102. With regard to subunit vaccines, antigens are
typically delivered with vaccine adjuvants, that help to induce a
transient inflammation in the muscle and further promote
immune cell recruitment and activation187. The persistence and
the quality of the adjuvant-induced immune stimuli, including
cytokines and chemokines, represents a fingerprint of each
adjuvant and provide qualitatively unique immune responses at
the injection site. For example mouse studies have shown that
frequencies of neutrophils and monocytes peak, respectively, at
16 and 48 h in MF59-injected muscles, while the AS01 adjuvant
induces faster kinetics as both neutrophil and monocyte numbers
peak already at 6 h188–191; adjuvant mechanisms of action are a
complex and broad topic, and it will be briefly discussed below.
Another important injection site is the skin; indeed, some vaccines
are administered subcutaneously where they encounter a myriad
of skin-resident APCs. For example, skin-resident dendritic cells
and MHCII+ Langerhans cells reside in different skin tissue layers

and exhibit distinct time frames of lymph node homing192. Many
materials for targeting skin dendritic cells have been explored,
including hydrogels143,193 and large particulates194, with the
common aim of localizing the materials to the site of administra-
tion to increase the likelihood of APC uptake and migration to the
draining lymph node. Overall, the site of injection—skin or muscle
—is a dynamic environment, where single-dose technologies may
play an important role in modulating the “when” and the “how”
antigens and adjuvants are released in order to trigger an efficient
transport of the antigen from the injection site to the draining
lymph node, where the adaptive response occurs.
Antigens and adjuvants may reach the draining lymph node in

two different ways: through diffusion in the lymphatic vessels, or
through cell-mediated transport. The lymphatic capillaries possess
a fenestrated endothelium that allow for the passage of molecules
10–100 nm in diameter, including antigens and immune com-
plexes, that flow through the lymphatic systems until they reach
the subcapsular sinus (SCS) area of the lymph nodes195,196. Only
molecules that are smaller than 70 kDa will be able to pass
through the SCS and directly access to the B cell follicles, while
bigger molecules will require an active transport from specialized
cells, such as the poorly degradative SCS macrophages which
capture immune complexes and other big molecules to mediate
their transport to the follicles197–200. The different hydrodynamic
properties of the lymphatic systems have been used in the past to
design delivery systems that release molecules in specific sites of
interest in the lymph node. For example, in a study by Lutz et al.
adjuvant-loaded particles were encapsulated in pH-degradable
hydrogel: the authors show that the hydrogel degraded over time
and slowly released 50 nm nanoparticles that diffused away from
the injection site and targeted dendritic cells in the draining
lymph node hence inducing stronger immune responses with a
mechanism that did not require cell-mediated transport201.
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Monocyte
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Lymph node

Adjuvanted vaccine

CD4 T cell
An�gen-an�body

complex

HEV

SCS macrophage
10-100 nm

vaccine
components

B cell
follicle

< 70 kDa
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An�gen-specific B cell
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Fig. 1 The journey of the vaccine components after injection. Intramuscular or subcutaneous injection triggers the recruitment of immune
cells to the site of injection, where they activate, capture the antigen and migrate to the draining lymph node. Antigens, adjuvants or other
components smaller than 10–100 nm may also diffuse in the lymphatic systems and reach the lymph node through the afferent lymphatics.
While smaller molecules (<70 kDa) may diffuse through fenestrae of the subcapsular sinus, the largest molecules are transferred to the B cells
with the help of subcapsular sinus macrophages. B cells and resident dendritic cells may also sense molecules in the conduits and transfer
them to the B cell area to initiate the germinal center responses.
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In other studies, it has been shown that follicular B cells have also
direct access to small soluble antigens202, even when those
antigens are initially administered in the form of large nanopar-
ticles203, suggesting that lymph proteases may release small
antigens from large carriers, resulting in a free diffusion of the
small molecules and direct access to B cells in the lymph nodes.
For larger molecules, the story is different as they require active
transport by immune cells. For example, immune complexes—
vaccine antigens trapped by serum antigen-specific antibodies—
are too big to get free access to the B cell follicles, instead they are
transported to the lymph node by migratory immune cells, or
diffuse in the subcapsular sinus (SCS) area until they are captured
by SCS macrophages that transfer them to the B cells area204;
typically SCS macrophages also capture heavy glycosylated
antigens205, nanoparticles206, and liposomes. Importantly, lipo-
somes are commonly used carriers owing to their amphipathic
composition, which promotes internalization by endocytosis
rather than scavenging by phagocytosis207. Once internalized,
liposomes are processed by phospholipases, which disrupt their
structure, causing the intracellular release of encapsulated cargo,
including adjuvants and other small molecules208, and can be
used for targeted delivery to SCS macrophages. Regarding the
largest molecules, their transport from the injection site to the
draining lymph node is modulated by the active transport of
migratory immune cells. For example, dendritic cells and MHCII+
Langerhans cells capture the antigen, migrate and localize in
discrete draining lymph node locations192 to exert specific
immunomodulatory functions209. Monocytes, neutrophils, myeloid
dendritic cells, or plasmacytoid dendritic cells can also be
selectively recruited by different vaccine adjuvants and can
transport the antigen to the draining lymph node210. Finally,

monoclonal antibody-coated microparticles can be engineered to
deliver a cargo directly to the high endothelial venules of lymph
nodes and modulate the immune responses211.
Overall those studies highlight the importance of targeted

in vivo delivery of the vaccine components, which display unique
hydrodynamic and immunological properties. In designing next
generation vaccines, we need to take into account the many
possible journeys of the vaccine components in vivo, indeed an
optimal vaccine formulation may be specifically designed to target
different cell types, in different places and even at different times,
in order to induce potent immune responses with a single
vaccination.

SINGLE-DOSE VACCINES FOR THE CORONAVIRUS PANDEMIC
The rapid expansion of the COVID-19 pandemic has made the
development of a SARS-CoV-2 vaccine a global health and
economic priority. Given the rapid evolution of the pandemic—
hence for the need to quickly make available millions of doses of a
vaccine to as many as possible and to rapidly generate protective
immunity—a single-dose vaccination strategy is considered a
hallmark of the target vaccine profile. At the time we write many
vaccines are being evaluated in preclinical and clinical settings,
some of which have already been shown to be safe and induce
functional antibody titers after just a single vaccination. Those
vaccines are designed to elicit protective immune responses
against the S protein of SARS-CoV-2 and use RNA or viral vectors
as antigen delivery systems. At least one RNA vaccine has reached
phase III clinical testing, and encouraging data from a phase I trial
have been published212. Although a two-doses schedule seems to
be required to reach the desirable functional antibody titers, just

Site-specific delivery of the vaccine components

� Controlled release materials

� DNA & RNA

� mAbs

Antigen persistence and release kinetics
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� DNA & RNA
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� Adjuvants

Multivalent
antigens

� Structure-based design

� Nanoparticles and VLPs

Engaging innate
immunity
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� Viral vectors

Fig. 2 Approaches for the rational design of potent single-dose vaccines. A rational design of potent single-dose vaccines can be achieved
by modulating the spatial and temporal deliveries of the vaccine components, by designing multivalent antigens and by efficiently engaging
the innate immunity. The muscle and the draining lymph node are the two most important sites for targeted delivery of antigen and immune
stimuli, which can be achieved by modulating the biophysical and biochemical properties of the vaccine components. Antigen persistence in
germinal center regions of lymph nodes is essential to promote robust immune responses and can be modulated with controlled-release
materials, DNA, RNA, viral vectors, or adjuvants. Antigens can be designed as virus-like particles (VLPs) to present a multivalent conformation
and promote efficient B cell receptor engagement on the surface of B cells. Furthermore, activation of innate immune cells is essential to
induce strong antigen-specific immune responses and can be achieved by engaging pattern recognition receptors with adjuvants, nucleic
acids, and viral vectors vaccines.
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one dose of the RNA vaccine was safe and enough to induce
seroconversion in all study participants—with functional antibody
titers in some of them—proving the promise of the RNA platform
in providing some benefit as a single-dose strategy during
pandemics. Adenoviral vectors are also showing very promising
results as single-dose vaccine platform. In a phase I/II trial, a single
dose of a chimpanzee adenovirus-vectored vaccine (ChAdOx1
nCoV-19) expressing the SARS-CoV-2 spike protein has been
shown to induce neutralizing antibody responses against SARS-
CoV-2 in 90–100% (depending on the test used to measure
neutralizing titers) of vaccinated subjects213. In another phase II
clinical trial a single vaccination with the non-replicating
adenovirus type-5 (Ad5)-vectored COVID-19 vaccine has also been
shown to induce significant neutralizing titers in the majority of
the study participants214. Most recently, Mercado et al. have
shown that a single dose of the adenovirus serotype 26 (Ad26)
vector-based vaccine elicits neutralizing antibodies that correlate
with protective efficacy in a non-human primate model of
Coronavirus infection215. Clearly, all the potential of some of the
technologies discussed in this review is being exploited in the fast-
track and much-needed development of a single-dose Corona-
virus vaccine.

CONCLUSIONS
Single-dose vaccines are in high demand by all stakeholders
including patients, insurers, and vaccine companies, and vaccinol-
ogists may possess the right toolbox to begin to build them.
Although early attempts in the development of single dose
vaccines highlighted important technical challenges, today we
have a better understanding of how the immune system works
and we may have new tools to rationally design vaccines that
induce strong immunity with fewer doses, ideally just one.
Through the modulation of key immunological mechanisms, it
might be possible to improve the quality and the quantity of
vaccine-specific immune responses (Fig. 2). Several materials and
technologies can be used to modulate the spatio-temporal
availability of antigen and adjuvants in vivo; furthermore, the
delivery of appropriate innate immune stimuli together with
structure-optimized antigens are also very important for the
rational design of more potent single-dose vaccines.
At least three important limitations in the development of

single-dose vaccines still remain. First, many of the technologies
described here have still to be tested in humans and, depending
on their indications, their ability to work as single dose will have to
be demonstrated in children, a key target population for the
development of new vaccines. Second, the manufacturability for
some of the technologies is still a major barrier for widespread
clinical application; as examples, a manufacturing process for PLG-
based vaccines has not yet been established. Third, any new
vaccination strategy, regardless of the number of immunizations,
needs to induce specific correlate(s) of protection, which are still
unknown for many pathogens. Nonetheless, the approaches
presented above can help to modulate not only the quantity
but also the quality of vaccine-induced immune responses,
providing a unique set of strategies to defeat vaccine-
preventable diseases with a reduced number of vaccinations.
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