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Protein phosphorylation, mediated by a family of enzymes called cyclin-dependent kinases (Cdks), plays a central role in the
cell-division cycle of eukaryotes. Phosphorylation by Cdks directs the cell cycle by modifying the function of regulators of key
processes such as DNA replication and mitotic progression. Here, we present a novel computational procedure to predict
substrates of the cyclin-dependent kinase Cdc28 (Cdk1) in the Saccharomyces cerevisiae. Currently, most computational
phosphorylation site prediction procedures focus solely on local sequence characteristics. In the present procedure, we model
Cdk substrates based on both local and global characteristics of the substrates. Thus, we define the local sequence motifs that
represent the Cdc28 phosphorylation sites and subsequently model clustering of these motifs within the protein sequences.
This restraint reflects the observation that many known Cdk substrates contain multiple clustered phosphorylation sites. The
present strategy defines a subset of the proteome that is highly enriched for Cdk substrates, as validated by comparing it to
a set of bona fide, published, experimentally characterized Cdk substrates which was to our knowledge, comprehensive at the
time of writing. To corroborate our model, we compared its predictions with three experimentally independent Cdk proteomic
datasets and found significant overlap. Finally, we directly detected in vivo phosphorylation at Cdk motifs for selected putative
substrates using mass spectrometry.
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INTRODUCTION
The reversible modification of proteins by covalent addition and

removal of phosphate is a major means by which cellular function

is regulated [1,2]. The addition of phosphate, which is a sterically

bulky and negatively charged moiety, can alter a protein’s

biochemical properties and affect its structure and activity. For

example, phosphorylation can create docking sites to mediate

protein interactions [2], modify signal sequences on proteins to

regulate their subcellular localization [3], or activate enzymes by

bringing their active sites into proper alignment [4]. Networks of

phosphorylation-induced signaling can result in complex effects

such as signal amplification, feedback inhibition or induction of

cyclical oscillation between different cellular states [5–8]. There-

fore, a computational tool that accurately predicts phosphorylation

events could contribute to a more complete understanding of cell

function [9].

Phosphorylation prediction algorithms must select, from all

amino acid sequence space, a subset of amino acid sequences that

are able to interact with one or more kinases as phosphate

acceptors. The somewhat limited success of current phosphoryla-

tion prediction algorithms likely arises from the very large number

and variety of both kinases and potential phosphate acceptors (Ser,

Thr and Tyr residues) [2,10]. A major difficulty in protein

phosphorylation prediction stems from the fact that each kinase

has its own particular specificity determinants [11,12]. In some

cases a particular kinase may require its substrate to have a highly

stringent recognition site, whereas other kinases may be relatively

promiscuous. Other kinases require restraints that may be distal to

the recognition site, or consensus motif. Furthermore, it is possible

that in certain cases, different kinases may have partially

overlapping specificity, so that a single acceptor residue can be

phosphorylated by more than one kinase. The challenge in

developing a phosphorylation prediction tool is to effectively

model molecular recognition mechanisms between individual

kinases and their substrates, where the mechanisms can vary

broadly for different kinases, and for which little experimental data

may be available.

Most current strategies for the prediction of phosphorylation

sites model the amino acid sequence (or a so-called consensus

motif), which represents a kinase-specific phosphorylation site.

Proteins that contain an instance of a given kinase’s consensus

motif are predicted to be substrates of that kinase. The simplest

example of this type of strategy is linear motif searching, using

computational tools such as PROSITE [13] and ELM [14]. This

type of strategy searches for instances of phosphorylation

consensus motifs represented by regular expressions. Other

algorithms, such as ScanSite and PHOSITE utilize position-

specific profile searches, which allow for more flexible definitions

of consensus motifs [15–17]. Machine learning approaches, (e.g.

hidden Markov models [18–20] and artificial neural networks

[9,21,22]) have been used to model interdependencies between

amino acids within a given consensus motif. NetPhos and

NetPhosK are leading methods for phosphorylation site prediction

that utilize artificial neural networks. Certain other procedures
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such as PREDIKIN utilize three-dimensional structural modeling

to try to predict kinase-specific phosphorylation [23].

Attempts to evaluate the effectiveness of any phosphorylation

prediction method face a two-fold difficulty. First, since the

complete set of phosphorylation sites on all proteins is not known,

it is not possible to assess the comprehensiveness of phosphory-

lation prediction. Therefore, both ‘‘false’’ positive and ‘‘true’’

negative designations may actually be assigned incorrectly to true

phosphorylation sites that have yet to be discovered. Second, since

only a limited number of sites are known for many kinases, it is

likely that the known set of phosphorylation sites for a particular

kinase is systematically biased and that any given algorithm may

be unwittingly designed or trained to miss true positives. The most

reliable measure of confirmation of phosphorylation-site pre-

diction is the identification of such sites as bona fide in vivo

phosphorylation sites through experiment. Because this is often

laborious and not straightforward, few broad-based computational

phosphorylation prediction procedures have had their results

substantially confirmed through experimental verification.

Strategy
One hallmark of nearly all published phosphorylation prediction

procedures is that they employ a strategy to model the substrate

specificity for as many kinases as possible. Such tools, which utilize

the same strategy for different kinases, may inadvertently miss

elements of substrate recognition that are in some way unique to

a particular kinase system. Here, rather than developing a general

model to predict substrates for many kinases, we instead propose

a targeted procedure that models the substrate specificity in a more

detailed way for a single well-studied family of kinases, i.e., the

cyclin-dependent kinases (Cdks) [5,24,25]. By targeting a single

family of kinases, we should be better positioned to consider

discriminating factors specific to this family. Thus, in the present

procedure we are able to incorporate additional global character-

istics that occur specifically between Cdks and their substrates,

introducing a second factor that are not considered when

modeling only local sequence motifs.

Cdks are the master regulators of eukaryotic cell cycle

progression, coordinating events such as DNA synthesis and

mitosis that are necessary for proper cell division and driving the

cell-division process in a regulated manner [5,24,25]. In order for

Cdks to exhibit enzymatic activity, they must be associated with

a binding partner protein called a cyclin. Particular Cdks are

associated with one or more cyclins at different points in the cell

cycle, and the sequential, temporally coordinated activity of the

Cdk/cyclin combinations organizes and orders the molecular

events in the cell cycle.

Cdks are obligatory proline-directed serine/threonine kinases.

Empirical studies of Cdk substrates indicate a strict requirement

for a proline residue one amino acid C-terminal to the acceptor

residue (the ‘‘+1’’ site) [12] as well as a strong preference for basic

amino acids proximal to the acceptor site, especially arginine or

lysine residues at or around the +3 site (i.e., 3 residues C-terminal

to the acceptor). These sequence characteristics are supported by

X-ray crystal structures that reveal a large binding pocket for

docking of the requisite proline residue, and an acidic patch for

binding the C-terminal basic region [4,26,27]. The identity of

other residues surrounding the acceptor site also plays a role, albeit

smaller, in Cdk substrate preference. Studies on the catalytic

activity of Cdc28 towards in vitro peptide phosphorylation show

that substrates of different cyclin/Cdk combinations have largely

the same primary sequence characteristics, although different

combinations do exhibit slightly different preferences [28,29].

These subtle differences may have a considerable impact on

cyclin/Cdk specificity, but other factors such as cyclin abundance,

substrate binding and the presence or absence of substrate proteins

may also play a significant role.

Studies by Holmes and Solomon [28] directly assayed for amino

acid sequence specificity for Cdk phosphorylation. Their approach

involved a series of experiments based on a GST fusion constructs,

each containing a peptide based on the sequence KSPRK derived

from the histone H1 Cdk substrate. The effects of all possible

single amino acid substitutions at the 21, +2 and +3 positions

(position 0 is the acceptor site, and +1 is the obligatory proline

residue) were detailed for Xenopus laevis cyclin B-Cdc2 and human

cyclin A-Cdc2, cyclin A-Cdk2, cyclin E-Cdk2, and cyclin B-Cdc2.

Varying the -1 position was shown to have the least effect, with

efficiency of phosphorylation changing, for example, about 2-fold

between the worst (Pro) to the best (Gln and Met, followed by His

and Gly) amino acids for the X. laevis cyclin B-Cdc2. The +2

position shows strong selectivity against Pro, Gln, Glu and Asp,

with about one order of magnitude lower reaction efficiency than

for Lys, Arg and Met, the amino acids contributing most positively

to catalytic efficiency. Nearly all other amino acids are tolerated at

this position, showing about 20-60% of wild-type efficiency. The

+3 position is the most selective, with Arg and Lys being strongly

preferred, His and Pro showing efficiency ,20% of wild type, and

all the others showing efficiency ,5% of wild type, except for the

acidic residues Glu and Asp which showed virtually no activity.

The activity profiles for other cyclin-Cdk complexes were essential

similar to that for cyclin B-Cdc2.

Our computational strategy focused on two characteristics of

Cdk-substrate recognition. We first considered data to determine

the primary substrate sequence preference, using published crystal

structure and biochemical assay data. Second, we incorporated

a number of observations indicating clustering [30] of phosphor-

ylation sites within Cdk substrates. Many of the known Cdk

substrates were phosphorylated at multiple sites in their sequence

[3,31-34]. Additionally, certain substrates were found to have

a specific patch in their structure that bound cyclins (cyclin-

binding, or Cy motif) [35,36], suggesting that the molecular

recognition of substrate was influenced by contacts distal from the

catalytic site. Biophysical studies on Pho85, a kinase in S. cerevisiae

homologous to Cdc28, further showed semi-processive phosphor-

ylation—i.e., one kinase-substrate binding event may be followed

by several phosphate transfer events without dissociation of the

enzyme and substrate proteins [37]. These findings led us to

hypothesize that in many cases, Cdk substrates might contain

clusters of phosphorylation sites, and therefore that Cdk substrate

prediction could be improved not only by optimizing the

consensus motif sequence, but also by following consensus site

identification with selection of proteins whose sequences are

enriched for repeats of that motif. If correct, such an approach will

account for the physical mode of phosphorylation and will also

overcome the statistical likelihood of false positive predictions

based on single site predictions. Multi-site phosphorylation has

been previously observed in several different Cdk substrates[37–

40] One of the best examples of this is phosphorylation of Sic1[39]

by Cln-Cdc28 complexes, where multisite phosphorylation acts as

a switch that sets a threshold for the onset of DNA synthesis during

cell cycle.

RESULTS
Based on all the preceding considerations, we modeled Cdk

substrates by identifying clusters of both the canonical Cdk motif

represented by the regular expression [ST]PX[RK] and a PSSM

CDK Substrate Prediction Model
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[Table 1] profile generated from Holmes and Solomon’s kinetic

data [28]. Proteins in the proteome of the budding yeast

Saccharomyces cerevisiae were scored according to both models, and

the distribution of scores for each method was compared to the

distribution of scores for sequences from a randomly generated

mock proteome (see Methods). Based on these comparisons, we

identified a set of candidate Cdk substrate proteins from S.

cerevisiae, and evaluated that set against experimental data.

Clustered canonical motif–based modeling of Cdk

substrates
The canonical Cdk phosphorylation motif, represented by the

regular expression [ST]PX[RK], represents the most salient

features of Cdk phosphorylation site composition and the largest

contributions to catalytic efficiency of phosphorylation. It is

a highly restrictive statement of a potential Cdk phosphorylation

site, in the sense that it does not allow at all for phosphorylation

site sequences that may deviate from these features. It accentuates

the most influential aspects of site recognition and disregards the

rest. The benefit of such an exclusive statement of the

phosphorylation motif, then, is that it highlights the most likely

phosphorylation sites. However, it is probable that this type of

statement will result in underprediction, since not all substrates will

have all of their actual phosphorylation sites in these stringent

motifs.

Proteins from the yeast proteome were observed to contain

between zero and 9 copies of the canonical phosphorylation motif.

The majority of proteins in the yeast proteome (i.e., 4800) had no

occurrences of the motif (score = 0), and as a trend, the number of

proteins decreased as the score (i.e., the number of canonical

motifs) increased [Figure 1A]. A similar general trend was

observed in the mock proteome. However, the rate of decrease

was higher for the mock than for the yeast proteome [Figure 1A].

In other words, the yeast proteome was enriched for high scoring

proteins—suggesting that high scores may indeed be indicative of

selection for function as Cdk substrates.

The following procedure was used to predict potential Cdk

substrates in an unbiased fashion. For each integral score j

between 0 and 9 inclusive, we calculated the ratio rj that represents

the ratio of the proportion of proteins from the randomly

generated mock proteome with score j to the proportion of yeast

proteins with score j [Figure 1B]. It appeared that at low scores of

j, rj values were clustered close to unity (i.e., similar in real and

mock), but at high scores of j, rj tended toward zero (i.e., enriched

in real proteins and therefore candidate Cdk substrate) [Figure 1B].

We determined a cut-off score k that would divide the yeast

proteome into 2 groups, a group scoring below k where the

number of real proteins is similar to the number of mock proteins,

and a group scoring above k, that is enriched for real proteins.

Therefore we solved for the value k that minimized the sum of the

standard errors of the mean (SEM) over (i) all rj such that j,k, and

(ii) all rj such that j. = k. We found this value of k to be equal to 5,

yielding a lower scoring cluster with an SEM of 0.079 and a higher

scoring cluster with an SEM of 0.032. Moreover, this value of k

also maximizes the differences between the means of rj for the two

clusters. The mean of rj,5 = 1.01, and the mean of rj. = 5 = 0.078.

A total of 38 yeast proteins scored above the threshold value

(k = 5) that separated random from significant predicted substrates

[Table 2, Table S1]. These 38 included the known Cdk substrates

Ace2, Cdc6, Cdh1, Orc2, Sld2, Stb1 and Ste20 [Table 2].[32,39–

46] When compared to the results of a proteomic survey of in vitro

Cdc28 phosphorylation by Ubersax et al.[47], 25 of the 38

proteins were found in their set of 186 best candidate Cdc28

substrates [Table 2]. In addition, six of the 38 proteins, Cdh1,

Lte1, Bem3, Bud3, Ace2 and Ypl267 have been found to

physically interact with cyclin/Cdc28 complexes via co-immu-

noaffinity purification [Table 2] [48].

This method did not predict all known in vivo Cdc28 substrates

[Supplementary Table S2 reviews and references known Cdc28

substrates]. For example, some known substrates such as

Sic1[31,39,49], although containing clustered minimal Cdk motifs,

do not contain sufficient copies of the full canonical consensus

motif to exceed the cut-off value of k = 5.

Clustered kinetics-based PSSM modeling of Cdk

substrates
Based on kinetic phosphorylation data [28], we used the PSSM-

based approach to model the probability for each of the 20 amino

acids at positions –1 through +4 to be present surrounding

minimal Cdk phosphorylation motifs [50]. The score for a protein

equals the sum of the PSSM score for each potential Cdk site, as

defined by Equations 1 and 2 and the PSSM in Table 1. The

general trends using this scoring model were similar to those using

the canonical consensus regular expression motif scoring system: as

the score increased, the occurrence of proteins decreased, with

more real proteins than mock proteins at high scores [Figure 2A].

The range of PSSM scores are continuous values, rather than the

discrete integral values obtained from regular expression scoring.

Therefore, in order to perform analogous discrete analysis for the

two scoring systems, we grouped the proteins into bins 0.4 units

wide according to their summed PSSM scores.

In this way, we determined that a value of k = 4.4 minimized the

sum of the SEM of rj,k and the SEM of rj. = k and maximized the

differences between the means of the two clusters; the mean for the

lower scoring group rj,k = 0.96 and the mean for the higher

Table 1. Position-specific scoring matrix representing the Cdk
phosphorylation motif

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21 0 1 2 3

A 0.052 0 0 0.049 0.015

C 0.046 0 0 0.056 0.015

D 0.032 0 0 0.007 0

E 0.04 0 0 0.021 0

F 0.055 0 0 0.035 0.015

G 0.066 0 0 0.021 0.015

H 0.052 0 0 0.056 0.029

I 0.029 0 0 0.07 0.015

K 0.057 0 0 0.15 0.59

L 0.052 0 0 0.049 0.015

M 0.06 0 0 0.091 0.015

N 0.049 0 0 0.021 0.015

P 0.02 0 1 0.007 0.029

Q 0.075 0 0 0.007 0.015

R 0.08 0 0 0.14 0.15

S 0.04 0.5 0 0.028 0.015

T 0.046 0.5 0 0.063 0.015

V 0.04 0 0 0.056 0.015

W 0.057 0 0 0.028 0.015

Y 0.052 0 0 0.035 0.015

doi:10.1371/journal.pone.0000656.t001..
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Figure 1. Analysis of Canonical Cdk Motif Clustering in Yeast and Mock Proteomes. (A) The number of proteins having a given score decreases as
that score increases. Yeast proteins are represented in navy, and mock proteins are represented in magenta. At low score, (i.e. less than ,4), yeast and
mock are similar– the ratio of mock to yeast, shown by black squares, approximates unity (B). However at higher scores (i.e. 5 and above), yeast
proteome contains substantially more proteins than mock (A), and the ratio of mock/yeast approaches zero (B). All proteins from the yeast proteome
scoring 5 or higher are considered candidate substrates.
doi:10.1371/journal.pone.0000656.g001
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Table 2. Bioinformatic screen for candidates Cdc28 substrates
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Protein Name Candidate (Reg Expr) Candidate (PSSM) Borderline (PSSM) In Vivoa Substrate In Vitrob Substrate Cyclinc Interactor

Rad9 9 8.14 x

Lte1 8 7.48 x Clb2

Swi5* 8 7.97 Yes x

Yer041w 8 5.61

Ace2* 7 7.14 Yes x Clb3

Ase1 7 5.53 x

Ash1 7 6.41 x

Sli15 7 6.86

Bud4 6 5.22 x

Cdh1 6 4.42 Yes x Cln2/Clb3

Fir1 6 5.91 x

Orc2* 6 6.08 Yes x Clb5**

Zrg8 6 5.47

Bck1 5 4.85 x

Bem3 5 6.52 x Cln2

Boi1 5 4.30

Bud3 5 4.03 x Clb2

Caf120 5 5.86 x

Cdc15 5 3.43

Cdc6 5 3.96 Yes Clb2

Exo84 5 3.86 x

Fin1 5 x

Hcm1 5 3.80 x

Hpr5 5 4.78 x

Lre1 5 4.62 x

Mcm3* 5 4.46 x

Mse1 5 3.93

Pak1 5 4.89 x

Pkc1 5 5.70 x

Pms1 5 5.31

Rga2 5 4.86 x

Sfi1 5 x

Sir4 5 5.24 x

Sld2 5 5.69 Yes

Smc4 5 3.32 x

Stb1 5 4.75 Yes x

Ste20 5 4.33 Yes Cln2

Ypl267w 5 4.47 x Cln2

Bni4 5.86

Iqg1 4.62

Orc6* 4.44 Yes x Clb5**

Plm2 4.96

Rpo21 4.45

Ssn2 5.12

Yjl051w 4.88

Ymr124w 4.67

Acc1 3.30

Bni1 4.36 x

Chd1 3.86

Dal81 3.27 x
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scoring group rj. = k = 0.11 [Figure 2B]. Here, there appears to be

a region of transition from high to low, between the scores of 3.2 to

4.0 (as opposed to the sharp break between scores of 4 and 5

observed with the regular expression scoring system). To de-

termine the transition area in an unbiased manner, we calculated

two values, l and m (such that l, = m) that also minimizes the sum

of the SEM of rj,l and the SEM of rj. = m. We found values of

l = 3.2 and m = 4.4. The values of l and m define respectively the

upper boundary of a SEM-minimized cluster of low scoring

proteins (with a mean rj,l = 1.04) where the enrichment of Cdk

Protein Name Candidate (Reg Expr) Candidate (PSSM) Borderline (PSSM) In Vivoa Substrate In Vitrob Substrate Cyclinc Interactor

Dna2 3.45 x

Far1 3.46 Yes x Cln2/Clb5

Fun30 3.67 x

Fun31 3.32

Gac1 3.58

Hpc2 3.50

Inp52 3.75

Kel1 3.36 x Clb2

Leu1 3.45

Mds3 4.06 Clb3

Mlp1 3.39 x

Mps2 3.32

Mpt1 3.52

Msb1 3.34 x

Myo3 3.28 x

Ndd1 3.46 Yes x

Net1 3.38 Yes x

Nup60 3.50 x

Pds1 3.28 Yes x

Pkh2 3.59

Rim15 3.38

Sac3 3.36

Spa2 3.61 x

Swi4 3.29

Tfg1 3.63

Tra1 4.29

Tus1 3.39 x

Ubp2 3.70

Ulp2 3.25 x

Ycr033w 4.19

Ydl239c 3.38

Ygr271w 3.50

Yhr080c 3.24

Yil112w 3.81

Yjl084w 3.43 x

Ynr047w 3.45

Yor066w 4.22 x

Yor129c 3.32

Yor177c 3.34

Yox1 3.29

Zip1 3.37 x

asee Supplementary Table S2.
bReference [47]
cReference[48]
*Phosphorylation confirmed via mass spectrometry
doi:10.1371/journal.pone.0000656.t002..
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Figure 2. Analysis of kinetic-derived PSSM motif clustering. The number of proteins having a given score decreases as that score increases. Yeast
proteins are represented in navy, and mock proteins are represented in magenta. At low score, (I.e. less than ,3.2), yeast and mock are similar– the
ratio of mock to yeast, shown by black squares, approximates unity. (Proteins are grouped in bins 0.4 units wide) However at higher scores (I.e. 4.4
and above), yeast proteome contains substantially more proteins than mock, and the ratio of mock/yeast approaches zero. All proteins from the yeast
proteome scoring 4.4or higher are considered candidate substrates. The region between 3.2 and 4.4 is considered a transition region and yeast
proteins with these scores are considered borderline candidate substrates
doi:10.1371/journal.pone.0000656.g002
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substrates is likely low, and the lower boundary of a SEM-

minimized cluster of high scoring proteins (with a mean

rj. = m = 0.11), which is likely highly enriched for bona fide

substrates. The region between l and m defines a borderline area

that likely contains a mix of substrates and non-substrates. In this

case, we found that m = k, defining exactly the same high scoring

region likely to contain Cdk substrates, regardless of whether or

not we choose to define the borderline region.

The above-described unbiased analysis determined a set of 35

likely Cdk substrate proteins scoring above 4.4, and 55 borderline

proteins scoring between 3.2 and 4.4 [Table 2]. Twenty-three of

the 35 high scoring candidate substrates were also predicted using

regular expression scoring; 6 of the 55 borderline candidates

overlapped with regular expression motif scoring candidates

[Table 2]. Ace2, Cdh1, Orc2, Sld2, Stb1 were among the known

substrates that were predicted both using the canonical regular

expression motif and the kinetic PSSM [32,43–45,51,52]. Cdc6

[42,43] and Ste20 [40,46] are known substrates predicted using

the canonical regular expression motif and considered borderline

proteins using the kinetic PSSM. Orc6 [43] and Swi5 [34] are

known substrates that were predicted by the PSSM method only.

Far1, Ndd1, Net 1 and Pds1 are known substrates that were

missed using the canonical regular expression motif and

considered borderline proteins using the kinetic PSSM

[7,8,33,53,54].

Additionally, 22 of these 35 candidates matched the top scoring

in vitro substrates [47]. Four candidates, Ace2, Cdh1, Bem3 and

Ypl267, were found to physically interact with cyclin/Cdc28

complexes by co-immunoaffinity purification [48]. Twenty-two of

the 55 borderline candidates were found to be substrates in the in

vitro study and two, Bud3 and Far1, were found previously to

interact physically with cyclin/Cdc28 complexes.

Using mass spectrometry [38], we were able to determine

phosphorylation at Cdk motifs for several predicted substrates. In

these experiments, we found in vitro phosphorylation of recombi-

nant Mcm3 which had been incubated with ATP and affinity-

purified Cdc28 complexes. We also found in vivo phosphorylation

at Cdk motifs on Ace2, Swi5, Orc2 and Orc6.

DISCUSSION
We have presented here a model for cyclin-dependent kinase

substrates. The model first defines a bioinformatic representation

of the Cdk phosphorylation motif, either as a regular expression or

a PSSM. In addition, the model proposes that a significant

proportion of Cdk phosphorylation occurs on proteins that contain

multiple phosphorylation sites. The non-random clustering of

potential Cdk sites in particular proteins serves as evidence of

biological function selected for by nature.

The canonical motif and PSSM strategies, combined, define

a set of 91 candidate Cdk substrate proteins comprising 1.5% the

yeast proteome. Of these, 46 (0.73% of the yeast proteome) were

defined as strong candidates, either being detected using the

canonical-motif scoring method, or scoring above the upper cutoff

using PSSM-motif method. Twenty-seven were detected using

only the canonical-motif method, 8 using only the PSSM-motif

method, and 11 by both methods. The remaining 45 (0.72% of the

yeast proteome) predicted candidates were ‘‘borderline’’ PSSM

candidates only.

By comparison, only 0.10% of the sequences in the randomized

mock proteome scored above the threshold for inclusion as strong

candidates, and 0.45% of the sequences in the mock proteome met

the score criteria for borderline, PSSM candidates (but not strong

candidates). The ratio of candidate substrates detected in yeast-to-

candidates substrates detected in mock yields an estimated false

positive rate of 14% for the strong candidates and 63% for the

borderline candidates. These values indicate that there is indeed

clustering on the sequence level beyond what would be expected

by random. From them we can infer that ,40 of the 46 strong

candidates and ,17 of the 45 borderline candidates are bona fide

Cdk substrates. Thus, although the false positive rate for the

borderline candidates is high, that subset is nevertheless not

inconsequential to biological researchers, since greater than 1 in 3

are likely to be bona fide substrates.

Out of the total set of 91 candidate substrates, 13 proteins (14%)

are contained in the set of experimentally characterized in vivo

substrates. To our knowledge, at the time of writing there are 26

proteins in that set (Table S2); thus 50% of the currently known

substrates were detected as candidates. For reasons detailed below,

we expect this method to be less than comprehensive, but rather to

yield a set of likely candidate substrates useful for biological

researchers while maintaining a reasonably low false positive rate.

Extrapolating from our false positive and false negative rates, we

expect there to be approximately 114 total proteins (1.9% of the

yeast proteome) that are Cdc28 substrates.

Many of our candidate substrates were also predicted to contain

Cdk phosphorylation sites using other leading phosphorylation

detection algorithms, such as Scansite and NetPhosK. Scansite,

using a threshold setting of ‘‘high’’ returns 265 yeast proteins

(4.2% of the proteome) as candidate Cdk substrates. Of these, 35

are contained in our set of 91 candidate substrates (38%). Scansite

predicts 8 of the 24 well-characterized candidate substrates (33%),

as compared to the 50% hit rate using our method. When Scansite

was run on our random sequence database, 2.8% of the sequences

were detected as candidate Cdk substrates -a false positive rate of

67% for Scansite, for Cdk substrate prediction in this dataset.

Therefore, although the present method was only somewhat more

comprehensive (50% to 33%) than Scansite with respect to true

positive detection, it was much more accurate in terms of false

positive rate. Our method generates a set of strong candidates with

an estimated false positive rate of 14%, while Scansite, even set to

high stringency yields a false positive rate of 67%. Scansite yields

a false positive rate similar to that of the borderline candidates

(63%) generated using the current method.

NetPhosK[9] detected 88 of our 91 (97%) candidates as

containing Cdk substrates, using a scoring threshold of 0.602

a similar true positive rate as Scansite. However, our simulations

indicate that fully 21% of the proteome, or 1300 proteins, is

predicted by NetPhosK to be Cdk substrates, and so the false

positive rate is expected to be even higher for NetPhosK than for

Scansite. Thus, the major difference between two leading current

phosphorylation prediction methods and the one presented here—

protein-level motif clustering—is recognized as an increase in

accuracy as measured by a reduced false positive rate.

Our method predicts approximately half of the known yeast

Cdk substrates. Therefore, in this study, we make no claim at

completeness. Instead, we show the utility of a targeted bioinfor-

matic tool that produces a set of predictions that can be validated

using experimental techniques. Our pilot proteomic study, in

which we assayed for in vivo phosphorylation using hypothesis-

driven mass spectrometry [38,55], confirms a number of our

predictions [Table 2]. In addition, our predictions are also

consistent with many of the high scoring proteins from the high-

throughput in vitro phosphorylation study by Ubersax et al. [47],

although most of these are as of yet unconfirmed in vivo.

Our model, as it stands, is particularly useful for organisms with

small proteomes, such as S. cerevisiae. Larger proteomes may be

problematic because the false positive rate likely will increase with

the number and size of proteins. To extend this procedure
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effectively may require additional filtering procedures. For

example, phosphorylation sites are largely expected to occur on

solvent-accessible portions of proteins, particularly loops, so an

additional weight could be added to motifs that are expected to

occur in such regions, as determined by existing secondary

structure prediction [56] or homology modeling algorithms [57].

Incorporating the conservation of phosphorylation motifs across

related species into the model might also increase its specificity by

adding additional biological restraints. However, this has proven

to be not a straightforward task, complicated by the fact that

orthologous candidate substrates show homologous regions that

are enriched for Cdk motifs, but where in many cases the number

and precise positioning of the motifs are not very precisely

conserved. Supplemental Table S3 shows some examples of the

imperfect conservation of Cdk motifs across taxa in Cdk

substrates. New algorithms are needed in order to properly

account for these factors when performing multiple alignments of

Cdk substrates.

Furthermore, the semi-processive physical model [37] of Cdk

phosphorylation also suggests that the clustering of sites likely

occurs on contiguous surfaces or individual domains of proteins.

The average spacing between motifs for candidate substrates

identified in our study by canonical motif scoring is 103+/263

(mean+/2standard deviation) amino acids residues, and by PSSM

scoring is 69+/246 residues. Among the candidate substrates, the

subset that overlaps with known, experimentally characterized

Cdk substrates, the average spacing was smaller than (63+/237

for canonical motif scoring, and 38+/220 for PSSM scoring) but

statistically indistinguishable from spacing for the overall set of

candidate substrates. Such large spaces between sites suggest that

three-dimensional, domain level proximity, rather than simply

linear spacing plays an important role in the processivity of Cdk2.

Further exploration is necessary to determine the feasibility of

using spacing data, or 3-D data for increasing the selectivity of the

procedure.

The algorithm missed certain known yeast substrates such as

Cdc23 [58] that are thought to contain single phosphorylation

sites. However Cdc23 is present in cells in complex with the

proteins Cdc16 and Cdc27 [58], both of which also have multiple

putative Cdk phosphorylation sties. Therefore, it is reasonable to

hypothesize that the kinase recognizes and phosphorylates

a surface of the entire complex that is formed by the junction of

all three proteins. As data on protein complexes [59–61] becomes

more comprehensive and reliable, it may become feasible to

statistically analyze the presence of Cdk motifs within complexes in

a similar manner to that done for individual proteins. We note

here that the domain-level clustering of motifs here likely differs

from the local clustering observed in the substrates of kinases such

as the casein kinases[62–64], GSK3[64,65] and SR specific

protein kinases[66,67], where multiple phosphorylation sites are

observed within a single extended motif or repeat region.

The success of the computational procedure presented here

stresses the importance of not being limited to local sequence

characteristics for functional prediction. The difficulty in the

prediction of post-translational modifications and in phosphory-

lation prediction in particular, is that short, local sequences—even

those that match an extremely well defined consensus—can occur

frequently by random sequence drift. In the present study, we

found useful the fact that Cdk substrates not only have consensus

motifs that have been well studied and could be quite precisely

defined, but also had the characteristic of site clustering. We

incorporated both global and local sequence characteristics of Cdk

substrates into a bioinformatic model that proved successful in

predicting a significant number of putative substrates. A sub-

stantial amount of experimental information obtained by us and

other leads us to believe that this set of putative substrates is, in

fact, highly enriched for bona fide Cdk substrates. This set of

proteins includes a substantial proportion of known substrates

from previous in vivo and in vitro studies, as well as substrates that

were confirmed as in vivo phosphorylation sites by mass

spectrometry. In the future, these types of approaches—in-

corporating biochemical details into bioinformatics, and interfac-

ing bioinformatics with experimental testing—should prove to be

a useful strategy in predictive computational biology.

MATERIALS AND METHODS
For regular expression consensus motif searches, an algorithm was

implemented that scored all proteins in the yeast proteome

according to the number of occurrences of the motif. Proteins were

scored as the number of phosphorylation motifs within their

sequence. For PSSM consensus motif scoring, a PSSM was

constructed by assigning a score to each amino acid in each

relevant position directly proportional to its effect on catalytic

efficiency based on Holmes and Solomon’s [28] kinetic data. The

specific structure and values of this PSSM can be found in Table 1.

These scores were stored in a table—the positions relative to the

phosphate acceptor residue was represented on one axis of the

table, and the twenty individual amino acids were represented on

the other axis. Each protein was scored as follows. First, the

information content for each position was calculated from the

PSSM using the standard relative entropy definition at each

position using the equation:

Ibits(position)~
X

i[fall amino acidsg
½pi log2(pi=f i)� ð1Þ

where pi is the observed probability of amino acid i (at a given

position) in the motif, and fi is the background frequency of amino

acid i in the proteome. The information content at each position

should be directly related to its discriminatory power in predicting

phosphorylation substrates of Cdk. Then, for each protein, all Ser-

Pro and Thr-Pro (the minimal requirement for phosphorylation by

Cdk) sequences in a protein sequence were located, and each Ser-

Pro and Thr-Pro sequences were scored based on the 5 amino acid

window around it (from 21 to +3) around it as:

score(S=TiPiz1)~Ibits(� 1) � Paa(AAi�1)zIbits(z2)�

Paa(AAiz2)zIbits(z3) � Paa(AAiz3)
ð2Þ

where Ibits(n) is the total information content at position n, as

defined above, and Paa(nk) is the probability of amino acid n (any

one of the 20 amino acids) at position k. This scheme yields a score

for each motif that is weighted both by the information content at

each position, and by the relative likelihood of the amino acid

found at that position. This gives proportionally more weight to

positions that possess more discriminatory power.

Proteins are scored as the aggregate of the score of their

individual potential Cdk phosphorylation sites. This type of

scoring accounts for both the ‘goodness’ of each potential

phosphorylation site and the enrichment (and possible clustering)

of potential sites within the protein sequence. The score of

a protein is defined as the sum of all scores (S/TiPi+1) for that

protein sequence. The scorings of protein using the regular

expression version of the phosphorylation motif can also be

represented using this system, by assigning a value of one for

relative information to each relevant position and assigning a score
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of 1 for each match to the regular expression found in a given

protein sequence.

A set of randomly generated amino acid sequences, collectively

having identical amino acid composition and protein length

distributions as the actual yeast proteome, was used as a negative

control. The Cdk phosphorylation motifs found in this ‘mock

proteome’ represent the amino acid distribution if it were truly

random. Deviations from the random distribution are likely to

result from selective pressure on protein sequences, and therefore

to reflect biological functionality as phosphorylation substrates.

Scripts were written in PERL on and executed on a multi-CPU

Sun server running Solaris 10 to find putative phosphorylation

sites and compute their scores for each yeast protein sequence and

mock protein sequence using the formulae (1) and (2) as described

above. Multiple alignments were performed using the World-Wide

Web based clustalW [68,69] server hosted by EMBL.

SUPPORTING INFORMATION

Table S1 Accession numbers and descriptions of candidate

substrates.

Found at: doi:10.1371/journal.pone.0000656.s001 (0.03 MB

DOC)

Table S2 Compilation of currently known substrates of Cdc28.

Found at: doi:10.1371/journal.pone.0000656.s002 (0.04 MB

DOC)

Table S3 Conservation and alignment of Cdk phosphorylation

motifs. Sequences matching canonical and minimal Cdk motifs are

highlighted in bold, demonstrating imperfect conservation of

motifs across organisms. While some motifs show near perfect

alignment, other sites appear in the same general area across the

organisms, but are not aligned precisely by the ClustalW

organism, either due to differing numbers of sites, or different

locations within the protein sequence. Such imperfect alignment

corroborates the proposition that selection has occurred on Cdk

substrates to favor domain-level clustered phosphorylation. Note

for example, that the S. cerevisiae Orc6 (example A) sequence

contains four motifs around residue 105–124, three of which

nearly perfectly align with the corresponding A. gossypii sequence,

while K. lactis contains only two corresponding motifs, and C.

albicans only one. Another good example is in the region

corresponding to residues 300–340 in S. cerevisiae Swi5 (example

C), which contains four Cdk motifs. The corresponding region in

A gosyppi contains 5 motifs, and in C. albicans contains 6 motifs,

none of which align well with the S. cerevisiae motifs, while the K.

lactis contains only 1 single motif in the regions.

Found at: doi:10.1371/journal.pone.0000656.s003 (0.04 MB

DOC)
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