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A B S T R A C T

The integration of magnetic nanoparticles (MNPs) into biomaterials offers exciting opportunities for tissue en
gineering as they enable better control over cell guidance, release of bioactive factors and tissue maturation. 
Despite their potential, challenges such as the heterogeneity of MNPs, their cytotoxicity and the need for precise 
control of MNP`s properties hinder their widespread application. Overcoming these challenges will require new 
interdisciplinary efforts and technological advances, including the development of mathematical tools and 
additional elaborations to ensure the biocompatibility of MNPs.

1. Introduction

The incorporation of magnetic micro- and nano- particles (MNPs) 
into various materials has proven to be a promising approach for the 
creation of multifunctional and remotely-controlled biosystems [1-3]. 
Such a biosystem based on a magnetic scaffold (MS) can potentially be 
used for the in vitro formation of an implantable tissue precursor (TP) 
[3-5]. Furthermore, MS can attract magnetized host cells (MCs) and 
MNPs and retain them in the porous space (Fig. 1) under the influence of 
an external magnetic field (MF) [6]. Recent studies have confirmed that 
the structural and physical properties of such scaffolds can be controlled 
spatially and temporally by varying the gradient of MF strength [4,7]. 
This makes them useful for a variety of biomedical applications, 
including the creation of drug depots with a regulated release of active 
factors (AFs) upon implantation into an organism and development of 
tissue structures in vitro and even in vivo [6-8].

Functionalized MNPs may contain molecules [7] that are essential 
for the development of functionally adequate tissues. For example, MSs 
with immobilised “MNPs drug depots” that release AFs locally in vivo 
can be used to treat various diseases, especially tumours [6]. Magnetic 
nano-carriers containing a 68Ga–DTPA complex have been proposed for 
the targeted delivery of the antitumor drug doxorubicin [9]. Another 
study proposes the use of functionalized MNPs for the treatment of in
flammatory bowel disease [10]. These MNPs show potential in the fields 
of disease diagnostics, drug/gene delivery and multifunctional thera
pies. Recent studies [8] have demonstrated the development of TPs 
based on the three-dimensional (3D) assembly of magnetized stem cells 
into regular structures (such as chains, cylinders and filaments) under 
the influence of MF. These structures also have potential for the recon
struction of tubular and vascular tissues [11]. Moreover complexes with 

spatially patterned cell populations can be used to develop combined 
tissue constructs, such as osteochondral or meniscal TPs, with potential 
for efficient vascularisation [6].

On the other hand, the impregnation of various biomaterials with 
regular magnetic structures based on MNPs opens up the possibility of 
further attraction and regular patterning of MCs using MF [12,13]. Such 
composite biomaterials with controllable magnetic microarchitecture 
play an increasingly important role in tissue engineering and regener
ative medicine. For example, a disk-shaped microstructure regulated by 
size of 7 to 23 µm can be developed by assembly of iron oxide nano
particles inside hydrogel under the influence of rotating magnetic field 
[14]. These MNPs were synthesized in the same way as the techniques 
used for “Ferumoxytol” preparation that were chosen because only this 
inorganic nano-drug was approved by FDA for clinical applications [15]. 
The approaches used by other authors make it possible to assemble 
various spatial elements (chains, rings, etc.) that are composed by MNPs 
[16,17]. The developed structures can serve as “points of attraction” for 
MCs capturing. Moreover, multilayered structures with a mimetic ar
chitectures resembling native tissues [18] can be produced in special 
hydrogels (loaded with MNP) by applying MF to achieve regular align
ment of collagen fibers. Another method proposes to assemble mosaic 
iron oxide nanoparticles into filaments under the influence of MF [19]. 
Within the gelatin-methacryloyl matrix, such filaments can stimulate 
the development of contractile tissue. Finally, magnetic hydrogels pre
pared using MNPs and different types of hydrogel matrices show 
tremendous potential for tissue engineering and other biomedical ap
plications by taking advantage of their biocompatibility, controlled ar
chitectures and smart response to MF. In addition, MNPs incorporated 
into biomaterials can be used to induce thermogenic and/or mechano
transductive effects through the application of alternating MF [14,20].
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By combining various MNPs with different hydrogels and extracel
lular matrix, improved mechanical performance and structural fidelity 
were achieved [2,6]. The synergistic benefits of this combination have 
highlighted the prospects of organizing geometric elements that can be 
achieved with 3D bioprinting technology. Progress in this area is now 
moving towards four-dimensional (4D) magnetic bioprinting. Such 
approach supports the development of dynamic, patterned biological 
structures through the use of magnetically responsive biomaterials and 
advanced 3D bioprinting techniques [7]. These structures have the 
unique ability to change their shape and function in response to different 
stimuli. Despite these advances, there are still some challenges such as 
the inhomogeneous distribution of nanomaterials in MSs and technical 
problems in the fabrication of complex 3D structures.

Although the applications of magnetized biomaterials described 
above have promising potential, several challenges hinder their wide
spread clinical application. Even when MNPs are embedded in a slowly 
degradable scaffold, there is still a risk that they may degrade or detach 
from this material in the body under the influence of various biological 
factors [21,22]. Therefore, a better understanding of the properties of 
MNPs is necessary to design them to be inherently safe for clinical 
application. For broad biomedical application, any new formulation of 
MNP-based biomaterial systems must be systematically tested for a 
number of essential parameters that characterize biocompatibility, 
surface chemistry, stability of the impregnated MNPs, etc. [23].

2. Advantages

The enhanced saturation of magnetic biomaterials with bioactive 
factors in combination with anisotropic patterning to mimic various 
functional tissue structures has paved the way for a novel direction in 
tissue engineering, termed “magnetic force-based tissue engineering” 

[24]. This involves the application of cells magnetized by MNPs to 
develop intricate tissue constructs. Further research has shown that the 
application of this principle in cell culture and co-culture techniques 
enables an ordered cell distribution (an approach known as “magnetic 
cell patterning”) [25]. Here, MF provides efficient positioning of the 
different cell populations in the MS. Furthermore, the concept of 
“stimuli (magneto)-responsive biomaterial” (MLB) introduces a new 
level of combined biosystems [6]. These systems serve as a structural 
framework that supports the attachment, proliferation and differentia
tion of MCs with the development of appropriate TPs [26]. This also 
includes the ability to deliver stimuli to cells or release growth factors 
and bioactive molecules “on demand” [7]. The development of func
tionally adequate tissue after the implantation of TPs can be promoted 
by stimulation with an alternating MF [27,28]. In addition, the release 
of AFs from functionalized MNPs under the influence of MF has great 
potential for clinical applications, especially to support the healthy state 
of the surrounding tissues after tumour surgery [6]. In this context, it is 
worth mentioning the extensively researched and validated approach 
proposed by researchers at the University of Dresden, which introduces 
feedback-controlled drug delivery systems for autoregulated triggering 
of the release of AFs tailored to the specific requirements of the micro
environment [29]. Magnetically triggered release could be a promising 
complementary method that offers an additional route to regulate drug 
delivery. For example, this approach shows potential in the treatment of 
rhythmic clinical disorders such as diabetes and heart disease [10]. In 
such systems, drugs are released in specific concentrations on demand in 
response to fluctuating metabolic needs.

Another physical phenomenon that can be achieved by the applica
tion of MNPs is local hyperthermia induced by alternating MF. For 
example, our research shows that specifically functionalized MNPs can 
release AFs when heated [30]. This experiment demonstrates the 

Fig. 1. Scheme of MNPs application for development of TP.
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effective release of vascular endothelial growth factor from a 
thermo-responsive magnetic material (PNIPAM) upon transition to near 
physiological temperatures (39◦C). Such a biocompatible system can be 
used in particular for the controlled release of AFs that can stimulate 
cells inside MSs. Another strategy involves thermally sensitive liposomes 
based on MNPs [31]. When exposed to an alternative MF, the magnetic 
nanoparticles initiate the release of the liposomal content during the 
heating. The authors describe CD90-targeted magneto-liposomes that 
encapsulate the antitumor complex 17-AAG.

The use of MNPs may be an alternative to certain mechano
transduction methods in which mechanical forces transmitted directly 
from an actuator to target cells [6]. MNPs enable the generation of 
mechanical oscillations under the influence of remotely applied alter
nating MF [32]. These oscillations can exert forces on cell membranes, 
thereby activating mechanotransductive pathways and biochemical 
cues for cell/tissue development [33]. Such an approach is increasingly 
applied in tissue engineering and regenerative medicine [34]. Me
chanical stimuli play a crucial role in promoting extracellular matrix 
production. A scaffold impregnated with MNPs demonstrates an 
enhanced effect on the development of some tissues (especially con
tractile) [33,35]. For example, the differentiation of mesenchymal stem 
cells into bone, cartilage, muscle, vascular or connective tissues is 
particularly influenced by mechanical stimuli. The direct application of 
mechanical stimuli can significantly improve the in vitro maturation of 
tissue-engineered constructs designed for the regeneration of various 
mechanosensitive tissues such as tendon, skeletal muscle, cartilage and 
bone [36].

As early as 2007, a group of researchers [1] pioneered the develop
ment of tubular structures in vitro using magnetized liposomes, cells and 
MF. Several recent studies have focused on processes related to the 
assembly/patterning of MCs in MS using mesenchymal stem cells, 
vascular cells and fibroblasts. [5,37]. Furthermore, some authors 
investigated the creation of tubular structures by 3D-assembling of MCs 
into complex, multilayered biomaterial that demonstrated the potential 
to generate urinary or vascular TPs [38]. In certain cases, the patterning 
of single cells alone is not sufficient to develop physiologically relevant 
tissue constructs. Therefore, the use of cell spheroids is a promising 
approach to improve cell-scaffold interactions and to develop 
fully-fledged tissue [39]. As an alternative to dispersed cells, spheroids 
are 3D cell aggregates that preserve crucial aspects of the cellular 
microenvironment. These include cell-cell interactions, interactions 
with an endogenous extracellular matrix secreted by the cells, and sig
nalling gradients leading to a heterogeneous distribution of nutrients 
more closely resemble native tissue. MNPs can be successfully incor
porated into cellular spheroids to facilitate magnetic manipulation of 
desired shapes, patterns and 3D tissue constructs by MF [40].

Among the various MNPs, those developed using superparamagnetic 
iron oxide cores (SPIONs) have revealed particular promise for 
biocompatibility and efficient manipulation by MFs. Endothelial cell 
spheroids containing SPIONs showed high viability and phenotypic 
stability during in vitro culture [41-43]. Researchers also utilized 
microfluidic synthesis to produce spherical Janus hydrogel particles that 
exhibit superparamagnetic properties and have the ability to assemble 
into stable chain-like microstructures under the influence of MF. [44]. 
Despite the problems with regulatory obstacles related to the approval of 
MNPs for clinical use, experiments with FDA-approved SPIONs (fer
umoxytol) have confirmed the prospects for the development of some 
TPs that may be closer to clinical application [45]. These experiments 
show that ferumoxytol-labeled magnetic spheroids can be imaged in 
vitro and monitored in vivo using magnetic resonance imaging (MRI) 
[46].

Further experiments in which different cell types were magnetically 
patterned in an additively manufactured MS show the potential for the 
development of vascularized osteogenic TPs [25,47]. Thus, MS in 
combination with spatially patterned cell populations can be used for 
the development of 3D tissue structures such as osteochondral or 

meniscal TPs, which are preconditioned for efficient vascularization. 
Finally, the development of tissue constructs using MLBs holds immense 
potential for optimizing the timing and delivery of magnetized cells and 
active factors as well as for spatio-temporal cell patterning and dynamic 
stimulation of tissue development at different stages of TP maturation.

3. Challenges

Despite the considerable potential of MLBs to facilitate the devel
opment of tissue constructs, there are numerous challenges associated 
with the physical and chemical properties of MNPs and magnetically 

Table 1 
The main challenges related to the physical and chemical properties of MNPs 
used for the development of MLBs and possible solutions.

# Issue. Approaches to solving the problem.

1. Standardization of MNPs Given the current variability of MNPs, 
standardization is essential to ensure 
reproducibility and comparability of 
results in different MLBs. 
Standardization of MNPs properties, 
including surface functionalization 
and encapsulation, to ensure 
consistent and predictable effects on 
AFs release or tissue development.

2. Optimization of surface 
functionalization techniques for 
MNPs

The improvement and 
standardization of techniques for 
surface functionalization of MNPs is 
necessary to control their interactions 
with cells and tissues. The 
development of robust methods for 
consistent surface modification will 
help to minimize unintended effects 
on cell behavior and tissue 
development.

3. Biocompatibility of MLBs Establishing standardized protocols 
to assess the effects of MNPs on cell 
behavior, including cytotoxicity, 
inflammation, and long-term effects, 
is crucial for ensuring the safety of 
magneto-responsive biomaterials.

4. Optimizing spatio-temporal control of 
dynamic metabolic conditions in 
developing tissues

Development of strategies for precise 
spatio-temporal control of the 
availability of oxygen, nutrients and 
other essential molecules during the 
development cycle of tissue 
precursors, taking into account the 
dynamic nature of tissue 
development.

5. Mechanical properties Ensuring adequate mechanical 
properties of tissue-specific 
extracellular matrices and 
minimizing negative effects on cell 
behavior and tissue development in 
MLBs.

6. Attenuation of cytotoxicity and 
inflammation

Addressing the potential cytotoxicity 
and inflammation caused by MNPs, 
with a focus on predicting and 
minimizing these effects for 
implanted MLBs.

7. Long-term experiments in controlled 
environments

Development of materials science and 
engineering to support long-term 
experiments conducted in tightly 
controlled environments (e.g. using a 
suitable flow-through bioreactor in 
vitro) to meet the need for durable 
and reliable experimental conditions 
for magneto-responsive biosystems.

8. Development of predictive 
mathematical models

Development of mathematical tools 
for the prediction and optimization of 
parameters related to the saturation 
and structuring of MLBs with 
magnetized cells using magnetic 
fields and considering trophic 
conditions.
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responsive biomaterial systems containing these nanoparticles. Table 1
lists just a few of the most important of these.

These challenges contribute to the complexity of using MLBs in tissue 
engineering and emphasize the need for interdisciplinary efforts and 
technological advances to overcome obstacles and fully exploit the po
tential of this innovative approach. The diversity of MNPs, each with 
different surface functionalization or encapsulation in polymers, can 
have a direct impact on seeded cells and tissue development [6,43]. 
Even minor alterations in hydrodynamic size, surface charge, and sur
face chemistry can significantly affect MNP agglomeration, protein 
corona formation, accumulation in cells and extracellular space, as well 
as cytotoxicity and inflammation when applied in vivo.

On the other hand, it remains a challenge to provide MLBs with 
specific physiological properties, such as suitable tissue-tissue interfaces 
and appropriate mechanical properties of tissue-specific extracellular 
matrices. Furthermore, spatio-temporal control over the availability of 
oxygen, nutrients and AFs throughout the whole development cycle of 
TPs in vitro is a major challenge. To overcome these limitations, ad
vances in materials science and engineering are crucial for performing 
the required long-term experiments in precisely controlled 
environments.

Another important prerequisite for the development of tissue engi
neering based on MLBs is the creation of mathematical tools to predict 
the parameters of MLB saturation/patterning with MCs in routine 
practice.

4. Conclusion and future perspectives

MNPs and magnetized cells incorporated into various biomaterials 
enable 3D tissue development that can be remotely controlled by 
external MF. MLBs produced using such an approach have the potential 
to be cost-effective tools for controlling the delivery and release of AFs 
both in vitro and even in vivo. Furthermore, MLB/MS could additionally 
be efficiently loaded with external magnetized objects (magnetized cells 
or/and functionalized MNPs), benefiting the delivery of AFs and TP 
development. Such MLBs can provide additional functionalities to TPs 
by either directly influencing the interaction of the scaffold with cells 
(affecting adhesion, proliferation and differentiation) or by serving as 
smart systems for AFs` delivery and/or tissue regeneration.

Some important points regarding complementary studies that have 
the potential to improve the production and applicability of MLBs 
should be noted. While the direction described above focuses on MNP- 
based constructs, other magnetically activated biomaterials offer addi
tional possibilities. For example, an active soft porous scaffold con
taining a macroporous ferrogel can undergo significant deformation 
under the influence of a pulsed MF, changing its volume by more than 
70% [48]. This property enhances the scaffold’s ability to magnetically 
trigger the release of drugs or stimulate the development of contractile 
cells [49]. Researchers have also demonstrated a technique to fabricate 
and assemble 3D magnetic microblocks that mimic repetitive cellular 
functional units typical of tissues in vivo [50]. Several papers have 
explored the use of different types of magnetic hydrogels for remote 
activation and assembly of cells using microfluidic devices [51]. These 
studies demonstrate methods for the magnetic assembly of millions of 
cells in a 3D construct [25,37].

The transition from magnetic 3D to 4D bioprinting represents a 
significant advance in the development of biomaterials with new 
properties. This approach allows 3D constructs to be manipulated 
remotely by physical forces, allowing them to change their shape or 
behavior in response to different stimuli. Impressive results have been 
achieved by using multilayer printing to develop magnetic actuators 
with different patterns [41]. Some studies are moving towards 4D ma
terials by combining biopolymers with anisotropic particles [42].

In this context, MNPs with multimodal magneto-electric properties 
have a number of advantages. Such MNPs enable wireless sensing and 
control of electric fields anywhere in vitro and in the human body via 

magnetic fields at the nanoscale level [52]. This approach opens up 
possibilities for the stimulation of neurons and the development of new 
nanomedical methods for the non-invasive diagnostics and treatment of 
brain diseases.

Minimizing the potential toxic effects of MNPs is another important 
prerequisite for the successful development of TPs. Recently, promising 
studies on the cytotoxicity of MNPs have been performed [55]. The 
authors showed the gradual decrease of magnetization, indicating the 
degradation of most nanoparticles in the population of mesenchymal 
stem cells loaded with MNPs. This process was almost complete one 
month after exposure to the nanoparticles, with no effect on cell dif
ferentiation. It should be noted that this was observed at low doses of 
internalized nanoparticles (on average 1 pg of iron per cell).

Currently, there are few mathematical and numerical models in the 
literature that describe the physical properties of MLBs and the pro
cesses involved in the positioning of magnetized AFs and cells in the 
context of TP development. Our attempts to address this issue include 
multiparametric analyzes that consider both the spatiotemporal char
acteristics of MLB loaded with magnetised cells and the evaluation of 
parameters for sufficient oxygen/nutrient transport to support the 
maintenance of favorable conditions for tissue development [53,54].

Our attempts to predict and evaluate the cytotoxic potential of 
various MLBs and MNPs involve the development of specific mathe
matical approaches based on time-dependent multi-readout simulations. 
They have been used for the selection of functionalized MNPs (in this 
case nanoliposomes) with minimal cytotoxic potential and minimal 
ability to trigger immune cell activation [56,57]. In particular, these 
models use a previously proposed approach [58] to predict different 
parameters characterizing the cytotoxic effects, taking into account 
spatial and temporal features of the toxicodynamic processes. In 
particular, this model takes into account the accumulation of nano
particles in cells, the release of toxic metabolites and the maintenance of 
proliferation potential.

Although numerous studies are being conducted to explore the po
tential of MNPs and MLBs for both in vitro and in vivo applications, it is 
important to point out that in vivo experiments are significantly less 
common. The main challenge in conducting in vivo experiments is the 
fact that the biocompatibility of MLBs and MNPs is crucial for clinical 
applications. Although most of the recently produced MNPs do not 
exhibit significant cytotoxicity in vitro, they may cause adverse effects 
such as inflammation or toxicity to surrounding tissues in vivo [59]. 
Furthermore, the precise delivery of MNPs to specific tissues or cells in a 
living organism remains a major challenge [60]. The lack of targeted 
delivery may lead to off-target effects and reduced therapeutic efficacy. 
In addition, the regulatory landscape for the use of MNPs and MLBs in 
the clinical setting can be complex and difficult to navigate. Regulatory 
authorities require extensive safety and efficacy data before approving 
the use of MNPs and MNP-containing biomaterials in humans [61]. The 
basic approach to mitigate these issues is largely the same as in the case 
of the in vitro study and described above. Furthermore, the use of in vivo 
imaging techniques such as MRI can facilitate the tracking of MNPs in 
the body in real time (and even partially assess their biodegradation 
from the implanted MLB) [62]. This capability allows researchers to 
monitor the distribution and behavior of MNPs and provides valuable 
insights for optimizing their design and application in therapeutic con
texts. In addition, immobilization of MNPs in biomaterials during the 
development of MLBs may help to alleviate some of these concerns by 
reducing the risk of uncontrolled release or migration of MNPs in the 
body. Moreover, recent approaches to in vitro evaluation of MNP 
transport across hysto-hematic barriers with and without facilitation of 
this transport by MF give hope for improving the delivery properties of 
these nanoparticles [63,64]. In particular, this methodology involves in 
vitro experiments with mathematical analysis using Artificial Intelli
gence in order to properly evaluate large data-sets obtained by fluo
rescence microscopy, toxicological tests and MNPs detectors [64].

In the future, novel computational approaches may facilitate the 
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development of new MLBs and corresponding technologies for magnetic 
bioprinting. These technologies are expected to overcome the challenges 
associated with the interactions of different cell types and meet the 
growing demand for high-throughput and high-precision systems. For 
example, machine learning and artificial intelligence algorithms provide 
powerful tools for monitoring and analyzing biosystems, taking into 
account the interactions between cells and biomaterials at the molecular 
level [65]. Such mathematical tools could be used for real-time analysis 
of data from bioreactors with MLBs and enable AI-based control systems 
for fine-tuning nutrient/oxygen delivery and remote activation of AF` 
release.

In addition, advances in complementary technologies could signifi
cantly increase the efficiency of MLB development and application. In 
particular, organ-on-chip systems, microfluidic biofabrication and the 
use of patient-derived induced pluripotent stem cells offer the potential 
to expand the scope of application of TPs based on magnetically 
responsive biomaterial systems [66].
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