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The Many Flavors of Model-Based Meta-Analysis:
Part I—Introduction and Landmark Data

M Boucher* and M Bennetts

Meta-analysis is an increasingly important aspect of drug development as companies look to benchmark their own
compounds with the competition. There is scope to carry out a wide range of analyses addressing key research questions
from preclinical through to postregistration. This set of tutorials will take the reader through key model-based meta-analysis
(MBMA) methods with this first installment providing a general introduction before concentrating on classical and Bayesian
methods for landmark data.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 54–64; doi:10.1002/psp4.12041; published online 13 February 2016.

Understanding the key safety and efficacy attributes of other

compounds, either on the market or in the pipeline, is of criti-

cal importance for companies developing new drugs. There

is a need for new compounds to differentiate from current

standard of care (SOC) treatments and it is generally no lon-

ger desirable or acceptable to produce “me too” drugs.
Clearly, when a company needs to show improvement

over an SOC, it is vitally important to fully understand the

safety and efficacy characteristics of that SOC in compari-

son to placebo (or other comparator). The best way to do

this is to carry out a meta-analysis to quantify these char-

acteristics as accurately as possible. A meta-analysis uses

statistical methods to pool and analyze data across multiple

studies.
Ideally any meta-analysis approach should be geared

toward specific research questions, and the types of ques-

tions will be discussed in more detail in the next section.

Meta-analysis can be used to answer a wide variety of

questions and there are a range of methods that can be

applied. Different disciplines (e.g., pharmacometrics and

statistics) might use different but equally valid approaches

to answer the same question using techniques that are

common to their field.
The term “model-based meta-analysis” (MBMA) has

tended to sit in the clinical pharmacology world where phar-

macologic models, such as Emax, are applied to meta-data.1

Here, the desire is to use all available relevant information,

such as time-course and dose information that fits in with the

learning (rather than just confirming) approach to drug devel-

opment.2 Mould3 gives an overview of how MBMA is an

important tool for quantitative decision-making and there is

an increasing pool of published examples.4–6 However,

MBMA is not exclusive to the clinical pharmacology area, as

many meta-analyses involve models and this tutorial uses

the term in this wider context where MBMA forms part of

model-based drug development and pharmacostatistical

models are applied to safety and efficacy data across all

phases of drug development for informed decision-making.7,8

Meta-analysis methodology continues to advance and

evolve. Sutton and Higgins9 provide a useful overview of

recent developments as of 2008 and, since then, areas such

as network meta-analysis (NMA) have grown exponentially.9,10

The purpose in this set of articles is to illustrate the vari-

ous models and techniques used both within and outside

the clinical pharmacology world to hopefully provide a wider

picture. Code and datasets will allow the reader to replicate

the results presented.
Typically, meta-analysis is the quantitative synthesis of a

systematic review; a thorough review of the available data/

literature using explicit and reproducible steps. This

involves defining the research questions, specifying the par-

ticipants, interventions, comparators, outcomes, and stud-

ies, developing the search criteria and sources, study

selection, data collection, and assessment of bias.11 There

is increasing literature and guidance on the process and

quality of systematic review (e.g., Cochrane handbook,

Grades of Recommendation, Assessment, Development

and Evaluation (GRADE), and Preferred Reporting Items

for Systematic Reviews and Meta-Analyses) and, although

crucial to the quality of the resulting meta-analysis, this set

of articles will assume that all data are correct and

appropriate.12–15

The Preferred Reporting Items for Systematic Reviews

and Meta-Analyses statement consists of a 27-item check-

list and a four-phase flow diagram. The checklist includes

items deemed essential for transparent reporting of a sys-

tematic review or meta-analysis across seven sections: title,

abstract, introduction, methods, results, discussion, and

funding. There are several specialized extensions to the

guidelines, including one which is tailored to the specific

requirements of reporting systematic reviews and meta-

analysis of individual patient data and another developed

specifically to improve the reporting of NMA.16,17 It is

strongly recommended that these guidelines are followed

when reporting the results of a formal meta-analysis. How-

ever, the focus of this set of articles was methodology and

any results presented are examples to illustrate this meth-

odology rather than a formal report.
This first article serves as an introduction to MBMA and

then focuses mainly on the analysis of landmark data. The
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next (second) section discusses the types of questions that
can be addressed with MBMA. The next (third) section
describes the key methodologies for landmark data. The
next (fourth) section gives an overview of some of the soft-
ware that can be used to conduct meta-analysis. The next
(fifth) section presents two landmark examples, one a tradi-
tional pair-wise meta-analysis and the other a dose
response model, along with corresponding models and
results. The next (sixth) section provides some closing dis-
cussion and the next (seventh) section briefly describes
some of the methodologies that will be covered in future
tutorials.

In the Supplementary Materials, R, NONMEM, and

OpenBUGS code are provided and the datasets used will

be available from the journal website to allow users to

reproduce the results.18–20

WHY META-ANALYSES ARE CONDUCTED

The motivation behind doing a meta-analysis can vary a

great deal depending on which research questions are

being asked. This section will outline some key uses of

meta-analysis in clinical drug development.

Identifying a disease level desired profile
Typically, a product concept will be developed for a disease

area using customer insights from payers, prescribers, and

regulatory bodies, with a goal of identifying key features of

a drug together with target values. MBMA may be used to

speculate how a new drug is expected to compare to the

current SOC and the emerging competition, both positively

and negatively. This aids a drug development strategy

driven by valuable differentiation and creates a strong foun-

dation for decision-making as data become available.

Learning and hypothesis generating
A great deal of published meta-analyses focus on specific

endpoints, such as change from baseline at a time-point

(e.g., end of study) or an adverse event incidence rate and

might look to see whether a treatment is significantly better

than a placebo or a comparator. However, there is a great

amount of learning that can be gained from meta-analyses

that lends itself to estimation rather than formal hypothesis

testing. For example, there may be a need to understand

the time-course of a comparator and/or placebo response

to assess onset of action and/or maintenance of effect.

After readout of a short phase 2 study, the clinical team

may want to predict the likely response at later time-points

for a phase 2b study. Correlation between end points may

be useful if a drug project is changing its primary end point

of interest, although this topic is not without its issues.21,22

Studies in a specific indication may have changed over

time with regard to placebo response, background therapy,

or treatment comparator. Differing design or population

characteristics may inform variation in placebo response.

Information on all these aspects may be available in the lit-

erature or other internal drug programs.

Generating target values for decision-making
Decision criteria are increasingly being used to help quick
and efficient decision-making after study readout. These
decision criteria are commonly based on the performance
characteristics of the current SOC or other advanced pipe-
line drugs. One such decision criteria might be that on
readout of a proof of concept study, the primary end point
achieves a minimum target value that comes from a meta-
analysis of a key comparator. The target value could be the
point estimate itself from the meta-analysis or a scalar of it
(e.g., target is 50% greater than SOC).

Comparative effectiveness
In general, comparative effectiveness research is the direct
comparison of two or more existing health care interven-
tions to determine which works best for which patients and
which poses the greatest benefits and harms. NMA, incor-
porating mixed treatment comparisons and indirect treat-
ment comparisons, provides quantitative information for
evidence-based decision-making in the absence of random-
ized controlled trials involving direct comparisons of all the
treatments of interest within the studies.23 Mixed treatment
comparisons combines both direct and indirect evidence for
particular pairwise comparisons, thus synthesizing more
evidence than traditional pairwise meta-analysis.

NMA allows simultaneous comparison of multiple treat-
ment options that have been compared in randomized con-
trolled trials forming a connected network of treatment
comparisons, and provides a framework for model compari-
son and assessment of evidence consistency and is typi-
cally performed on summary level data during late-stage
development in order to compare relative performance of
multiple (>2) drugs, for a single end point, at a single time
point for a specific treatment regime of interest.

An NMA provides two measures of comparative effective-
ness for a specific outcome: the relative treatment effect for
all pairwise comparisons and a ranking of the treatments.

Other forms of MBMA can also be used for comparative
effectiveness in the absence of direct comparisons of all
the treatments of interest.

Putting a study result into context
After a study reads out, it is useful to plot the new data
alongside the relevant historical data to assess, for exam-
ple, how the placebo response compares to the older data,
to highlight other similarities and differences, and to investi-
gate possible explanations for these differences.

Simulating new studies based on internal patient level
data and external SOC data
It may be planned to include the SOC treatment in a future
study to go head-to-head with the experimental drug. In
order to understand the operating characteristics of this
future study, a model combining the previous internal
patient level data and the summary level comparator data
may be used to simulate different study designs. This simu-
lation work can help to quantify the probability of a new
drug being superior to the SOC to inform the design of the
study and to construct meaningful quantitative go/no go cri-
teria for the drug program based on prior assumptions with
which to compare the actual study results. The challenges
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of such modeling include the combining of aggregate data

and individual patient data, and possibly making an indirect

comparison between two compounds that have never been

compared head-to-head.24

LANDMARK META-ANALYSIS METHODOLOGIES

A landmark meta-analysis is defined here as the analysis

of a response at a single timepoint (e.g., pain response at

week 12) across multiple studies rather than modeling mul-

tiple timepoints (longitudinal meta-analysis). Primary and

secondary end points in clinical trials are usually of this

nature.

Sources of variation
To estimate mean drug effects, there are at least three

sources of variation to consider:

1. Sampling error, the error caused by observing a sample instead of
the whole population.

2. Study-level characteristics, where patient differences or study differ-
ences are qualitative or quantitative effect modifiers.

3. Between-study variation, the remaining, unexplained, variability in
treatment effects across studies. Note, when pooling within-trial con-
trasts, the main effect of trial has been eliminated and so this
‘‘between-study variability’’ reflects the treatment-by-study interaction.25

Statistical models
There are two general types of statistical model for meta-

analysis which are fixed effects and random effects, as

described below.26

Fixed effects
In fixed effect models (Figure 1), this tutorial uses the defi-

nition that each study provides an estimate for the same

underlying mean effect (h). There is no between-study vari-

ation in treatment effect (after possibly accounting for cova-

riates). The studies only differ in how well the study sample

estimates h. Each of the red dots in Figure 1 represents a

study result with the assumption that the underlying true

effect is identical and any observed deviation from that true

effect is due to sampling error, as described above.

It should be noted that the fixed effect method is valid

without assuming a common underlying effect size.27 How-

ever, for simplicity of understanding, this article uses the

definition that does assume homogeneity across trials.

Random effects
In random effects models (Figure 2), each study is associ-

ated with a different, but related, underlying parameter (hi)

distributed around a mean effect (h). In Figure 2, each of

the red dots represents observed study results (Yi) that are

assumed to belong to a common distribution. After account-

ing for covariates, there is still some unexplained between-

study variability in addition to sampling error. Alternatively,

there may not be any measured covariates that explain this

between-study variability in response that creates more

uncertainty going forward with new studies.

Assessment of heterogeneity
Because meta-analyses typically pool studies that are

diverse clinically and methodologically, it is unlikely that a

common effect exists. This is due to differences in studies,

such as patient inclusion criteria, background treatment,

dosing regimens, or study quality. If a common effect can-

not be assumed, then heterogeneity is believed to be

present.
There are a variety of methods to assess heterogeneity.

Higgins et al.28 provide an overview and assessment of

several methods, including the Q statistic, I2, H2, R, and the

value of s2. They concluded that I2 and H2 are useful and

so these are described below together with the Q statistic,

which is used to derive both methods.

Q statistic
The classical measure of heterogeneity is Cochran’s Q:

Q5
Xr

i51

Wi ĥ i 2ĥFE

� �2
; where weight Wi5

1
s2

i

;

si is the within study standard error of ĥ i , ĥ i is the observed

treatment difference for the ith study, and ĥFE is the fixed

effect estimate for the r studies. Q follows approximately a

v2 distribution with r21 degrees of freedom (df). A problem

with the Q statistic is that it has poor power when there

are small numbers of trials in the meta-analysis and is

Figure 1 Illustration of fixed effects assumption.
Figure 2 Illustration of random effects assumption.
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overpowered when there are many studies.28,29 This means

that Q statistic values cannot routinely be compared across

meta-analyses.

I2 statistic
I2 is a commonly used measure of the degree of inconsis-

tency across studies and is a percentage of total variance

that is due to heterogeneity rather than to chance. It is cal-

culated as:

I25100%3
Q2dfð Þ

Q

Like Q, I2 has major flaws. R€ucker et al.30 showed that,

as within study precision increases, for constant between

study variability (s2), I2 increases toward 100%. Given the

potentially different study sizes and precision within and

across meta-analyses, this statistic may be of little use as a

comparison between them.

H2 statistic
H2 is the relative excess in Q compared to the expected

value of Q (when there is no heterogeneity). Hence, H2 5 Q/

(r21). Unlike Q, H2 does not depend on the number of stud-

ies in the meta-analysis. A value of one would indicate no

heterogeneity. There are several methods for producing

intervals for H2 where the lower bound can be compared to

one to evaluate whether there is meaningful heterogeneity.31

Between-study variance (s2)
s2 represents the between-study variance based on a ran-

dom effects analysis that provides a measure of the extent

of heterogeneity but not a measure of impact. It is specific

to a particular treatment measure and cannot be compared

across meta-analyses.

Prediction interval
The presence of significant heterogeneity creates uncertainty

for future studies that might be conducted. A prediction inter-

val for the true effect (hi) in a theoretical new study will dem-

onstrate the consequence of heterogeneity as it incorporates

both the precision of the estimate and the between-study

variability.32 Unlike a confidence interval, prediction intervals

are about future expected data and in drug development that

is usually an important consideration, rather than just quanti-

fying the precision of treatment effects of different com-

pounds. For the two examples in the fifth section, prediction

intervals will be presented alongside the fixed effects and

random effects estimates. As Higgins et al.32 describe, an

approximate 100(12a)% prediction interval for a new study

can be written as:

l̂6tar22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fŝ21SÊ ðl̂Þ2g

q

Where there are r studies, l̂ is the random effects esti-

mate of the response of interest, SÊ ðl̂Þ is the correspond-

ing standard error, and ŝ2 is the estimated between-study

variance. Note that with the Bayesian approach there is

uncertainty in the between-study variance estimate, as well

as the effect estimate.

It is recommended that the prediction interval along with
an estimate of s and corresponding confidence interval are
presented and assessed. Although cautious in advocating
their use, code to produce Q, I2, and H2 with corresponding
confidence intervals is provided in the Supplementary
Materials.31

Meta-regression
Some of the between-study variability may be explained by
covariates that have been recorded across the study publi-
cations. These covariates can be formally fitted as part of
a model (meta-regression) to assess their influence. There
are challenges with having covariates that are at the mean
level though, in that there may be little difference across
studies in those mean covariate values if populations are
similar. Patient level data will typically be more informative
for understanding the effect of covariates on response. Not
all studies may report the covariate of interest, further
complicating the analysis. It is important not to interpret
summary level meta-regression effects as subject-level
effects, as typically covariate effects are characterized at
the group level. This is analogous to ecological analysis in
which all individuals (e.g., defined geographically) are
assigned an average valuation for a covariate (e.g., propor-
tion of men). Aggregation bias, or ecological fallacy, is the
difference between the association at the individual and
group level.33

Dose-response models
Dose-response is a key part of MBMA. In describing dose-
response relationships, it may be important to know, for
example, the maximal drug effect, whether the effect is
dose-dependent or whether there is a lower dose to give a
similar effect. There are any number of possible models
that could be used for dose-response in this descriptive
sense and the choice of model depends on the range of
doses studied, whether to include placebo effects and other
features seen in the data, such as curvature.

The most commonly used model for dose-response is
Emax, a nonlinear function of dose closely related to the
logistic curve.

Response5E01
Emax3Dosek

ED50k1Dosek

The three main parameters are E0 (placebo effect), Emax

(maximal change over placebo), and ED50 (dose to give
50% of the maximal effect). The sigmoidal Emax model, adds
a fourth, Hill, parameter, k, which describes the “steepness”
of the S-shape of the dose-response relationship.

Other models commonly used for dose-response relation-
ships include exponential, linear, log-linear, quadratic, and
logistic.34

PUBLICATION BIAS

A major concern in any meta-analysis is that not all studies
may have been published and that there may be a system-
atic reason for this, such as only “positive” results being
reported. There are a variety of tools, both qualitative and
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quantitative, available to assess this. A recommended first

step is to produce a funnel plot that typically plots a treat-

ment difference (or other measurement of treatment effect)

vs. a function of sample size, such as the standard error or

variance of the treatment difference. In the absence of pub-

lication bias, the plot should show a symmetric funnel. An

asymmetric funnel plot does not necessarily mean that

there is publication bias as there are several reasons why a

funnel plot may not seem symmetric, including random

chance and differences between the studies in terms of, for

example, study designs and populations. As will be seen in

the first example, when there are small numbers of studies

in the meta-analysis, it will be hard to see symmetry or

asymmetry clearly. There are also quantitative techniques

that attempt to formally assess the asymmetry, such as the

Begg and Mazumdar35 rank correlation method and Egger

et al.36 meta-regression. These methods will be applied to

the first example dataset in the next (fifth) section using the

R package “Metafor.” There are several other statistical

methods to assess publication bias, but we touch only on

the ones already described.37

SOFTWARE

There are many software packages that can carry out meta-

analysis (STATA and Review Manager [RevMan] being just

two examples).38,39 For the traditional meta-analysis, the

authors focus on R (using the “metaphor” package with ver-

sion 3.0.2 of R) and OpenBUGS (version 3.2.3 run from

R).40 For the dose response example, NONMEM (version

7.2) will be used and compared with OpenBUGS.19

Within the R package “metaphor” are various meta-

analysis related functions, including “forest,” which produces

forest plots and “RMA,” which can carry out fixed-effect and

random-effects meta-analysis and can also incorporate cova-

riates for meta-regression. These meta-analysis results can

be easily incorporated into the forest plot as can Bayesian

estimates from OpenBUGS, which is an advantage of doing

both the classical and Bayesian analyses in R.
NONMEM is commonly used for pharmacokinetic/

pharmacodynamic modeling as it is well suited to fitting non-

linear mixed-effects models and dealing with different types

of pharmacokinetic models. It has also been used for

MBMA, particularly for dose response and/or time-course

modeling.
Use of R, OpenBUGS, and NONMEM will be demon-

strated in the Supplementary Materials with comprehen-

sive annotations to explain the code.

EXAMPLES
Example 1: Western Ontario and McMaster Universities

pain in osteoarthritis
In order to understand the efficacy characteristics of naproxen

in osteoarthritis pain of the knee or hip, internal reports and

external literature were searched to find placebo-controlled

studies. Only double blind, placebo-controlled, randomized,

parallel group studies were considered, in which both naproxen

500 mg (given twice a day) and placebo were treatment arms.

The end point of interest was the Western Ontario and McMas-

ter Universities (WOMAC) pain score, which consists of five

pain-related questions each of which takes a discrete value

from 0 (no pain) to 4 (maximum pain).41 For each subject, the

scores from these five questions are added together to give a

total score between 0 (no pain) and 20 (maximum pain). This

end point tends to be the primary end point in osteoarthritis

pain trials and is typically treated as a continuous random vari-

able. The week two arithmetic means were chosen to be

analyzed in the meta-analysis. Supplementary Materials

Table S1 presents the difference in mean change from base-

line in WOMAC pain between naproxen and placebo, with its

corresponding standard error. For “flare” trials, subjects were

washed out of their pain medications and were required to

have a predefined increase in pain (flare) to be eligible for

randomization.

Research questions
There were two specific research questions for this exam-

ple. As described above, a target value was required for a

two-week proof of concept study in osteoarthritis pain for a

compound with a new mechanism. As this new compound

was not being directly compared to SOC in the proof of

concept study, a target value was required based on the

SOC vs. placebo.
The second question was whether a flare design should

be used and whether the treatment effect is different

between flare and non-flare trials. This deals with inclusion

criteria to select a study population, as described above in

the second section.

Forest plots
Prior to any formal analysis, it is recommended to plot the

data. A common approach is to present the data on forest

plots.42 This is a useful way to compare treatment effects

across studies, get an initial impression of any heterogene-

ity, and to identify any outliers. Using the Metafor package

in R, there is a function “forest” that produces these plots

easily. Code to produce a simple forest plot is presented in

the Supplementary Materials. As we will see in subse-

quent sections, analysis summaries can easily be added at

the bottom of this plot whether from a classical or Bayesian

approach.

Models for WOMAC pain
Here, three models are described; a fixed effects model, a

random effects model, and a meta-regression model fitting

“flare (yes/no)” as a binary covariate. For the classical

approach, these models were fitted in R using the RMA

function within the Metafor package. For the Bayesian

approach, R2OpenBUGS was used. Fully annotated code

used to fit these models is provided in the Supplementary

Materials.
In this example, standard errors were available for all

studies. When standard deviations/errors are missing, then

an analyst should look to impute a value where possible.

Wiebe et al.43 gave an overview of approaches available to

impute missing variance measures and Stevens44 pre-

sented an example of imputing missing variances using

WinBUGS.
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Model descriptions
Fixed effects model. For the simple fixed effects model,

suppose there are r independent studies, each comparing

the treatment group with the control group.
h denotes the true measure of treatment effect (treatment

vs. control) and ĥ i its estimate from the ith study.
Then the general fixed effects model is ĥ i5h1ei with

E eið Þ50 and Var eið Þ5n2
i .

Usually, we treat n2
i as known and equal to the estimated

variance of ĥ i . Thus, ĥ i � N h; s2
i

� �
where s2

i is the esti-

mated variance of ĥ i and assumed known and the maxi-

mum likelihood estimate for h is:

ĥFE5

Xr

i51
Wi ĥ iXr

i51
Wi

with Wi 5
1
s2

i

and Var ĥFE

� �
5
Xr

i51
Wi

� �21

Random effects model. For a random effects analysis, the

model becomes ĥ i5hi1ei where hi�N(d,s2), E eið Þ5
0 and Var eið Þ5n2

i , as above. Note that s2 is the between-study

variance of hi. The maximum likelihood estimate for h is shown

below. Note that the weights (Wi) now incorporate the between-

study variability (s2) and if this is very large compared to the

within-study variability, the studies will be weighted more

equally.

ĥRE5

Xr

i51
Wi ĥ iXr

i51
Wi

with Wi 5
1

s2
i 1s2

and Var ĥRE

� �
5
Xr

i51
Wi

� �21

Meta-regression model. The meta-regression random effects

model is ĥ i5hi1hFL � Fi1ei where Fi is 0 for non-flare and 1

for flare with hFL being the parameter to be estimated repre-

senting additional effect due to flare studies. hi has a similar

distribution to the random effects model above where hi

�N(d, s2). The flare effect could also be included in a fixed

effects meta-regression model.

Bayesian considerations for WOMAC pain models
Fixed effects model. As described above, the fixed effects

model is ĥ i5h1ei and the within study variances assumed

to be known, we only need to estimate h. In a Bayesian

setting, a prior distribution for h is required. In this case, all

our knowledge of the naproxen treatment difference from

placebo comes from the data and, hence, an uninformative

normally distributed prior centered around no drug effect

was used with a large variance (�N(0,10000)).

Random effects model. As above described, the random

effects model is ĥ i5hi1ei where hi � Nðd; s2Þ and the within

study variances are assumed to be known. In addition to d, the

between-study standard deviation (s) is also estimated. In a

Bayesian setting, prior distributions for d and s are required. As

before, a noninformative prior was used for d (�N[0,10000]).

Choosing prior distributions for the between-study standard

deviation has received much attention in recent years and

when dealing with a small number of studies can be problem-

atic.31,45–47 Gelman48 discussed this issue and proposed sev-

eral potential priors, including uniform and half normal

distributed priors. In these examples, we used a uniform distri-

bution but the code for a half-normal distribution is also pro-
vided in the Supplementary Materials. Although, in this
particular case, a noninformative prior was used for s, if there
had been a previous meta-analysis for a similar mechanism
drug (e.g., diclofenac, which, like naproxen, is a nonsteroidal
anti-inflammatory drug), then an informative prior may have
been appropriate.

Meta-regression. Here, flare design (yes/no) is being fitted
as a categorical covariate and the random effects model is
ĥ i5hi1hFL � Fi 1ei where Fi is 1 for flare designs and 0 oth-
erwise and hFL is the covariate parameter to be estimated.
A noninformative, normally distributed prior, centered
around 0 was chosen for hFL (�N(0,10000)). The other
parameters are as defined for the random effects model.

Alternative modeling approach. Instead of pooling a set of
treatment differences as above, another approach could be
to model the treatment arms in terms of having a placebo
response for each of the i studies (li) and then a parameter
representing the additional effect of naproxen (di, which is
N(d, s2) under a random effects framework) such that Yij 5

li 1di 1eij where Yij is the WOMAC pain change from base-
line and eij is the residual (�N(0,s2

ij /n)). This type of model-
ing approach is thoroughly described by the second
National Institute for Health and Care Excellence evidence
synthesis technical support document.49

In the above model, the trial-specific placebo responses
are not given any structural form and it is common for li to
be described as a “nuisance” parameter, something that is
required in the model but is of little interest. However, it is
not unusual to model the placebo response and investigate
covariates that may influence it. Rightly or wrongly, there is
a perception that high placebo responses “eat up” the treat-
ment effects and so there is a desire to understand which
population and/or study characteristics lead to high placebo
responses and design studies to minimize this response.
This placebo response is often described as a “baseline”
treatment effect, which may be confusing to those who
think of “baseline” as a pre-first dose measurement in a
clinical trial (e.g., baseline heart rate).

WOMAC PAIN RESULTS

Figure 3 presents a forest plot with additional estimates
appended for the fixed effects estimate, random effects
estimate, and the prediction interval. Bayesian and classical
estimates are presented for comparison. The prediction
intervals relate to the “true” underlying treatment effect
rather than for the observed data. Given that the priors
used in the Bayesian analysis are noninformative, it is not
surprising that the two approaches give similar results. The
random effects interval and prediction interval are slightly
wider for the Bayesian analyses, which reflects the addi-
tional uncertainty in the between-study variance (s2). For
both approaches, the prediction interval is noticeably wider
than the interval for the random effects estimate, as such,
there is increased uncertainty how naproxen might perform
vs. placebo in a future trial and it may be desirable to
include naproxen as a positive control in a future proof of
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concept study. In terms of setting target values, it could

simply be set to the estimate from the analysis (21.0

improvement over placebo) or if the target is to be better

than naproxen, then the value might be set to, for example

50% greater than the naproxen effect vs. placebo (21.5).

There are many other ways that teams might define target

values, but the meta-analysis estimates will normally play a

key role.
From the meta-regression model, flare did not seem to

be a significant covariate. For the frequentist approach, the

parameter estimate was 20.14 (95% confidence interval

20.47, 0.18) and for the Bayesian approach was 20.13

(95% credible interval 20.47, 0.24).
Figure 4 presents a funnel plot to examine publication

bias, which shows no obvious asymmetry. Application of

the Begg and Mazumdar35 rank correlation method results

in a P value of 0.95 and Egger’s test resulted in a P value

of 0.99, suggesting that there is no evidence of funnel plot

asymmetry. It is worth noting that in all the included trials,

naproxen was a positive control rather than the experimen-

tal drug so one could postulate that the presence of publi-

cation bias might result in underestimation of the naproxen

effect. To complicate things further, this could also apply to

the placebo group response, such that the treatment differ-

ence between naproxen is less biased or not biased. Given

that most of the trials (10 of 13) were internal unpublished

trials, it would be hard to truly assess publication bias here

and this example is simply to illustrate some common

methods and how to do them in R.

EXAMPLE 2: PARESTHESIA RATES WITH

TOPIRAMATE IN MIGRAINE PROPHYLAXIS TRIALS

Topiramate is an anti-convulsant drug, which is used across

several diseases including epilepsy, obesity, and migraine

prophylaxis. A total of six placebo-controlled studies with

topiramate for episodic migraine prophylaxis were included

in a dose response meta-analysis. The paresthesia rates,

across trial and dose, are presented in Supplementary

Materials Table 2.

Research questions
As described above, this is an example of a learning exer-

cise to better understand the safety and efficacy character-

istics of topiramate. Driven by a need to create a product

profile for a new compound, this was part of a larger piece

Figure 3 Difference in mean WOMAC pain for naproxen-placebo at week two with model estimates.

Figure 4 Funnel plot for WOMAC pain treatment difference.
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of work looking at the therapeutic index for topiramate and

what would be a similar or better therapeutic index for a

new compound.50 In brief, a therapeutic index is the win-

dow between the dose that gives sufficient effect and the

dose that causes toxicity. Mandema et al.51 provide an illus-

tration of a dose response meta-analysis to compare thera-

peutic indexes.

Dose response plot
Figure 5 presents the observed paresthesia rate by dose

across the six episodic migraine prophylaxis studies in

which placebo is included as dose 5 0. There is evidence

of increasing paresthesia incidence as the topiramate dose

increases with bigger relative increases between placebo

and 100 mg than between 100 mg and 200 mg. Based on

this plot, an Emax model was chosen to characterize the

dose-response relationship. The plot also reveals variability

across the trials with, for example in the placebo groups, a

range of paresthesia rates from �4–27%.

Models for binary data
Model descriptions. Common examples of binary response

date are efficacy responders (e.g., did a subject achieve at

least a 60% reduction from baseline in pain) and adverse

events. These data are normally summarized as a propor-

tion (or risk) and it is these proportions that we aim to ana-

lyze at the summary data level as a dose-response model.

There are a variety of methods for analyzing proportions,

including risk differences, odds ratios, and relative risk.52

In this article, we will focus on analyzing the data with a

binomial model as follows. Let the observed number of sub-

jects with paresthesia in the ith study and jth dose group be

defined as Yij with Nij being the total number of subjects at

risk. Then Yij�Binomial(Nij, pij). It is pij that is modelled in

logit space such that:

Logitðpij Þ5E0i 1
Emax � doseij

ED501doseij

Where E0i is the log odds of paresthesia on placebo for

study i and assumed to be normally distributed with mean

E0 and variance s2. This could also be written as E0i5

E01gi where gi�N(0, s2). This seems to be a reasonable

approach given the observed trial-to-trial variability

observed in Figure 5, although there may be covariates

that explain some of this variability. Note here that the

model includes a between-study variance term on the over-

all function, rather than the on-treatment effect (topiramate

vs. placebo; the Emax part of the model) in contrast to the

first WOMAC pain example in which treatment differences

(naproxen – placebo) were modelled.
As a comparison to the dose response MBMA, a tradi-

tional meta-analysis (using Metafor only) was carried out

across the six trials for the topiramate 200 mg dose vs.

placebo.
As stated above, NONMEM was used for the frequentist

dose-response model and OpenBUGS was used for the

Bayesian approach.

Bayesian considerations for paresthesia data
For the dose-response model, noninformative priors were

used for E0, Emax, ED50, and s. E0 and Emax were given

normally distributed priors (�N[0,1.0E-6] for E0 and

N[0,1.0E-5] for Emax), ED50 a uniform prior (U[0.0001,

1,000]) and for s, a uniform distribution (U[0,10]) was used.

Note that here, the prior for ED50, lies between a value just

above 0 up to a value five times that of the maximum

observed dose (200 mg). For parameters such as ED50

and variances (or standard deviations), it is recommended

to always consider carefully the distributional form and to

carry out sensitivity analyses.

Paresthesia dose-response results
An Emax dose-response model gave a good fit to the data

across the six trials. An observed vs. predicted plot in the

Supplementary Materials, generally shows good agree-

ment. The placebo response for the two small trials (Sup-

plementary Materials) was higher than the remaining

larger trials (the two apparent outliers on the left hand side

of the plot) but given their small sample sizes, they are less

influential than they would be with large numbers of

subjects.
Table 1 presents the parameter estimates from the fre-

quentist and Bayesian approaches that demonstrate similar

estimates between the two with the exception of s, which is

estimated as 0.17 in the frequentist results and 0.38 using

the Bayesian approach.

Figure 5 Dose vs. paraesthesia incidence across six episodic
migraine prophylaxis trials.

Table 1 Parameter estimates from the paresthesia dose response models

Parameter

Frequentist approach

(95% confidence interval)

Bayesian approach

(95% credible interval)

E0 22.56 (23.03, 22.09) 22.51 (23.06, 21.90)

Emax 2.91 (2.56, 3.26) 2.95 (2.50, 3.44)

ED50, mg 17.5 (11.64, 23.36) 18.18 (6.08, 36.46)

s 0.17 (0.04, 0.30) 0.38 (0.05, 1.28)
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Figure 6 presents a prediction plot, for doses 0 to
200 mg of topiramate, based on the Bayesian modeling
approach together with the observed data (size of circle
proportional to sample size such that bigger circles are
larger studies). The black line represents the posterior
mean, and the green area represents the prediction interval

without accounting for between-study variability. The blue

region represents a prediction interval that does account for

the heterogeneity. The additional uncertainty by incorporat-

ing between-study variability is clear.
Figure 7 presents a forest plot where topiramate 200 mg

is compared to placebo across six trials and the resulting

traditional landmark random effect estimate is compared to

the MBMA estimate and the two approaches yield compa-

rable results; the Bayesian MBMA estimate is slightly

higher and the corresponding 95% interval slightly smaller.

The frequentist approach with NONMEM results in a more

noticeably precise estimate.

CLOSING REMARKS

The two examples are designed to be illustrative in terms

of methods and implementation of those methods in R,

OpenBUGS, and NONMEM. They are not designed to be

exhaustive and, as alluded to above for both examples, fur-

ther work would be required to understand the observed

heterogeneity. Failure to do so will result in much uncer-

tainty when running future trials.
It is strongly recommended that the starting point for these

types of analyses is a random effects model as it is rare that

all the underlying design, end points, and populations are

effectively the same across all trials. Some between-study

variability might be explained with covariates, but the limita-

tions of these are discussed above. Presenting random-

effects estimates and corresponding confidence intervals is

Figure 6 Dose response prediction plot based on Bayesian
MBMA.

Figure 7 Forest plot of log odds ratios for paresthesia (topiramate 200 mg vs. placebo).
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not sufficient and prediction intervals should be presented to

demonstrate the consequence of the estimated between-
study variability when designing future trials.

If there are only a small number of studies (e.g., <5)

then the between-study variance (s2) is likely to be poorly
estimated. In this case, it may be preferable to simply pres-
ent the results from the individual trials in a forest plot but

without a pooled estimate. An alternative could be, in a
Bayesian setting, to use a prior for s based on an existing

meta-analysis of a similar end point or same end point for a
similar compound.53

The RMA function is well suited to simple meta-analyses

of a single timepoint, as illustrated in this tutorial, but is of
limited use once more flexible model specifications, such

as in the more advanced MBMA example.
Nonlinear models can be useful to describe dose-

response relationships, if this forms part of an important
research question or to make inferences for a dose not pres-

ent in many trials. NONMEM and OpenBUGS are both well
suited to fitting such models, as are other available pack-

ages.54 In order to choose a suitable model, an exploratory
plot should be produced to examine the shape of the dose

response. The amount of data available on dose response
will vary from compound to compound and depends on

whether dose ranging studies (like those performed in phase
2b) are published.

Landmark analyses, such as the first example, are quick

and straightforward to carry out but do not always use the
totality of the data, which may have useful information about
time course, onset of action, and maintenance of effect. Ulti-

mately, MBMA should be used to answer the research ques-
tion(s) whether that be by simple or more involved methods.

FUTURE TUTORIALS

This article is planned to be the first in a series and below
is a list of proposed future tutorials:

• Longitudinal meta-analysis.
• Combining patient and summary level data.
• Application of MBMA for clinical trial simulation.
• Multivariate meta-analysis.
• NMA.
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