

Prognostic and Predictive Value of Liquid Biopsy-Derived Androgen Receptor Variant 7 (AR-V7) in Prostate Cancer: A Systematic Review and Meta-Analysis

Tanzila Khan^{1,2,3}, Therese M. Becker^{2,3,4}, Kieran F. Scott^{1,2}, Joseph Descallar^{4,5}, Paul de Souza^{1,2,6}, Wei Chua^{1,2,4,7} and Yafeng Ma^{2,3,4*}

OPEN ACCESS

Edited by:

Riccardo Tellini, Careggi University Hospital, Italy

Reviewed by:

Hideki Maeda, Meiji Pharmaceutical University, Japan Aasems Jacob, Pikeville Medical Center, United States Haoran Liu, Stanford University, United States Carlo Cattrini, Azienda Ospedaliero Universitaria Maggiore della Carità, Italy

> ***Correspondence:** Yafeng Ma yafeng.ma@unsw.edu.au

Specialty section:

This article was submitted to Genitourinary Oncology, a section of the journal Frontiers in Oncology

Received: 02 February 2022 Accepted: 21 February 2022 Published: 18 March 2022

Citation:

Khan T, Becker TM, Scott KF, Descallar J, de Souza P, Chua W and Ma Y (2022) Prognostic and Predictive Value of Liquid Biopsy-Derived Androgen Receptor Variant 7 (AR-V7) in Prostate Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 12:868031. doi: 10.3389/fonc.2022.868031 ¹ School of Medicine, Western Sydney University, Campbelltown, NSW, Australia, ² Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia, ³ Centre of Circulating Tumour Cell Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia, ⁴ South West Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia, ⁵ Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia, ⁶ School of Medicine, University of New South Wales, Kensington, NSW, Australia, ⁷ Medical Oncology, Liverpool Hospital, Liverpool, NSW, Australia

In advanced prostate cancer, access to recent diagnostic tissue samples is restricted and this affects the analysis of the association of evolving biomarkers such as AR-V7 with metastatic castrate resistance. Liquid biopsies are emerging as alternative analytes. To clarify clinical value of AR-V7 detection from liquid biopsies, here we performed a metaanalysis on the prognostic and predictive value of androgen receptor variant 7 (AR-V7) detected from liquid biopsy for patients with prostate cancer (PC), three databases, the Embase, Medline, and Scopus were searched up to September 2021. A total of 37 studies were included. The effects of liquid biopsy AR-V7 status on overall survival (OS), radiographic progression-free survival (PFS), and prostate-specific antigen (PSA)-PFS were calculated with RevMan 5.3 software. AR-V7 positivity detected in liquid biopsy significantly associates with worse OS, PFS, and PSA-PFS (P <0.00001). A subgroup analysis of patients treated with androgen receptor signaling inhibitors (ARSi such as abiraterone and enzalutamide) showed a significant association of AR-V7 positivity with poorer OS, PFS, and PSA-PFS. A statistically significant association with OS was also found in taxane-treated patients (P = 0.04), but not for PFS (P = 0.21) or PSA-PFS (P = 0.93). For AR-V7 positive patients, taxane treatment has better OS outcomes than ARSi (P = 0.01). Study quality, publication bias and sensitivity analysis were integrated in the assessment. Our data show that liquid biopsy AR-V7 is a clinically useful biomarker that is associated with poor outcomes of ARSi-treated castrate resistant PC (CRPC) patients and thus has the potential to guide patient management and also to stratify patients for clinical trials. More studies on chemotherapy-treated patients are warranted.

Systematic Review Registration: PROSPERO, CRD42021239353.

Keywords: prostate cancer, AR-V7, liquid biopsy, prognosis, meta-analysis

INTRODUCTION

Prostate cancer (PC) is one of the most common male cancers. The androgen receptor (AR) pathway is critical in maintaining normal prostate tissue homeostasis, cancer development and progression (1). Therapies for PC include surgery and radiation for localized or early-stage cancer, while for advanced or metastatic PC, androgen deprivation therapy (ADT), with or without chemotherapy is the standard of care. However, patients eventually develop castration resistant PC (CRPC). Recent incorporation of novel androgen receptor signaling inhibitors (ARSi, e.g., enzalutamide (Enz), abiraterone (Abi)) and taxanebased chemotherapy have improved outcomes of CRPC patients over the past two decades (2).

Biomarkers detected in liquid biopsy (such as circulating tumor cells and cell-free tumor DNA) demonstrate good concordance with biomarkers detected in conventional tissue biopsy, especially for metastatic CRPC (3). Liquid biopsy is emerging as a reliable source of biological data for biomarker discovery, especially in advanced PC when tissue biopsy is often not obtainable or can be used longitudinally to monitor tumor evolution and changes in biomarker characteristics. In CRPC, one of most promising prognostic markers is the constitutively active AR splice variant 7 (AR-V7). AR-V7 lacks the ligand binding domain and substitutes for functional AR even in the absence of the ligand testosterone, and differentially regulates AR-dependent gene expression (4). Thus far, current literature suggests that expression or nuclear subcellular location of AR-V7 is associated with overall survival (OS) and progression free survival (PFS) when found in tissue biopsy (5) or liquid biopsy [whole blood (6, 7), circulating tumor cells (8), and exosomes (9, 10)]. However, the study cohorts are variable in patient numbers and stages and also treatment options; the clinical relevance of AR-V7, especially liquid biopsy detectable AR-V7, is still not clear or widely accepted and need further investigation.

To clarify the clinical utility of AR-V7 detection from liquid biopsies, we undertook a comprehensive systematic review and meta-analysis to evaluate the available data from the clinical studies published up to September 2021. Prognostic and predictive value of liquid biopsy derived AR-V7 data in PC patients were evaluated from 37 studies that met the inclusion criteria.

METHODS

Study Design and Literature Searches

This study was conducted according to preferred reporting items for systematic reviews and meta-analysis (PRISMA) (11). The protocol has been registered on PROSPERO (CRD42021239353). Detailed literature searches up to September 10, 2021 in the Embase, PubMed, and Scopus databases were conducted thoroughly to check the prognostic role of AR-V7 in PC. The used search terms were (~Androgen Receptor Variant 7) OR (~ARV7) OR (~AR3) AND (~"prostate cancer"). The searched study citations were imported to EndNote (version X9) for duplicate checking and title and/or abstract screening and then uploaded to the online systematic review research tool Rayyan (https://www.rayyan.ai/) for independent systematic review according to selection criteria. Two independent, blinded observers (TK and YM) reviewed all candidate articles. Any discrepancies in the article selections were resolved by discussion.

Selection Criteria

Pre-set exclusion criteria of this study were: (1) publication type: review articles, letters, comments, questionnaires, conference papers, corrections, reply to editor, case reports, book chapters, abstracts only, research highlights, summaries; (2) non-human studies (animal or cell line study); (3) non-prostate cancer; (4) AR-V7 data are not derived from human; (5) survival data not related to AR-V7 or with insufficient data to calculate the hazard ratios (HRs) and their 95% CIs, or the Kaplan–Meier (K– M) curve unable to calculate HRs and 95% CI parameters. Finally, studies were only included when they met the following criteria: (1) AR-V7 assayed in liquid biopsies (whole blood, circulating tumor cells, PBMC, plasma, exosome); (2) A reported relationship between AR-V7 and prognostic/predictive indicators, namely, OS, PFS, and PSA-PFS; (3) patient cohorts with n >25, and (4) English language only.

Data Extraction and Quality Assessment

This study focuses on the prognostic value of AR-V7 detected from liquid biopsy and its predictive value for ARSi and chemotherapy. According to a pre-designed table, the items of data extraction included the last name of the first author, publication year, study country, number of patients included, age of patient, sample resource (processing method) and AR-V7 detection method, type of therapies, endpoints of oncological outcomes, HRs and 95% CIs (from univariate or multivariate Cox analysis), follow-up durations and definitions of OS, PFS, and PSA-PFS (Supplementary Table 1). When HRs and 95% CIs were not presented in the study, an Engauge Digitizer (version 12.1) was used to digitalize the K-M survival curve to re-calculate HRs and 95% CI as described previously (12). Data was extracted by two authors (TK and YM) independently and any inconsistencies were resolved by discussion. Notably, when several publications were retrieved reporting the same trial or patient cohort or from same author(s), study question and data from this publication were discussed by two authors (TK and YM) and uniqueness of the included data was ensured.

The adapted Newcastle–Ottawa Scale (NOS) scales for cohort study (13) were used to evaluate the quality of enrolled studies, which embraced three aspects, namely, patient selection, comparability, and assessment of outcome with a total score of 9. In addition, the quality of statistical evaluation was assessed to give a maximal score of 1 as described in **Supplementary Table 2**; a score of 7 or more is considered as high-quality and a score of 6 or less is considered as low quality.

Statistical Analysis

Pooled HR and 95% CI were used to evaluate the prognostic and predictive value of AR-V7 presence or high expression (in some studies, authors set a threshold to discriminate high or low expression level) on the patient survival parameters (OS, PFS, PFA-PFS) in Review Manager 5.3 software (RevMan v.5.3, Denmark). The Cochran Q and I² statistical methods were applied to evaluate the heterogeneity among included studies and a random effects model was used for data consolidation. If the heterogeneity was very high, only a descriptive score was given. Further subgroup analysis based on patient treatment was also conducted. The inverted funnel plots with Egger's test were used to analyze potential publication bias with R software. A sensitivity analysis was carried out to assess the influence of each individual study on the pooled results by sequentially excluding each study. A two-tailed p-value <0.05 was regarded as statistically significant.

RESULTS

Search Results, Study and Patient Characteristics

The flowchart outlining the results of the literature search and application of the strategic inclusion and exclusion criteria is presented in Figure 1. A total of 1,180 relevant articles were identified in initial database searches (Embase: 321, Medline: 537, Scopus: 322). After screening research title and abstract to remove duplicates (n = 410) and excluding the non-relevant studies based on publication type (n = 353), non-human studies (n = 193), nonprostate cancer (n = 5) and foreign language (n = 3) followed by a review of full text for eligibility, 37 articles were identified based on inclusion criteria 'human data', 'AR-V7', 'liquid biopsy', and 'survival'. Although we initially only searched quite a broad terminology 'prostate cancer', all 37 studies investigated CRPC (n = 4) or metastatic CRPC (mCRPC) (n = 33) as defined in the reports (Supplementary Table 1). Baseline characteristics of all eligible articles are listed in Table 1. All articles were published from 2014 to 2021 and included studies from Europe (46%), America and Canada (46%), and Asia-Pacific (8%). Liquid biopsy AR-V7 was detected from CTC (n = 28), PBMC (n = 2), whole blood (n = 4) or exosomes (n = 3). The patient cohort size ranged from 26 to 202 and the median or mean patient age ranged from 56 to 78. CTC enrichment methods included (modified) AdnaTest ® (Qiagen) (n = 13), Oncoquick[®] (Greiner Bio-One GmbH) (n = 1), red blood cell (RBC) lysis (n = 3), and immunomagnetic beads-based methods (such as CellSearch[®] or IsoFlux[®], dynabeads) (n = 9). The method of AR-V7 detection was primarily by PCR (quantitative PCR and droplet digital PCR, 92%). Endpoint of patient outcomes include OS (n = 30), PFS (n = 28) and PSA-PFS (n = 10) (**Table 1**).

Thirty studies including 976 AR-V7 positive (or high level, as defined by authors) and 2,056 AR-V7 negative (or low level) patients were used for OS comparison, while 28 studies including 697 AR-V7 positive and 1,553 AR-V7 negative patients were used for PFS analysis and 10 studies including 216 AR-V7 positive and 425 AR-V7 negative patients for PSA-PFS analysis. Most patients in the cohort of studies were treated with ARSi (either enzalutamide, abiraterone, or not specified) or taxane-based chemotherapy. Some reports included miscellaneous treatments [such as Bipolar Androgen-based therapy (32)]. Overall AR-V7 positive patients had significantly worse OS (HR 3.36, 95% CI 2.56–4.41,

P <0.00001), PFS (HR 2.96, 95% CI 2.20–3.98, P <0.00001) and PSA-PFS (HR 4.34, 95% CI 2.15–8.76, P <0.00001) than AR-V7 negative patients. Due to significant study heterogeneity (I² ≥80%), random effects model was applied to calculate HR value and 95% CI for all survival parameters.

Predictive Value of AR-V7 for ARSi-Treatment

AR-V7 positive patients treated with ARSi (enzalutamide or abiraterone) had significant poorer OS (HR 4.34, 95% CI 3.00–6.28, P <0.00001), PFS (HR 2.89, 95% CI 2.15–3.87, P <0.00001) and PSA-PFS (HR 4.69, 95% CI 2.50–8.82, P <0.0001) compared with AR-V7 negative patients (**Figures 2–4**). When analyzed based on specific treatment, compared to negative patients, AR-V7 positive patients also had significant worse OS (Enz: HR 2.93, 95% CI 1.71–5.01, P <0.0001; Abi: HR 6.59, 95% CI 2.18–19.94, P = 0.0008, respectively) (**Figure 2**), PFS (Enz: HR 4.38, 95% CI 2.44–7.84, P <0.0001; Abi: HR 6.88, 95% CI 1.99–23.73, P = 0.002, respectively) (**Figure 3**) and PSA-PFS (Enz: HR 7.40, 95% CI 2.66–20.60, one study, P = 0.0008; Abi: HR 11.39, 95% CI 4.53–28.67, two studies, P <0.0001, respectively) (**Figure 4**).

Chemotherapy-Treated Patients and Outcome Association With AR-V7

In the subgroup analysis of the patients treated with taxane-based chemotherapy, the association of AR-V7 positivity with worse OS was observed (HR 1.70, 95% CI 1.03–2.81, P = 0.04) (Figure 2), but no conclusive association between AR-V7 positive status and worse PFS and PSA-PFS were apparent, likely due to inadequate power (PFS: HR 1.81, 95% CI 0.71–4.61, P = 0.21, Figure 3; PSA-PFS: HR 0.93, 95% CI 0.21–4.22, P = 0.93, Figure 4). It is to be emphasised that data is only derived from two studies and a total of 129 patients (Figure 4).

AR-V7 Effect on Non-Defined (Miscellaneous) Treatments

For the studies in which the authors did not clarify treatments and were unable to be classified as either ARSi or taxane chemotherapy, AR-V7 presence is associated with worse OS (HR 3.47, 95% CI 1.85–6.49, P = 0.0001, 5 studies) and PFS (3 studies, HR 1.68, 95% CI 1.03–2.76, P = 0.04) (**Figures 2, 3**).

ARSi vs. Chemotherapy in AR-V7 Positive or Negative Patients

Four studies compared treatment response in AR-V7 positive or negative patients. Taxane treatment is linked to superior OS (HR 0.54, 95% CI 0.34–0.87, P = 0.01) in patients positive for AR-V7, compared to ARSi (**Figure 5A**). In contrast, for AR-V7 negative patients, OS in taxane or ARSi treated patients is not significantly different (HR 1.17, 95% CI 0.71–1.92, P = 0.54) (**Figure 5B**).

Quality Assessment, Publication Bias and Sensitivity Analysis

Thirty five articles were assessed as high-quality studies while 2 were deemed low quality studies (**Table 1** and **Supplementary Table 2**). Overall, the average quality of studies is 8.5. Publication

biases were evaluated for subgroups with more than 10 publications; no publication bias was observed for OS (Egger's test P = 0.9925, 15 publications, **Supplementary Figure 1A**) whereas publication bias was observed for PFS (Egger's test P =

0.0411, 17 publications, **Supplementary Figure 1B**) in ARSitreated subgroups. Sensitivity analyses were performed on the subgroups of more than 6 studies and the results were relatively stable except for overall survival in chemotherapy-treated group,

TABLE 1 | The basic characteristics of eligible studies.

Study	Year, country	Study type	Patients	Age	Resource, method	Treatment	Endpoint outcome	Follow up (month)	NOS score
Antonarakis et al. (14)	2015 US	Pros	37 CTC+	67 (46–82) ^b	CTCs (mAdna), qRT-PCR	Taxane	OS, PFS, PSA-PFS	7.7 (0.7– 19.0) ^b	10
Antonarakis et al. (15)	2017 US	Pros	53 CTC-, 113 CTC+/AR-V7-, 36 CTC+/AR-V7+	70 71 70 ^a	CTCs (mAdna), qRT-PCR	Abi/Enz	os, pfs, psa-pfs	CTC-:15.0 CTC+/ ARV7-: 21.7 CTC+/ ARV7+: 14.6 ^a	9
Antonarakis et al. (16)	2014 US	Pros	Enz:31, Abi: 31	Enz:70 (56–84), Abi:69 (48–79) ^b	CTCs (mAdna), qRT-PCR	Abi/Enz	OS, r PFS, PSA-PFS	Enz: 5.4 (1.4–9.9) Abi: 4.6 (0.9–8.2) ^b	9
Armstrong et al. (17)	2019 US	Pros, blinded, multi- center	118	73 (45–92) ^b	CTCs (Adna, CellSearch), qRT-PCR	Abi/Enz	OS, PFS	19.6 ^a	10
Armstrong et al. (18)	2020 US	Pros, blinded	ARSi:118 Taxane: 51	72 (48–82) 72 (45–87) ^b	CTCs (Adna, CellSearch), qRT- PCR	ARSi, Taxane	OS, PFS	ARSi:35 Tax:23ª	9
Belderbos et al. (19)	2019 Netherlands	Pros	94	69 (65–75) ^c	CTCs (CellSearch), qRT-PCR)	Cabazitaxel ARSi	OS	NA	9
Cattrini et al. (20)	2019 Italy	Pros	39	72 (56–84) ^b	CTCs (Adna), qRT- PCR	ARSi, Taxane	OS	NA	8
Chung et al. (21)	2019 US	Pros	37	72 (67–79) ^c	CTCs (Dynabeads), qRT- PCR	Abi/Enz	OS, rPFS, PSA-PFS	11.4 (4.7– 21.3) ^c	7
De Laere et al. (22)	2019 Belgium	Pros multi- center	168	76 ± 7.7 ^e	CTCs (CellSearch), RNA-seq	Abi/Enz	OS, PFS	12.4 (7– 17.3) ^c	10
Del Re et al. (23)	2017 Italy	Pros	36	66 (51–81) ^b	Plasma exosomes (exoRNeasy), ddPCR	ARSi	OS, PFS	9 (2.0– 31.0) ^b	8
Del Re et al. (୨)	2021 Italy	Retros	84	78 (47–91) ^b	Plasma exosomes (exoRNeasy), ddPCR	ARSi	OS, PFS	NA	9
Del Re et al. (10)	2019 Italy	Retros	73	NA	Plasma exosomes (exoRNeasy), ddPCR	Abi/Enz	OS, PFS	NA	7
Erb et al. (24)	2020 Germany	Pros	26	74.3 ± 9 ^a	CTCs (OncoQuick), IHC	ARSi, Taxane	PFS	NA	6
Graf et al. (25)	2020 US	Pros, cross- sectional	193	69 (62.5–75) ^c	CTCs (RBC lysis), IF	ARSi, Taxane	OS	28.4 (24.4– 33.0) ^c	9
Gupta et al. (26)	2019 US	Pros	ARSi:120 Radium:20	ARSi:73 (45–92) Radium:72 (54–86) ^b	CTCs (Adna, CellSearch), qRT- PCR and Epic assay	Abi/Enz, Radium	PFS	NA	9
Joncas et al. (27)	2019 Canada	Pros	35	75 (67,79) [°]	EVs (UC, miRNeasy), ddPCR	ARSi, Taxane	OS, PFS	27 (16,33) ^c	8
Kwan et al. (28)	2019 Australia	Pros	115	72 (46–91) ^b	WB, qRT-PCR	ARSi, Taxane	OS	15.5 (1.4– 29) ^b	10
Lorenzo et al. (29)	2021 Italy	Pros, multi- center	53 (45 data only)	72.1 (54–86) ^b	CTCs, (Flow cytometry)	Enz	OS, rPFS	27 ^a	10
Maillet et al. (30)	2019 France	Pros	41	73 ^a	CTCs (AdnaTest), qRT-PCR	ARSi	OS, rPFS, PSA-PFS	31 ARSi treated patients: 10.5 ^a	8
Marín et al. (31)	2020 Spain	Pros	136	ARSi:70.2 (53.3–93.3)	PBMC and CTCs (IsoFlux) qRT-PCR	Abi/Enz, Taxane	OS, rPFS, PSA-PFS	ARSi:14.9 (1.5–57.9) Tax:13.8	10

(Continued)

TABLE 1 | Continued

Study	Year, country	Study type	Patients	Age	Resource, method	Treatment	Endpoint outcome	Follow up (month)	NOS score
				Tax: 62.8 (32.8–79.4) ^b				(1.37– 82.27) ^a	
Markowski et al. (32)	2021 US	Multicohort phase II	Post-Abi: 29, Post-Enz: 30	Post-Abi: 71 (49–85) Post-Enz: 74 (50–89) ^b	CTCs (Adna), qRT- PCR	BAT, ARSi	rPFS	NA	7
Miyamoto et al. (33)	2018 US	Pros	27	67 ^d	CTCs (CTC-iChip), ddPCR	Abi	OS, rPFS	13.0 ^a	8
Okegawa et al. (34)	2018 Japan	Retros	49 CTC-, 23 CTC+/AR-V7-, 26 CTC+/AR-V7+	69 71 72 ^d	CTCs (on-chip FC), PCR	Abi/Enz	OS, rPFS, PSA-PFS	20.7 (3.0– 37.0) ^b	9
Onstenk et al. (35)	2015 Netherlands	Pros, multi- center, phase II	29	70 ± 7 ^e	CTCs (CellSearch), qRT-PCR	Cabazitaxel	OS, PFS	7 (2–27) ^b	7
Qu et al. (36)	2017 US	Retros	Abi: 81, Enz: 51	Abi: 68.3 (62–74) Enz:69.0 (63–74) ^c	PBMC(Ficol), ddPCR	Abi/Enz	OS, PFS (TTF)	29.7 (3.6– 47.5) 23.9 (0.9– 48.3) ^b	10
Scher et al. (37)	2018 US	Pros, cross- sectional	142	69.5 ± 9.6^{e}	CTCs (RBC lysis), IF	ARSi, Taxane	OS	4.3 years	8
Scher et al. (38)	2017 US	Pros, cross- sectional	161	68 (45–91) ^b	CTCs (RBC lysis), IF	ARSi, Taxane	OS	11 (1–30) ^a	9
Scher et al. (ଓ୨)	2016 US	Pros, cross- sectional	161	68 (45–91) ^b	CTCs, IF	ARSi, Taxane	OS, PFS	36	10
Seitz et al. (40)	2017 Germany	Pros	85	71 (66–74) [°]	WB, ddPCR	Abi/Enz	OS, rPFS, PSA-PFS	7.6 (4.7– 12.7) ^c	8
Sepe et al. (41)	2019 Italy	Pros	Abi:26, Enz: 11	75 (68–80) ^b	CTCs (Adna), qRT- PCR	Abi/Enz	OS, rPFS, PSA-PFS	25 ^a	9
Sharp et al. (8)	2019 UK	Pros	181	CTC-:71.0 (66.8-75.6), CTC +/AR-V7-: 69.6 (64.9-72.3), CTC +/AR-V7-: 70.4 (65.3-74.6) ^c	CTCs (Adna, CellSearch), qRT- PCR	ARSi, Taxane	OS	19 (11–31) ^c	10
Škereňová et al. (42)	2018 Czech Republic	Retros	41	71 (54–82) ^b	CTCs (Adna), qRT- PCR	Docetaxel	OS	23.5 ^a	7
Stuopelyte et al. (6)	2020 Lithuania	Pros	102	75.4 (11.4) ^c	WB, qRT-PCR	Abi	PFS, OS	30.5 ^a	9
Tagawa et al. (43)	2019 US	Pros	54	71 (53–84) ^b	CTCs, ddPCR	Taxane	PFS	NA	7
Todenhöfer et al. (7)	2016, Canada	Pros	37	70 (53–87) ^b	WB, qRT-PCR	Abi	OS PSA-PFS	NA	8
Tommasi et al. (44)	2018 Italy	Pros	44	71.5 (55-87) ^b	CTCs (Adna), qRT- PCR	ARSi, Taxane	PFS	20.5 ^a	7
Wang et al. (45)	2018 China	Pros	36	56.2 ± 8.6^{e}	CTCs (immuno- beads), qRT-PCR	Abi/Enz	PFS	NA	6

Studies are labeled as last name of first author, et al. and presented in alphabetical order; Patient number and age are all patients included in study; Pros, prospective; Retros, retrospective. ^amedian, ^bmedian (range), ^cmedian IQR, ^dmean, ^emean ± STD. WB, whole blood; CTC, circulating tumor cells; RBC, red blood cell lysis; PBMC, peripheral blood mononuclear cell; Ficoll, density gradient medium; Adna, AdnaTest ProstateCancerPanel AR-V7; mAdna, modified Adna; IF, immunofluorescent staining; qRT-PCR, quantitative real time-polymerase chain reaction; ddPCR, droplet digital PCR; UC, ultracentrifuge; FC, flow cytometry; ARSi, androgen receptor signaling inhibitor; Abi, abiraterone; Enz, Enzalutamide; BAT, bipolar androgen therapy; NA, not available; some studies include healthy control for threshold setting or discovery cohort (the data is lack and not included in table).

where missing data in one study (31) had a significant effect on data outcome (**Supplementary Table 3**).

DISCUSSION

AR splice variants have been proposed as a cause of resistance to ARSi and taxane-based chemotherapy (46). AR-V7, the most-

studied AR splice variant, is emerging as a clinically relevant biomarker in CRPC, with a detection incidence ranging between 20 and 60%, depending on biopsy source, detection methods, and disease stage. Given that tumor tissue of advanced PC is rarely available and archival tissue may not reflect the biology of the current tumor stage, liquid biopsies, mainly blood, are becoming attractive resources for AR-V7 and other biomarker evaluation. Technical advances, different detection methods for

study or subgroup	log[Hazard Ratio]	SE A	R-V7 + A Total	R-V7 - Total	Weight	Hazard Ratio IV, Random, 95% CI	Hazard Ratio IV, Random, 95% CI
1.1.1 ARSI			_				
Antonarakis 2017	1.6715	0.3371	36	113	3.3%	5.32 [2.75, 10.30]	
Armstrong 2019	1.361	0.2911	28	88	3.4%	3.90 [2.20, 6.90]	
Armstrong 2020	1.0296	0.2421	28	88	3.6%	2.80 [1.74, 4.50]	
Chung 2019	3.3032	1.1419	5	15	1.1%	27.20 [2.90, 255.00]	
De Laere 2019	0.8154	0.3064	34	97	3.4%	2.26 [1.24, 4.12]	
Del Re 2017	2.3663	0.5328	14	22	2.5%	10.66 [3.75.30.28]	
Del Re 2019	0.7608	0.972	16	57	1 3 96	2 14 [0 32 14 38]	
Del Re 2010	1 5027	0.4121	20	54	2.0%	4 50 [2 01 10 00]	
Jerike 2021	1.0007	0.4121	15	10	1 20/	4.30 [2.01, 10.03]	
Maniel 2019 Asría: Asruilans 2020	1.2300	0.9907	10	10	1.370	3.44 [0.49, 23.90]	
Mann-Aguilera 2020	-0.2460	0.3330	41	14	3.370	0.78 [0.41, 1.50]	
Jkegawa 2018	1.5681	0.0789	23	26	4.0%	4.80 [4.11, 5.60]	-
Scher 2016	2.438	0.3737	16	112	3.1%	11.45 [5.50, 23.82]	
Scher 2017	2.3408	0.8164	90	101	1.7%	10.39 [2.10, 51.47]	
Seitz 2017	1.0886	0.3861	15	69	3.1%	2.97 [1.39, 6.33]	
Sepe 2019	3.2573	0.7211	9	28	1.9%	25.98 [6.32, 106.76]	
Subtotal (95% CI)			400	900	39.9%	4.34 [3.00, 6.28]	•
Heterogeneity: Tau² = Fest for overall effect:	= 0.31; Chi ^z = 57.42, d : Z = 7.79 (P < 0.00001	i=14 (P ≺ I)	0.00001);	²= 76%			
1.1.2 Enz							
Antonarakie 2014	1 0216	0 7165	12	10	1 0 %	01 22 23 11 02 3	
Sinoliarakis 2014	1.9315	0.7100	12	19	1.970	0.90 [1.09, 28.10]	
Jei Ke Zu 19	1./596	0.0987	10	57	2.0%	5.81 [1.48, ZZ.85]	
Lorenzo 2021	0.8109	0.3626	22	23	3.2%	2.25 [1.11, 4.58]	
Ju 2017 Subtotal (05%, CD	0.7324	0.4714	27	54	2.7%	2.08 [0.83, 5.24]	
Subtotal (95% CI)				153	9.8%	2.93 [1.71, 5.01]	
Heterogeneity: Tau+= Fest for overall effect:	= 0.04; Chi+ = 3.43, df : Z = 3.92 (P < 0.0001)	= 3 (P = 0.1	33); F = 13	%			
1.1.3 Abi							
Antonarakis 2014	2.5416	1.1679	6	25	1.0%	12.70 [1.29, 125.29]	·
Del Re 2019	4.8147	1.0986	16	57	1.1%	123.31 [14.32, 1062.01]	→
divamoto 2018	3,3604	1.2327	2	20	1.0%	28.80 [2.57, 322.61]	
Qu 2017	0.5481	0 3739	27	54	31%	1 73 [0 83 3 60]	
Stuonekte 2020	0.0407	0.3034	12	28	3 / 96		
Fodophofor 2016	1 0160	0.5054	42	20	2.4%	6 00 14 00 26 001	
Subtotal (95% CI)	1.9109	0.0701	97	217	11 7%	6 50 [2 18 10 04]	
Heterogeneity: Tau ² =	= 1.29; Chi ^z = 23.75, di : 7 = 3.34 (P = 0.0008)	(= 5 (P = 0).0002); I²=	79%	11.770	0.33 [2.10, 13.34]	
Cation overall ellect.	. 2 - 3.34 (1 - 0.0000)						
1.1.4 Chemo							
1.1.4 Chemo Antonarakis 2015	0.9163	0.5998	17	20	2,3%	2,50 (0.77, 8.10)	
1.1.4 Chemo Antonarakis 2015 Armstrong 2020	0.9163	0.5998 0.3375	17 28	20 88	2.3%	2.50 [0.77, 8.10] 1.60 (0.83, 3.10)	
1.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderhos 2019	0.9163 0.47 0.2852	0.5998 0.3375 0.245	17 28 34	20 88 60	2.3% 3.2% 3.6%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.16]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín Aquilaco 2020	0.9163 0.47 0.2852	0.5998 0.3375 0.245	17 28 34	20 88 60	2.3% 3.2% 3.6%	2.50 (0.77, 8.10) 1.60 (0.83, 3.10) 1.33 (0.82, 2.15) 0.54 (0.22, 0.02)	+
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020	0.9163 0.47 0.2852 -0.6162	0.5998 0.3375 0.245 0.2606	17 28 34 38	20 88 60 54	2.3% 3.2% 3.6% 3.5%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.92]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020 Dnstenk 2015	0.9163 0.47 0.2852 -0.6162 0.47	0.5998 0.3375 0.245 0.2606 0.5161	17 28 34 38 16	20 88 60 54 13	2.3% 3.2% 3.6% 3.5% 2.6%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.90] 1.60 [0.58, 4.40]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020 Dnstenk 2015 Scher 2016	0.9163 0.47 0.2852 -0.6162 0.47 1.3191	0.5998 0.3375 0.245 0.2606 0.5161 0.3342	17 28 34 38 16 18	20 88 60 54 13 45	2.3% 3.2% 3.6% 3.5% 2.6% 3.3%	2.50 (0.77, 8.10) 1.60 (0.83, 3.10) 1.33 (0.82, 2.15) 0.54 (0.32, 0.90) 1.60 (0.58, 4.40) 3.74 (1.94, 7.20)	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Scher 2017	0.9163 0.47 0.2852 -0.6162 0.47 1.3191 1.141	0.5998 0.3375 0.245 0.2606 0.5161 0.3342 0.4121	17 28 34 38 16 18 90	20 88 60 54 13 45 101	2.3% 3.2% 3.6% 3.5% 2.6% 3.3% 3.0%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.80] 1.60 [0.58, 4.40] 3.74 [1.94, 7.20] 3.13 [1.40, 7.02]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020 Dnstenk 2015 Scher 2015 Scher 2017 Skereňová 2018	0.9163 0.47 0.2852 -0.6162 0.47 1.3191 1.141 0.5844	0.5998 0.3375 0.245 0.2606 0.5161 0.3342 0.4121 0.4995	17 28 34 38 16 18 90 8	20 88 60 54 13 45 101 18	2.3% 3.2% 3.6% 3.5% 2.6% 3.3% 3.0% 2.6%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.90] 1.60 [0.58, 4.40] 3.74 [1.94, 7.20] 3.13 [1.40, 7.02] 1.79 [0.67, 4.78]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Scher 2017 Skereňová 2018 Subtotal (95% CI)	0.9163 0.47 0.2852 -0.6162 0.47 1.3191 1.141 0.5844	0.5998 0.3375 0.245 0.2606 0.5161 0.3342 0.4121 0.4995	17 28 34 38 16 18 90 8 249	20 88 60 54 13 45 101 18 399	2.3% 3.6% 3.5% 2.6% 3.3% 3.0% 2.6% 24.1%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.90] 1.60 [0.58, 4.40] 3.74 [1.94, 7.20] 3.13 [1.40, 7.02] 1.79 [0.67, 4.78] 1.70 [1.03, 2.81]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020 Onstenk 2015 Bicher 2016 Bicher 2017 Skereňová 2018 Subtotal (95% CI) Heterogeneity: Tau [#] = Fest for overall effect:	0.9163 0.47 0.2852 -0.6162 0.47 1.3191 1.141 0.5844 = 0.37; Chi [#] = 27.14, d Z = 2.06 (P = 0.04)	0.5998 0.3375 0.245 0.2606 0.5161 0.3342 0.4121 0.4995 '= 7 (P = 0	17 28 34 38 16 18 90 8 249 0.0003); I ² =	20 88 60 54 13 45 101 18 399 74%	2.3% 3.6% 3.5% 2.6% 3.3% 3.0% 2.6% 24.1%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.90] 1.60 [0.58, 4.40] 3.74 [1.94, 7.20] 3.13 [1.40, 7.02] 1.79 [0.67, 4.78] 1.70 [1.03, 2.81]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Scher 2017 Škereňová 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect: I.1.5 Miscellenous	0.9163 0.47 0.2852 -0.6162 0.47 1.3191 1.141 0.5844 = 0.37; Chi [≇] = 27.14, d Z = 2.06 (P = 0.04)	0.5998 0.3375 0.245 0.2606 0.5161 0.3342 0.4121 0.4995 f= 7 (P = 0	17 28 34 38 16 18 90 8 249 0.0003); I² =	20 88 60 54 13 45 101 18 399 74%	2.3% 3.2% 3.6% 2.6% 3.3% 3.0% 2.6% 2.6%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.90] 1.60 [0.58, 4.40] 3.74 [1.94, 7.20] 3.13 [1.40, 7.02] 1.79 [0.67, 4.78] 1.70 [1.03, 2.81]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Scher 2017 Škereňová 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect: I.1.5 Miscellenous Cattrini 2019	0.9163 0.47 0.2852 -0.6162 0.47 1.3191 1.141 0.5844 = 0.37; Chi [≢] = 27.14, d Z = 2.06 (P = 0.04) 3.0111	0.5998 0.3375 0.245 0.2606 0.5161 0.3342 0.4121 0.4995 f= 7 (P = 0 0.663	17 28 34 38 16 18 90 8 249 0.0003); I ^a =	20 88 60 54 13 45 101 18 399 774%	2.3% 3.2% 3.5% 2.6% 3.3% 2.6% 24.1%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.90] 1.60 [0.58, 4.40] 3.74 [1.94, 7.20] 3.13 [1.40, 7.02] 1.79 [0.67, 4.78] 1.70 [1.03, 2.81]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Scher 2017 Skereňová 2018 Subtotal (95% CI) Heterogeneity: Tau [#] = Fest for overall effect: I.1.5 Miscellenous Cattrini 2019 Graf 2020	0.9163 0.47 0.2852 -0.6162 0.47 1.3191 1.141 0.5844 = 0.37; Chi [#] = 27.14, d :Z = 2.06 (P = 0.04) 3.0111 1.6487	0.5998 0.3375 0.245 0.2606 0.5161 0.3342 0.4121 0.4995 f= 7 (P = 0 0.663 0.3537	17 28 34 38 16 18 90 8 249 0.0003); I [≠] = 7 56	20 88 60 54 13 45 101 18 399 74%	2.3% 3.6% 3.5% 2.6% 3.0% 2.6% 24.1%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.90] 1.60 [0.58, 4.40] 3.74 [1.94, 7.20] 3.13 [1.40, 7.02] 1.79 [0.67, 4.78] 1.70 [1.03, 2.81] 20.31 [5.54, 74.48] 5.20 [2.60, 10.40]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020 Onstenk 2015 Boher 2016 Boher 2017 Skereňová 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect: I.1.5 Miscellenous Cattrini 2019 Braf 2020 Joncas 2019	0.9163 0.47 0.2852 -0.6162 0.47 1.3191 1.141 0.5844 = 0.37; Chi ² = 27.14, d Z = 2.06 (P = 0.04) 3.0111 1.6487 0.2311	0.5998 0.3375 0.245 0.2606 0.5161 0.3342 0.3422 0.4121 0.4995 f= 7 (P = 0 0.663 0.3537 0.5817	17 28 34 38 16 18 90 8 249 0.0003); ₽ = 7 56 12	20 88 60 54 13 45 101 18 399 74% 32 198 14	2.3% 3.6% 3.5% 2.6% 3.3% 2.6% 2.6% 24.1% 2.1% 3.2% 2.3%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.90] 1.60 [0.58, 4.40] 3.74 [1.94, 7.20] 3.13 [1.40, 7.02] 1.79 [0.67, 4.78] 1.70 [1.03, 2.81] 20.31 [5.54, 74.48] 5.20 [2.60, 10.40] 1.26 [0.40, 3.94]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Scher 2017 Škereňová 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect: I.1.5 Miscellenous Cattrini 2019 Graf 2020 Joncas 2019	0.9163 0.47 0.2852 -0.6162 0.47 1.3191 1.141 0.5844 = 0.37; Chi₹ = 27.14, d Z = 2.06 (P = 0.04) 3.0111 1.6487 0.2311 0.8231	0.5998 0.3375 0.245 0.2606 0.5161 0.3342 0.4121 0.4995 f= 7 (P = 0 0.663 0.3537 0.5817 0.3192	17 28 34 38 16 18 90 8 249 0.0003); ⁼ = 7 56 12 25	20 88 60 54 13 45 101 18 399 74% 32 198 198 14 90	2.3% 3.6% 3.5% 2.6% 3.3% 2.6% 24.1% 2.1% 3.2% 2.3%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.90] 1.60 [0.58, 4.40] 3.74 [1.94, 7.20] 1.79 [0.67, 4.78] 1.70 [1.03, 2.81] 20.31 [5.54, 74.48] 5.20 [2.60, 10.40] 1.26 [0.40, 3.94] 2.30 [1.23, 4.30]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Scher 2017 Skereňová 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect: I.1.5 Miscellenous Cattrini 2019 Graf 2020 Joncas 2019 Kwan 2019	$\begin{array}{c} 0.9163\\ 0.47\\ 0.2852\\ -0.6162\\ 0.47\\ 1.3191\\ 1.141\\ 0.5844\\ = 0.37; Chi^{2} = 27.14, di\\ Z = 2.06 (P = 0.04)\\ \hline 3.0111\\ 1.6487\\ 0.2311\\ 0.8329\\ 0.9622\\$	0.5998 0.3375 0.245 0.2606 0.5161 0.3342 0.4121 0.4995 f= 7 (P = 0 0.663 0.3537 0.5817 0.3192 0.2247	17 28 34 38 16 18 90 249 0.0003); I ^a = 7 56 12 25	20 88 60 54 13 45 101 18 399 74% 32 198 14 90 52	2.3% 3.6% 3.5% 2.6% 3.0% 2.6% 24.1% 3.2% 2.3% 3.2% 2.3% 3.3%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.90] 1.60 [0.58, 4.40] 3.74 [1.94, 7.20] 1.79 [0.67, 4.78] 1.70 [1.03, 2.81] 20.31 [5.54, 74.48] 5.20 [2.60, 10.40] 1.26 [0.40, 3.94] 2.30 [1.23, 4.30] 2.80 [1.23, 4.30]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Warín-Aguilera 2020 Onstenk 2015 Scher 2016 Scher 2017 Skereňová 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect: I.1.5 Miscellenous Cattrini 2019 Sraf 2020 Joncas 2019 Swan 2019 Subtotal (95% CI)	0.9163 0.47 0.2852 -0.6162 0.47 1.3191 1.141 0.5844 = 0.37; Chi ² = 27.14, d Z = 2.06 (P = 0.04) 3.0111 1.6487 0.2311 0.8329 0.9632	0.5998 0.3375 0.245 0.2606 0.5161 0.3342 0.4121 0.4995 f= 7 (P = 0 0.663 0.3537 0.5817 0.3192 0.2247	17 28 34 38 16 18 90 8 249 0.0003); ₹ = 7 56 12 25 53 12 25 53	20 88 60 54 13 45 101 18 399 774% 32 198 14 90 53 387	2.3% 3.6% 3.5% 2.6% 3.3% 2.6% 2.4.1% 2.1% 3.2% 2.3% 3.3% 3.6% 14.6%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.90] 1.60 [0.58, 4.40] 3.74 [1.94, 7.20] 3.13 [1.40, 7.02] 1.79 [0.67, 4.78] 1.70 [1.03, 2.81] 20.31 [5.54, 74.48] 5.20 [2.60, 10.40] 1.26 [0.40, 3.94] 2.30 [1.23, 4.30] 2.62 [1.69, 4.07] 3.47 [1.85, 6.49]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020 Onstenk 2015 Scher 2017 Skereňová 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect I.1.5 Miscellenous Cattrini 2019 Braf 2020 Joncas 2019 Swarp 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect	$\begin{array}{c} 0.9163\\ 0.47\\ 0.2852\\ -0.6162\\ 0.47\\ 1.3191\\ 1.141\\ 0.5844\\ = 0.37; \mbox{ Chi}^{=}=27.14, \mbox{ d}\\ Z=2.06\ (\mbox{P}=0.04)\\ 3.0111\\ 1.6487\\ 0.2311\\ 0.8329\\ 0.9632\\ = 0.34; \mbox{ Chi}^{=}=14.00, \mbox{ d}\\ Z=3.89\ (\mbox{P}=0.0001)\\ \end{array}$	0.5998 0.3375 0.245 0.2606 0.5161 0.3342 0.4121 0.4995 f= 7 (P = 0 0.663 0.3537 0.5817 0.3192 0.2247 '= 4 (P = 0	17 28 34 38 16 18 90 90 249 0.0003); I [₽] = 7 56 12 25 53 153 153 0.007); I [₽] = 1	20 88 60 54 13 45 101 18 399 .74% 32 198 14 90 53 387 71%	2.3% 3.6% 3.5% 2.6% 3.0% 2.6% 24.1% 2.1% 3.2% 2.3% 3.3% 3.6% 14.6%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.90] 1.60 [0.58, 4.40] 3.74 [1.94, 7.20] 1.79 [0.67, 4.78] 1.70 [1.03, 2.81] 20.31 [5.54, 74.48] 5.20 [2.60, 10.40] 1.26 [0.40, 3.94] 2.30 [1.23, 4.30] 2.62 [1.68, 4.07] 3.47 [1.85, 6.49]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Scher 2017 Skereňová 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect: I.1.5 Miscellenous Cattrini 2019 Staf 2020 Joncas 2019 Sharp 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	0.9163 0.47 0.2852 -0.6162 0.47 1.3191 1.141 0.5844 = 0.37; Chi [∓] = 27.14, d Z = 2.06 (P = 0.04) 3.0111 1.6487 0.2311 0.8329 0.9632 = 0.34; Chi [∓] = 14.00, d Z = 3.89 (P = 0.0001)	0.5998 0.3375 0.245 0.2606 0.5161 0.3342 0.4121 0.4995 f= 7 (P = 0 0.663 0.3537 0.5817 0.3192 0.2247 '= 4 (P = 0	17 28 34 38 16 18 90 249 0.0003); I ^a = 7 56 12 25 53 153 153 0.007); I ^a = 1 976	20 88 60 54 13 45 101 18 399 74% 32 198 14 90 53 387 71%	2.3% 3.6% 3.5% 2.6% 3.0% 2.6% 24.1% 2.1% 3.2% 2.3% 3.6% 14.6%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.90] 1.60 [0.58, 4.40] 3.74 [1.94, 7.20] 1.79 [0.67, 4.78] 1.70 [1.03, 2.81] 20.31 [5.54, 74.48] 5.20 [2.60, 10.40] 1.26 [0.40, 3.94] 2.30 [1.23, 4.30] 2.62 [1.69, 4.07] 3.47 [1.85, 6.49]	
I.1.4 Chemo Antonarakis 2015 Armstrong 2020 Belderbos 2019 Marín-Aguilera 2020 Onstenk 2015 Bicher 2016 Bicher 2017 Bicher 2017 Bicher 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect: I.1.5 Miscellenous Dattrini 2019 Find 2020 Joncas 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect: Distance 2019 Subtotal (95% CI)	0.9163 0.47 0.2852 -0.6162 0.47 1.3191 1.141 0.5844 = 0.37; Chi [#] = 27.14, d :Z = 2.06 (P = 0.04) 3.0111 1.6487 0.2311 0.8329 0.9632 = 0.34; Chi [#] = 14.00, d :Z = 3.89 (P = 0.0001)	0.5998 0.3375 0.245 0.2606 0.5161 0.3342 0.4121 0.4995 f= 7 (P = 0 0.663 0.3537 0.5817 0.5817 0.5817 0.5817 0.5817	17 28 34 38 16 18 90 8 249 0.0003); I [≠] = 7 56 6 12 25 53 153 153 0.007); I [≠] =	20 88 60 54 13 45 101 18 399 74% 32 198 14 90 53 387 71% 2056	2.3% 3.2% 3.6% 3.5% 2.6% 2.6% 24.1% 2.1% 3.2% 2.3% 3.3% 3.6% 14.6%	2.50 [0.77, 8.10] 1.60 [0.83, 3.10] 1.33 [0.82, 2.15] 0.54 [0.32, 0.90] 1.60 [0.58, 4.40] 3.74 [1.94, 7.20] 1.79 [0.67, 4.78] 1.70 [1.03, 2.81] 20.31 [5.54, 74.48] 5.20 [2.60, 10.40] 1.26 [0.40, 3.94] 2.30 [1.23, 4.30] 2.62 [1.89, 4.07] 3.47 [1.85, 6.49] 3.36 [2.56, 4.41]	

FIGURE 2 | Forest plot of hazard ratios (HRs) for association of liquid biopsy AR-V7 status with overall survival (OS) in all included studies. Pooled HRs were calculated using random effect model. AR-V7, androgen receptor splice variant 7; Cl, confidence interval and bars indicate 95% Cls. Subgroup analysis (ARS), enzalutamide or abiraterone; Enz, enzalutamide; Abi, abiraterone; Chemo, taxane based chemotherapy; Miscellaneous, treatments that do not belong to above treatments or not clearly defined) were assessed.

Study of Subdroup	log[Hazard Ratio]	SE	AR-V/+ / Total	AR-V7 - Total	Weight	Hazard Ratio IV. Random, 95% Cl	IV. Random, 95% Cl
2.1.1 ARSi	. ot						,
Antonarakis 2017	0.6575	0.2596	36	113	31%	1 93 (1 16 3 21)	
Armetrong 2010	0.0375	0.2000	20	00	2.1%	2 40 [1.10, 3.21]	
Armotrong 2019	0.0733	0.2208	20	00	3.2.70	2.40 [1.30, 3.70]	
Armstrong 2020	0.8329	0.2142	28	88	3.270	2.30 [1.51, 3.50]	
Chung 2019	1.6233	0.6549	5	15	2.1%	5.07 [1.40, 18.30]	
De Laere 2019	0.6881	0.2413	34	97	3.2%	1.99 [1.24, 3.19]	
Del Re 2017	1.5475	0.5739	14	22	2.3%	4.70 [1.53, 14.47]	
Del Re 2019	1.9021	0.7029	16	57	2.0%	6.70 [1.69, 26.57]	
Del Re 2021	1.5976	0.3239	30	54	3.0%	4.94 [2.62, 9.32]	
Erb 2020	0.6627	0.7767	7	6	1.8%	1.94 [0.42, 8.89]	
Gupta 2019	1.1632	0.4277	7	33	2.7%	3.20 [1.38, 7.40]	
Maillet 2019	1.9879	0.7697	15	16	1.8%	7.30 [1.61, 33.00]	
Marín-Aquilera 2020	-0.3147	0.3322	41	14	3.0%	0 73 10 38 1 401	
Markowski 2021	0.6206	0.4869	à	31	2.5%	1 86 [0 77 4 83]	
Okenowo 2019	1 7220	0.4000	22	26	2.37%	5 60 [2 40 13 07]	
Okeyawa 2010 Cohor 2016	1.7220	0.4011	40	110	2.7 /0	2 70 [2.40, 13.07]	
Scher 2010	1.3063	0.4011	10	112	2.0%	3.70 [1.44, 9.50]	
Seltz 2017	0.8459	0.3751	14	68	2.9%	2.33 [1.12, 4.86]	
Sepe 2019	2.5982	0.6033	7	28	2.2%	13.44 [4.12, 43.84]	
Subtotal (95% CI)			330	868	44.4%	2.89 [2.15, 3.87]	•
Heterogeneity: Tau² = Test for overall effect:	0.19; Chi ^z = 39.24, d Z = 7.10 (P < 0.0000)	f = 16 (P = l)	0.001); I ^z	= 59%			
2.1.2 Enz							
Antonarakis 2014	2 1 3 4 1	0.5635	12	19	2.3%	8.45 [2.80, 25.50]	
Del Re 2019	1 3/66	0 4954	16	57	2.5%	3 84 11 45 10 1 41	
Loronzo 2021	1.5455	0.4334	22	22	2.5 %	5 05 [2 40 40 64]	
LUIRIIZU ZUZ I	1.0194	0.3602	22	23	2.0%	5.05 [2.40, 10.64]	
QU 2017	0.7031	0.3537	17	34	2.9%	2.02 [1.01, 4.04]	
Wang 2018	2.4899	0.8995		22	1.6%	12.06 [2.07, 70.31]	
Subtotal (95% CI)			/4	155	12.2%	4.38 [2.44, 7.84]	
Test for overall effect:	Z = 4.96 (P < 0.0000	1)					
Test for overall effect: 2.1.3 Abi Antonarakis 2014	Z = 4.96 (P < 0.0000 2.8058	0.8224	6	25	1.7%	16.54 [3.30, 82.90]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019	Z = 4.96 (P ≺ 0.0000 2.8058 5.826	0.8224 0.9935	6	25 57	1.7% 1.4%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418	0.8224 0.9935 0.9303	6 16 2	25 57 20	1.7% 1.4% 1.5%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27	0.8224 0.9935 0.9303 0.2916	6 16 2 17	25 57 20 34	1.7% 1.4% 1.5% 3.1%	16.54 (3.30, 82.90) 339.00 (48.36, 2376.12) 10.40 (1.68, 64.40) 1.31 (0.74, 2.32)	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Shunebde 2020	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953	0.8224 0.9935 0.9303 0.2916 0.2789	6 16 2 17 42	25 57 20 34 28	1.7% 1.4% 1.5% 3.1% 3.1%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wann 2018	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953 1.7246	0.8224 0.9935 0.9303 0.2916 0.2789 0.5654	6 16 2 17 42 6	25 57 20 34 28 22	1.7% 1.4% 1.5% 3.1% 3.1% 2.3%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.80] 5.61 [1.85, 16.90]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI)	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953 1.7246	0.8224 0.9935 0.9303 0.2916 0.2789 0.5654	6 16 2 17 42 6 89	25 57 20 34 28 22 186	1.7% 1.4% 1.5% 3.1% 3.1% 2.3% 13.1%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002)	0.8224 0.9935 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1	6 16 2 17 42 6 89 0.00001); I	25 57 20 34 28 22 186 ² = 89%	1.7% 1.4% 1.5% 3.1% 3.1% 2.3% 13.1%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002)	0.8224 0.9935 0.9303 0.2916 0.2789 0.5654 f= 5 (P < I	6 16 2 17 42 6 89 0.00001); I	25 57 20 34 28 22 186 ² = 89%	1.7% 1.4% 1.5% 3.1% 3.1% 2.3% 13.1%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi [≢] = 46.44, d Z = 3.05 (P = 0.002) 1.0296	0.8224 0.935 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1	6 16 2 17 42 6 89 0.00001); I	25 57 20 34 28 22 186 * = 89%	1.7% 1.4% 1.5% 3.1% 2.3% 13.1% 2.6%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Amstrong 2020	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5305	0.8224 0.9935 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1	6 16 2 17 42 6 89 9,00001);1 17 28	25 57 20 34 28 22 186 *= 89%	1.7% 1.4% 1.5% 3.1% 2.3% 13.1%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 2.30]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2027	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306	0.8224 0.9935 0.2303 0.2916 0.2789 0.5654 f= 5 (P < 1 0.4602 0.3227 0.1275	6 16 2 17 42 6 89 0.00001);1 17 28	25 57 20 34 22 186 2 = 89% 20 82	1.7% 1.4% 1.5% 3.1% 2.3% 13.1% 2.6% 3.0%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Eth 2020	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi² = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 2.2241	0.8224 0.9335 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1 0.4602 0.3227 0.1715 0.775	6 16 2 17 42 6 89 0.00001);1 17 28 14	25 57 20 34 28 22 186 ² = 89% 20 88 22 20	1.7% 1.4% 1.5% 3.1% 2.3% 13.1% 2.6% 3.0% 3.0%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Erb 2020	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi [₽] = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239	0.8224 0.9335 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1 0.4602 0.3227 0.1715 0.7956	6 16 2 17 42 6 89 0.00001);1 17 28 14 5 5	25 57 20 34 28 22 186 *= 89% 20 88 22 88 22	1.7% 1.4% 1.5% 3.1% 2.3% 13.1% 2.6% 3.0% 3.3% 1.8%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04]	
Test for overall effect: 21.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 21.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Erb 2020 Marín-Aguilera 2020	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239 -0.5798	0.8224 0.935 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1 0.4602 0.3227 0.3227 0.1715 0.7956 0.2421	6 16 2 17 42 6 89 0.00001); I 28 17 28 14 5 38	25 57 20 34 28 22 186 ² = 89% 20 88 22 88 20 88 22 85 4	1.7% 1.4% 3.1% 3.1% 2.3% 13.1% 3.0% 3.3% 3.2%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04] 0.56 [0.35, 0.90]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Erb 2020 Marín-Aguilera 2020 Onstenk 2015	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi [≠] = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239 -0.5798 -0.2231	0.8224 0.9335 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1) 0.4602 0.3227 0.1715 0.7956 0.2421 0.2421 0.2421	6 16 2 17 42 6 89 0.00001);1 17 28 14 5 38 38 16	25 57 20 34 22 186 ² = 89% 20 88 22 8 54 13	1.7% 1.4% 1.5% 3.1% 2.3% 13.1% 2.6% 3.0% 3.3% 1.8% 3.2% 2.8%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04] 0.56 [0.35, 0.90] 0.80 [0.36, 1.80]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Erb 2020 Marín-Aguilera 2020 Onstenk 2015 Scher 2016	Z = 4.96 (P < 0.0000) 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239 -0.5798 -0.2231 0.3221	0.8224 0.935 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1 0.4602 0.3227 0.1715 0.7956 0.2421 0.4137 0.3962	6 16 2 17 42 89 0.00001); 1 17 28 14 5 38 14 5 38 16 18	25 57 20 34 22 186 ² = 89% 20 88 22 8 54 13 3 45	1.7% 1.4% 1.5% 3.1% 2.3% 13.1% 2.6% 3.0% 3.3% 1.8% 3.2% 2.8%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04] 0.56 [0.35, 0.90] 0.80 [0.36, 1.80] 1.38 [0.63, 3.00]	
Test for overall effect: 21.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 21.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Erb 2020 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Tagawa 2019	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi [≠] = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239 -0.5798 -0.2231 0.3221 0.967	0.8224 0.9355 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1 0.4602 0.3227 0.1715 0.3256 0.2421 0.4137 0.3962 0.3755	6 16 2 17 42 6 89 0.00001);1 17 28 14 5 38 14 5 38 16 8 36	25 57 20 34 28 22 186 * = 89% 20 88 22 8 8 54 13 45 18	1.7% 1.4% 3.1% 3.1% 2.3% 13.1% 2.6% 3.0% 3.3% 1.8% 3.2% 2.8% 2.8% 2.8%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04] 0.56 [0.35, 0.90] 0.80 [0.36, 1.80] 1.38 [0.63, 3.00] 2.63 [1.26, 6.49]	
Test for overall effect: Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Gu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Erb 2020 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Tagawa 2019 Subtotal (95% CI)	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239 -0.5798 -0.2231 0.3221 0.967	0.8224 0.9335 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1 0.3227 0.3227 0.3227 0.1715 0.7956 0.2421 0.4137 0.3962 0.3755	6 16 2 17 42 6 89 0.00001); 1 7 28 14 5 38 14 5 38 16 18 36 172	25 57 20 34 28 22 186 ² = 89% 20 88 22 8 22 8 54 13 45 18 268	1.7% 1.4% 3.1% 3.1% 2.3% 13.1% 3.0% 3.3% 1.8% 3.2% 2.8% 2.8% 2.8% 2.8% 2.2% 2.2%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04] 0.56 [0.35, 0.90] 0.80 [0.36, 1.80] 1.38 [0.63, 3.00] 2.63 [1.26, 5.49] 1.81 [0.71, 4.61]	
Test for overall effect: Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Gu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Teth 2020 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Tagawa 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	Z = 4.96 (P < 0.0000) 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239 -0.5798 -0.2231 0.3221 0.967 1.65; Chi ² = 116.89, Z = 1.24 (P = 0.21)	0.8224 0.9335 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1 0.4602 0.3227 0.1715 0.7956 0.2421 0.2421 0.2421 0.2421 0.2421 0.2455 df= 7 (P <	6 16 2 17 42 6 89 0.00001);1 17 28 14 5 38 16 18 36 172 0.00001);	25 57 20 34 22 186 ² = 89% 20 88 22 8 54 13 45 18 268 8 [² = 94%	1.7% 1.4% 1.5% 3.1% 2.3% 13.1% 2.6% 3.0% 3.3% 1.8% 3.2% 2.8% 2.8% 2.8% 2.9%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04] 0.56 [0.35, 0.90] 0.80 [0.36, 1.80] 1.38 [0.63, 3.00] 2.63 [1.26, 5.49] 1.81 [0.71, 4.61]	
Test for overall effect: Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Gu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Del Re 2017 Del Re 2017 Del Re 2017 Scher 2016 Tagawa 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.4 E Minoc "accurate	Z = 4.96 (P < 0.0000) 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239 -0.5798 -0.2231 0.3221 0.967 1.65; Chi ² = 116.89, Z = 1.24 (P = 0.21)	0.8224 0.9335 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1 0.4602 0.3227 0.1715 0.7956 0.2421 0.2421 0.2421 0.3755 df= 7 (P <	6 16 2 17 42 6 89 0.00001);1 17 28 14 5 38 16 18 36 172 0.00001);	25 57 20 34 22 186 ² = 89% 20 88 22 8 54 13 45 18 268 1 ² = 94%	1.7% 1.4% 1.5% 3.1% 2.3% 13.1% 2.6% 3.0% 3.3% 1.8% 3.2% 2.8% 2.8% 2.8% 2.9%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04] 0.56 [0.35, 0.90] 0.80 [0.36, 1.80] 1.38 [0.63, 3.00] 2.63 [1.26, 5.49] 1.81 [0.71, 4.61]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Erb 2020 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Tagawa 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.5 Miscellenous	Z = 4.96 (P < 0.0000) 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239 -0.5798 -0.2231 0.3221 0.967 1.65; Chi ² = 116.89, Z = 1.24 (P = 0.21)	0.8224 0.935 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1 0.4602 0.3227 0.1715 0.7956 0.2421 0.4137 0.3962 0.3755 df= 7 (P <	6 16 2 17 42 6 89 0.00001); 1 17 28 14 5 38 14 5 38 16 18 36 18 36 172 0.00001);	25 57 20 34 22 186 *= 89% 20 88 22 8 54 13 45 18 268 1 ² = 94%	1.7% 1.4% 1.5% 3.1% 2.3% 13.1% 2.6% 3.0% 3.3% 1.8% 3.2% 2.8% 2.9% 2.9%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04] 0.56 [0.35, 0.90] 0.80 [0.36, 1.80] 1.38 [0.63, 3.00] 2.63 [1.26, 5.49] 1.81 [0.71, 4.61]	
Test for overall effect: Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Erb 2020 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Tagawa 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.5 Miscellenous Joncas 2019	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239 -0.5798 -0.2231 0.321 0.967 1.65; Chi ² = 116.89, Z = 1.24 (P = 0.21) 0.6931	0.8224 0.935 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1 0.4602 0.3227 0.1715 0.7956 0.2421 0.4137 0.3962 0.3755 df= 7 (P <	6 16 2 17 42 6 89 0.00001);1 17 28 14 5 38 14 5 38 14 5 38 14 5 38 14 5 38 16 18 36 172 0.00001);	25 57 20 34 28 22 186 ² = 89% 20 88 22 8 54 13 45 18 268 ² = 94%	1.7% 1.4% 3.1% 2.3% 13.1% 2.6% 3.0% 3.3% 1.8% 3.2% 2.8% 2.8% 2.8% 2.9%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04] 0.56 [0.35, 0.90] 0.80 [0.36, 1.80] 1.38 [0.63, 3.00] 2.63 [1.26, 5.49] 1.81 [0.71, 4.61]	
Test for overall effect: Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Erb 2020 Marín-Aguilera 2020 Dol Re 2017 Erb 2020 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Tagawa 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.5 Miscellenous Joncas 2019 Markowski 2021	Z = 4.96 (P < 0.0000) 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239 -0.5798 -0.2231 0.3221 0.3221 1.65; Chi ² = 116.89, Z = 1.24 (P = 0.21) 0.6931 0.5008	0.8224 0.9335 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1 0.4602 0.3227 0.1715 0.7916 0.2421 0.2421 0.2421 0.2421 0.3755 df= 7 (P < 0.4651 0.4551 0.4551	6 16 2 17 42 6 89 0.00001);1 17 28 14 5 38 16 18 36 16 18 36 172 0.00001);	25 57 20 34 22 186 ² = 89% 20 88 22 8 8 54 13 45 18 268 8 54 13 45 18 268 8 54 13 45 18 268 74 13 45 18 213 45 13 45 13 45 13 45 13 45 13 45 13 45 13 45 13 45 13 13 14 13 14 13 14 13 14 13 14 13 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14	1.7% 1.4% 1.5% 3.1% 2.3% 13.1% 2.6% 3.0% 3.3% 1.8% 3.2% 2.8% 2.8% 2.8% 2.8% 2.9% 22.3%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04] 0.56 [0.35, 0.90] 0.80 [0.36, 1.80] 1.38 [0.63, 3.00] 2.63 [1.26, 5.49] 1.81 [0.71, 4.61] 2.00 [0.82, 4.88] 1.65 [0.68, 4.02]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Erb 2020 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Tagawa 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.5 Miscellenous Joncas 2019 Markowski 2021 Tommasi 2018	Z = 4.96 (P < 0.0000) 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239 -0.5798 -0.2231 0.3221 0.967 1.65; Chi ² = 116.89, Z = 1.24 (P = 0.21) 0.6931 0.5008 0.3988	0.8224 0.9335 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1 0.4602 0.3227 0.1715 0.7956 0.2421 0.4137 0.3962 0.3755 df= 7 (P < 0.4551 0.4551 0.4088	6 16 2 17 42 89 0.00001); 1 17 28 14 5 38 16 18 36 172 0.00001); 12 9 11	25 57 20 34 22 186 ₹= 89% 20 88 22 8 54 13 45 18 268 ₹ = 94% 14 31	1.7% 1.4% 1.5% 3.1% 2.3% 13.1% 2.8% 3.0% 3.3% 1.8% 3.2% 2.8% 2.9% 2.8% 2.8% 2.8%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04] 0.56 [0.35, 0.90] 0.80 [0.36, 1.80] 1.38 [0.63, 3.00] 2.63 [1.26, 5.49] 1.81 [0.71, 4.61] 2.00 [0.82, 4.88] 1.65 [0.68, 4.02] 1.49 [0.67, 3.32]	
Test for overall effect: Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Erb 2020 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Tagawa 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.5 Miscellenous Joncas 2019 Markowski 2021 Tommasi 2018 Subtotal (95% CI)	Z = 4.96 (P < 0.0000) 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239 -0.6798 -0.2231 0.3221 0.967 1.65; Chi ² = 116.89, Z = 1.24 (P = 0.21) 0.6931 0.5008 0.3988	0.8224 0.935 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1 0.4602 0.3227 0.1715 0.7956 0.2421 0.4137 0.3962 0.3755 df= 7 (P < 0.4551 0.4551 0.4551 0.4588	6 16 2 17 42 6 89 0.00001); 1 17 28 14 5 38 14 5 38 16 18 36 172 0.00001); 12 9 11 32	25 57 20 34 28 22 186 ² = 89% 20 88 22 8 54 15 18 268 268 1 ² = 94% 14 31 31 376	1.7% 1.4% 1.5% 3.1% 2.3% 13.1% 2.6% 3.0% 3.3% 1.8% 3.2% 2.8% 2.8% 2.8% 2.8% 2.8% 2.6% 2.6% 2.6% 8.0%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04] 0.56 [0.35, 0.90] 0.80 [0.36, 1.80] 1.38 [0.63, 3.00] 2.63 [1.26, 5.49] 1.81 [0.71, 4.61] 2.00 [0.82, 4.88] 1.65 [0.68, 4.02] 1.49 [0.67, 3.32] 1.68 [1.03, 2.76]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Erb 2020 Marín-Aguilera 2020 Del Re 2017 Erb 2020 Marín-Aguilera 2020 Donstenk 2015 Scher 2016 Tagawa 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.5 Miscellenous Joncas 2019 Markowski 2021 Formasi 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect:	Z = 4.96 (P < 0.0000 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi [₽] = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239 -0.5798 -0.2231 0.3271 0.967 1.65; Chi [₽] = 116.89, Z = 1.24 (P = 0.21) 0.6931 0.5008 0.3988 0.00; Chi [₽] = 0.23, df: Z = 2.06 (P = 0.04)	0.8224 0.935 0.9303 0.2916 0.2789 0.5654 f= 5 (P < 1 0.4602 0.3227 0.1715 0.7956 0.2421 0.3962 0.3755 df= 7 (P < 0.4551 0.4551 0.4543 0.4088 = 2 (P = 0.	6 16 2 17 42 6 89 0.00001); I 17 28 14 5 38 14 5 38 14 5 38 16 17 28 14 5 38 16 17 28 14 5 38 16 17 28 14 5 38 16 17 28 14 5 38 16 17 28 14 5 38 16 16 2 17 28 14 5 38 16 17 28 14 5 38 16 18 36 18 18 36 18 18 36 18 18 36 18 18 18 18 18 18 18 18 18 18	25 57 20 34 28 22 186 ² = 89% 20 88 22 8 54 13 45 18 268 1 ² = 94% 1 ⁴ 31 76 %	1.7% 1.4% 1.5% 3.1% 2.3% 13.1% 2.6% 3.0% 3.3% 1.8% 3.2% 2.8% 2.8% 2.8% 2.8% 2.6% 2.6% 2.8% 8.0%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04] 0.56 [0.35, 0.90] 0.80 [0.36, 1.80] 1.38 [0.63, 3.00] 2.63 [1.26, 5.49] 1.81 [0.71, 4.61] 2.00 [0.82, 4.88] 1.65 [0.68, 4.02] 1.49 [0.67, 3.32] 1.68 [1.03, 2.76]	
Test for overall effect: 2.1.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Gu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Erb 2020 Marín-Aguilera 2020 Onstenk 2015 Scher 2016 Tagawa 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.5 Miscellenous Joncas 2019 Markowski 2021 Tommasi 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.5 Miscellenous Joncas 2019 Markowski 2021 Tommasi 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for overall effect:	Z = 4.96 (P < 0.0000) 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239 -0.5798 -0.2231 0.3221 0.967 1.65; Chi ² = 116.89, Z = 1.24 (P = 0.21) 0.6931 0.5008 0.3988 0.00; Chi ² = 0.23, df: Z = 2.06 (P = 0.04)	 0.8224 0.9355 0.9303 0.2916 0.2789 0.5654 f = 5 (P < 1) 0.4602 0.3227 0.1715 0.7956 0.2421 0.3962 0.3755 df = 7 (P < 0.4551 0.4551 0.4543 0.4088 = 2 (P = 0. 	6 16 2 17 42 6 89 0.00001); I 17 28 14 5 38 14 5 38 14 5 38 16 17 28 14 5 38 16 17 28 14 5 38 16 17 28 14 5 38 16 17 28 14 5 38 16 17 28 14 5 38 16 16 2 17 28 14 5 38 16 17 28 14 5 38 16 18 36 17 28 14 5 38 16 18 36 17 28 14 5 38 16 18 36 17 28 14 5 38 16 18 36 17 28 14 5 38 16 18 36 172 28 18 36 172 28 18 36 172 28 18 36 172 28 28 18 36 172 28 18 36 172 28 18 36 172 28 18 36 172 28 18 36 172 28 18 36 172 28 18 36 172 28 18 36 172 28 18 36 172 28 18 36 172 28 18 36 172 28 18 36 172 28 18 36 172 28 18 36 172 28 18 28 18 36 172 28 18 28 18 28 18 28 18 28 18 28 28 18 28 18 28 28 18 28 18 28 28 28 28 28 28 28 28 28 2	25 57 20 34 28 22 186 ² = 89% 20 88 22 8 54 13 45 18 268 8 54 13 13 76 %	1.7% 1.4% 1.5% 3.1% 2.3% 13.1% 2.6% 3.0% 3.3% 1.8% 3.2% 2.8% 2.8% 2.8% 2.8% 2.6% 2.6% 2.8% 8.0%	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04] 0.56 [0.35, 0.90] 0.80 [0.36, 1.80] 1.38 [0.63, 3.00] 2.63 [1.26, 5.49] 1.81 [0.71, 4.61] 2.00 [0.82, 4.88] 1.65 [0.68, 4.02] 1.49 [0.67, 3.32] 1.68 [1.03, 2.76]	
Test for overall effect: 21.3 Abi Antonarakis 2014 Del Re 2019 Miyamoto 2018 Qu 2017 Stuopelyte 2020 Wang 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 21.4 Chemo Antonarakis 2015 Armstrong 2020 Del Re 2017 Erb 2020 Marín-Aguilera 2020 Del Re 2017 Erb 2020 Marín-Aguilera 2020 Donstenk 2015 Scher 2016 Scher 2016 Scher 2016 Tagawa 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.5 Miscellenous Joncas 2019 Markowski 2021 Tommasi 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2.1.5 Miscellenous Joncas 2019 Markowski 2021 Tommasi 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: Total (95% CI)	Z = 4.96 (P < 0.0000) 2.8058 5.826 2.3418 0.27 0.0953 1.7246 1.95; Chi ² = 46.44, d Z = 3.05 (P = 0.002) 1.0296 0.5306 2.3241 0.239 -0.5798 -0.2231 0.3221 0.967 1.65; Chi ² = 116.89, Z = 1.24 (P = 0.21) 0.6931 0.5008 0.3988 0.00; Chi ² = 0.23, df Z = 2.06 (P = 0.04) 2.220 (P = 0.04)	0.8224 0.9335 0.2916 0.2789 0.5654 f= 5 (P < 1 0.4602 0.3227 0.1715 0.2421 0.2421 0.2421 0.2421 0.2423 0.3755 df= 7 (P < 0.4551 0.4551 0.4563 0.4588 = 2 (P = 0.	6 16 2 17 42 6 89 0.00001); 17 28 14 5 38 16 18 36 172 0.00001); 12 9 11 32 89); ² = 09 697	25 57 20 34 22 186 ² = 89% 20 88 22 8 8 24 13 45 18 268 8 54 13 45 18 268 8 54 13 45 18 268 8 54 13 45 13 45 13 76 %	1.7% 1.4% 1.5% 3.1% 2.3% 13.1% 2.6% 3.0% 3.3% 18.% 2.8% 2.8% 2.8% 2.8% 2.8% 2.8% 2.8% 2	16.54 [3.30, 82.90] 339.00 [48.36, 2376.12] 10.40 [1.68, 64.40] 1.31 [0.74, 2.32] 1.10 [0.64, 1.90] 5.61 [1.85, 16.99] 6.88 [1.99, 23.73] 2.80 [1.14, 6.90] 1.70 [0.90, 3.20] 10.22 [7.30, 14.30] 1.27 [0.27, 6.04] 0.56 [0.35, 0.90] 0.80 [0.36, 1.80] 1.38 [0.63, 3.00] 2.63 [1.26, 5.49] 1.81 [0.71, 4.61] 2.00 [0.82, 4.88] 1.65 [0.68, 4.02] 1.49 [0.67, 3.32] 1.68 [1.03, 2.76] 2.96 [2.20, 3.98]	

FIGURE 3 | Forest plot of hazard ratios (HRs) for association of liquid biopsy AR-V7 status with PFS in all studies. Pooled HRs were calculated using random effect model. AR-V7: androgen receptor splice variant 7. Cl, confidence interval and bars indicate 95% Cls. Subgroup analysis (ARSi, enzalutamide or abiraterone; Enz, enzalutamide; Abi, abiraterone; Chemo, taxane based chemotherapy; Miscellaneous, treatments that do not belong to above treatments or not clearly defined) were assessed.

				7		Hererd Datia	Upyord Datio
Study or Subgroup	Ion[Hazard Ratio]	SE	AR-V/+ AR-V Total T	otal	Weight	IV Random 95% CL	IN Random 95% Cl
3.1.1 ARSi	log[nuzuru nuuo]	JL	Total 1	otui	reight	TV, Rundom, 55% Cr	
Antonarakis 2017	0.6098	0.2443	36	113	9.8%	1.84 [1.14, 2.97]	
Chung 2019	1.4351	0.6461	5	15	7.7%	4.20 [1.18, 14.90]	_
Maillet 2019	2.3795	0.7674	15	16	7.0%	10.80 [2.40, 48.60]	
Marín-Aguilera 2020	0.8574	0.4037	41	14	9.1%	2.36 [1.07, 5.20]	
Okegawa 2018	1.9601	0.5326	23	26	8.4%	7.10 [2.50, 20.17]	
Seitz 2017	1.9445	0.5539	12	62	8.2%	6.99 [2.36, 20.70]	
Sepe 2019	2.6433	0.6715	7	28	7.6%	14.06 [3.77, 52.43]	
Subtotal (95% CI)			139	274	57.8%	4.69 [2.50, 8.82]	•
Heterogeneity: Tau² =	0.44; Chi ² = 17.48, d	f=6 (P=1	0.008); I² = 669	%			
Test for overall effect: .	Z = 4.80 (P < 0.0000	1)					
3.1.2 Enz							
Antonarakis 2014	2.0015	0.5224	12	19	8.4%	7.40 [2.66, 20.60]	
Subtotal (95% CI)			12	19	8.4%	7.40 [2.66, 20.60]	◆
Heterogeneity: Not ap	plicable						
Test for overall effect: .	Z = 3.83 (P = 0.0001))					
3.1.3 Abi							
Antonarakis 2014	2.7788	0.7198	6	25	7.3%	16.10 [3.93, 66.00]	_
Todenhofer 2016	2.1748	0.6223	4	33	7.8%	8.80 [2.60, 29.80]	
Subtotal (95% CI)			10	58	15.1%	11.39 [4.53, 28.67]	◆
Heterogeneity: Tau ² = Test for overall effect: .	0.00; Chi² = 0.40, df Z = 5.17 (P < 0.0000	= 1 (P = 0. 1)	.53); I² = 0%				
244 Chama							
3.1.4 Chemo	0.7440	0.4000	47	20	0.00	0.40.00.00.400	
Antonarakis 2015 Maxin Aquilara 2020	0.7419	0.4323	17	20	8.9%	2.10 [0.90, 4.90]	
Subtotal (95% CI)	-0.8007	0.2942	38	54 74	9.8% 18.7%	0.45 [0.27, 0.74]	
Hotorogeneity: Tau ² -	1.06°.∩hi≅ – 9.46.df	- 1 (P - 0	002): 12 - 80%	14	10.1 /0	0.00 [0.21, 4.22]	
Test for overall effect:	Z = 0.09 (P = 0.93)	- 1 (1 - 0.	.002),1 = 03.0				
3.1.5 Miscellenous							
Subtotal (95% CI)			0	0		Not estimable	
Heterogeneity: Not ap	plicable						
Test for overall effect:	Not applicable						
Total (95% CI)			216	425	100.0%	4.34 [2.15, 8.76]	•
Heterogeneity: Tau ² =	1.25: Chi ² = 79.78 d	f=11 (P =	< 0.00001); I ² =	86%			
Test for overall effect:	Z = 4.10 (P < 0.0001))		5070			
Test for subgroup diffe	erences: Chi ² = 8.26.	df = 3 (P =	= 0.04), I ² = 63	.7%			AK-V/ + AK-V/ -

FIGURE 4 | Forest plot of hazard ratios (HRs) for association of liquid biopsy AR-V7 status with PSA-PFS in all studies. Pooled HRs were calculated using random effect model. AR-V7, androgen receptor splice variant 7; CI, confidence interval and bars indicate 95% CIs. Subgroup analysis (ARSi, enzalutamide or abiraterone; Enz, enzalutamide; Abi, abiraterone; Chemo, taxane based chemotherapy; Miscellaneous, treatments that do not belong to above treatments or not clearly defined) were assessed.

AR-V7 from liquid biopsies are now available, including modified AdnaTest ProstateCancer, and droplet digital PCR of CTCs enriched by various CTC isolation platforms (see **Table 1**). We recently confirmed CTC-based AR-V7 testing is more reliable than exosomal RNA and cell free tumor RNA in plasma (47). Accumulating reports on the association of AR-V7 detectability in liquid biopsy with therapy response and patient survival have prompted us to perform this systematic review and meta-analysis on the prognostic and predictive utility of liquid biopsy-based AR-V7 significantly associates with poor outcomes to ARSi treatment as shown for OS, PFS, PSA-PFS (P <0.001). This strongly supports the notion that AR-V7 detection from CRPC patient liquid biopsies has prognostic and predictive power. This observation is highly clinically relevant and could

affect how clinicians make treatment decisions for patients with (metastatic) CRPC and when to transition patients to taxanebased chemotherapy.

While on taxane-based treatment, the association of AR-V7 presence with poorer outcome is still significant (P = 0.04) for OS data and lack adequate power for PFS (P = 0.21) or PSA-PFS (P = 0.93). However, there are relatively fewer publications in this subgroup, so these conclusions are based on weaker datasets compared to the ARSi treated subgroup; for instance, the omitting one publication changes the P-value and AR-V7 impact on OS would no longer be significant (**Supplementary Table 3**). Our data agree with a recent report that AR-V7 may contribute to taxane resistance by circumventing taxane-induced inhibitory effects both *in vitro* (cell lines) and *in vivo* (PC tissue) (43, 48). On the other hand, we cannot exclude the possibility

~					Hazard Ratio	Hazard Ratio
_	Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
	Antonarakis 2015	-0.1863	0.4487	20.7%	0.83 [0.34, 2.00]	
	Graf 2020	-0.478	0.2917	35.0%	0.62 [0.35, 1.10]	
	Scher 2016	-1.4271	0.4413	21.1%	0.24 [0.10, 0.57]	
	Scher 2018	-0.478	0.4119	23.2%	0.62 [0.28, 1.39]	
	Total (95% CI)			100.0%	0.54 [0.34, 0.87]	•
	Heterogeneity: Tau ² =	0.08; Chi ² = 4.63, df	= 3 (P = 1	0.20); I ^z =	35%	
	Test for overall effect:	Z = 2.55 (P = 0.01)				Taxanes ARSi
_						
в					Hazard Ratio	Hazard Ratio
в	_Study or Subgroup	log[Hazard Ratio] 56	E Weigh	Hazard Ratio t IV, Random, 95% Cl	Hazard Ratio IV, Random, 95% CI
в	<u>Study or Subgroup</u> Antonarakis 2015	log[Hazard Ratio 0.8154] S E 4 0.5483	E Weigh 3 14.1%	Hazard Ratio t IV, Random, 95% Cl 5 2.26 (0.77, 6.62)	Hazard Ratio
в	<u>Study or Subgroup</u> Antonarakis 2015 Graf 2020	log[Hazard Ratio 0.8154 -0.2485] <u>SI</u> 4 0.5483 5 0.1517	E Weigh 3 14.1% 7 36.0%	Hazard Ratio t IV, Random, 95% Cl 2.26 (0.77, 6.62) 0.78 (0.58, 1.05)	Hazard Ratio
в	Study or Subgroup Antonarakis 2015 Graf 2020 Scher 2016	log[Hazard Ratio 0.8154 -0.2486 -0.0834] SE 4 0.5483 5 0.1517 4 0.3833	E Weigh 3 14.1% 7 36.0% 3 21.3%	Hazard Ratio t IV, Random, 95% Cl 2.26 (0.77, 6.62) 0.78 (0.58, 1.05) 0.92 (0.43, 1.95)	Hazard Ratio
в	Study or Subgroup Antonarakis 2015 Graf 2020 Scher 2016 Scher 2018	log[Hazard Ratio 0.8154 -0.2485 -0.0834 0.5126] SE 4 0.5483 5 0.1517 4 0.3833 8 0.2655	Weigh 3 14.1% 7 36.0% 3 21.3% 5 28.5%	Hazard Ratio <u>IV, Random, 95% Cl</u> 2.26 (0.77, 6.62) 0.78 (0.58, 1.05) 0.92 (0.43, 1.95) 1.67 (0.99, 2.81)	Hazard Ratio
в	Study or Subgroup Antonarakis 2015 Graf 2020 Scher 2016 Scher 2018 Total (95% CI)	log[Hazard Ratio 0.8154 -0.2486 -0.0834 0.5128] SI 4 0.5483 5 0.1517 4 0.3833 8 0.2655	 Weigh 3 14.1% 7 36.0% 3 21.3% 5 28.5% 100.0% 	Hazard Ratio t IV, Random, 95% Cl 2.26 (0.77, 6.62) 0.78 (0.58, 1.05) 0.92 (0.43, 1.95) 1.67 (0.99, 2.81) 1.17 (0.71, 1.92)	Hazard Ratio IV, Random, 95% CI
В	Study or Subgroup Antonarakis 2015 Graf 2020 Scher 2016 Scher 2018 Total (95% CI) Heterogeneity: Tau ²	log[Hazard Ratio 0.8154 -0.2486 -0.0834 0.5126 = 0.16; Chi ² = 8.64, d] SB 4 0.5483 5 0.1517 4 0.3833 3 0.2655 df= 3 (P =	E Weigh 3 14.1% 7 36.0% 3 21.3% 5 28.5% 100.0% = 0.03); ²	Hazard Ratio t IV, Random, 95% Cl 2.26 [0.77, 6.62] 0.78 [0.58, 1.05] 0.92 [0.43, 1.95] 1.67 [0.99, 2.81] 1.67 [0.71, 1.92] = 65%	Hazard Ratio
В	Study or Subgroup Antonarakis 2015 Graf 2020 Scher 2016 Scher 2018 Total (95% CI) Heterogeneity: Tau ² Test for overall effec	log[Hazard Ratio 0.8154 -0.2484 -0.0834 0.5126 = 0.16; Chi ² = 8.64, t: Z = 0.61 (P = 0.54)] SB 4 0.5483 5 0.1517 4 0.3833 3 0.2655 df = 3 (P =	E Weigh 3 14.1% 7 36.0% 3 21.3% 5 28.5% 100.09 = 0.03); I ²	Hazard Ratio t IV, Random, 95% Cl 2.26 [0.77, 6.62] 0.78 [0.58, 1.05] 0.92 [0.43, 1.95] 1.67 [0.99, 2.81] 1.17 [0.71, 1.92] = 65%	Hazard Ratio I IV, Random, 95% CI

that AR-V7 expression was induced in CRPC patients who had received ARSi prior to chemotherapy, and that its effect on OS has not been completely washed out by taxanes. We note that four studies suggest that chemotherapy would be a better option compared to ARSi (HR 0.54, P = 0.01) in AR-V7 positive CRPC, suggesting that AR-V7 determination is important in chemotherapy-treated patients. More studies in this subgroup are warranted.

Three other meta-analyses on AR-V7 prognostication (13, 49, 50) have been published recently, but given the common inaccessibility of current tissue biopsies, our meta-analysis exclusively focuses on liquid biopsies and includes the most up-to-date studies. Further, we not only include all studies with author self-reported HR and 95% CI, but also calculate HR and 95% CI with established methods (12) for some papers with insufficient and incomplete statistical reporting. Nevertheless, our systematic review has limitations. We only examined OS, PFS, and PSA-PFS, and did not assess other treatment outcomes such as PSA response. Discrepancies in the definition of PSA response (e.g., extent of PSA fall in a specific timeframe) exist across studies and given our selection criteria, papers were excluded if they only reported PSA response without survival data. Secondly, statistical power was limited by the numbers of studies available and small sample sizes in some of the subgroups analysed. Thirdly, included study designs differed greatly in biological material investigated (type of liquid biopsy and content such as CTCs or exosomes). For some studies, patients were enrolled from a single centre, potentially leading to

publication bias and selection bias. Also, no randomized study has ever directly compared the predictive value of AR-V7 in patients treated with chemotherapy vs. ARSi. Therefore, the results are indirect with potential bias. Lastly, the variability of techniques used to determine AR-V7 positivity, namely, qRT-PCR and ddPCR of mRNA derived from CTC, whole blood, exosome, could result in differing conclusions. The cut-off value is essential in defining and interpretation of AR-V7 positivity, due to the continuous nature of this variable; more work is required to answer the question of whether the degree of AR-V7 presence is important. Last but not least, other CTC AR detection methods have been adopted such as RNA-seq and immunostaining. Despite the variety of methodologies, we found that liquid biopsy detectable AR-V7 correlates with disease outcomes (**Supplementary Figure 2**).

In conclusion, ARSi and taxane-based chemotherapy are approved treatment options for CPRC patients and are used globally. Use of emerging methodologies, such as liquid biopsydetermined AR-V7, to optimize utility of a known predictive biomarker could help to guide the optimal treatment sequencing pathway for each patient in a personalised manner and is therefore of clinical importance. Standardization of liquid biopsy AR-V7 detection would underpin utility in clinical practice. Avoiding ineffective therapies or early switching to more effective approaches should ensure better outcomes for patients. However, further studies on chemotherapy-treated patient cohort and direct comparison of chemotherapy vs. ARSi are warranted.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Project development, methodology, data collection and analysis: TK and YM. Conceptualization: YM and TK. Project development: TB, KS, PDS and WC. Statistics: JD, TK and YM. Manuscript writing, editing, and reviewing: all authors. All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

FUNDING

TK received an Ingham Institute/Narellan Rotary Club Men's health grant 2018 and a WSU School of Medicine Androgen Receptor Research scholarship.

REFERENCES

- Lonergan PE, Tindall DJ. Androgen Receptor Signaling in Prostate Cancer Development and Progression. J Carcinog (2011) 10:20–. doi: 10.4103/1477-3163.83937
- Cattrini CA-O, España R, Mennitto A, Bersanelli MA-O, Castro EA-O, Olmos D, et al. Optimal Sequencing and Predictive Biomarkers in Patients With Advanced Prostate Cancer. *Cancers* (2021) 13:4522. doi: 10.3390/ cancers13184522
- Wyatt AW, Annala M, Aggarwal R, Beja K, Feng F, Youngren J, et al. Concordance of Circulating Tumor DNA and Matched Metastatic Tissue Biopsy in Prostate Cancer. J Natl Cancer Inst (2017) 109:djx118. doi: 10.1093/ jnci/djx118
- 4. Shafi AA, Putluri V, Arnold JM, Tsouko E, Maity S, Roberts JM, et al. Differential Regulation of Metabolic Pathways by Androgen Receptor (AR) and its Constitutively Active Splice Variant, AR-V7, in Prostate Cancer Cells. Oncotarget (2015) 6:31997–2012. doi: 10.18632/oncotarget.5585
- Sharp A, Coleman I, Yuan W, Sprenger C, Dolling D, Rodrigues DN, et al. Androgen Receptor Splice Variant-7 Expression Emerges With Castration Resistance in Prostate Cancer. *J Clin Invest* (2019) 129:192–208. doi: 10.1172/ JCI122819
- Stuopelyte K, Sabaliauskaite R, Bakavicius A, Haflidadóttir BS, Visakorpi T, Väänänen RM, et al. Analysis of AR-FL and AR-V1 in Whole Blood of Patients With Castration Resistant Prostate Cancer as a Tool for Predicting Response to Abiraterone Acetate. J Urol (2020) 204(1):71–8. doi: 10.1097/ JU.0000000000000803
- Todenhöfer T, Azad A, Stewart C, Gao J, Eigl BJ, Gleave ME, et al. AR-V7 Transcripts in Whole Blood RNA of Patients With Metastatic Castration Resistant Prostate Cancer Correlate With Response to Abiraterone Acetate. *J Urol* (2016) 197(1):135–42. doi: 10.1016/j.juro.2016.06.094
- Sharp A, Welti JC, Lambros MBK, Dolling D, Rodrigues DN, Pope L, et al. Clinical Utility of Circulating Tumour Cell Androgen Receptor Splice Variant-7 Status in Metastatic Castration-Resistant Prostate Cancer. *Eur* Urol (2019) 76(5):676–85. doi: 10.1016/j.eururo.2019.04.006
- Del Re M, Conteduca V, Crucitta S, Gurioli G, Casadei C, Restante G, et al. Androgen Receptor Gain in Circulating Free DNA and Splicing Variant 7 in Exosomes Predict Clinical Outcome in CRPC Patients Treated With Abiraterone and Enzalutamide. *Prostate Cancer Prostatic Dis* (2021) 24 (2):524–31. doi: 10.1038/s41391-020-00309-w
- 10. Del Re M, Crucitta S, Sbrana A, Rofi E, Paolieri F, Gianfilippo G, et al. AR-V7 and AR-FL Expression Is Associated With Clinical Outcome: A Translational

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2022.868031/full#supplementary-material

Supplementary Table 2 | Quality assessment of included studies based on adapted NOS scales.

Supplementary Table 3 | Sensitivity analysis of subgroups with more than 6 studies.

Supplementary Figure 1 | Inverted funnel plot to evaluate potential publication bias in OS (A) and PFS (B) of ARSi treated patients.

Supplementary Figure 2 | Forest plot of hazard ratios (HRs) for association of liquid biopsy AR-V7 status with OS (A), PFS (B), PSA-PFS (C) in all studies. Subgroup analysis were performed based on AR-V7 detection technique type. Pooled HRs were calculated using random effect model. AR-V7: androgen receptor splice variant 7. CI: confidence interval and bars indicate 95% CIs. PCR, polymerase chain reaction; qRT-PCR, quantitative real time PCR; ddPCR, droplet digital PCR; IF, immunofluorescence; IHC, immunohistochemistry; FC, flow cytometry; RNA-seq, RNA-sequencing.

Study in Patients With Castrate Resistant Prostate Cancer. BJU Int (2019) 124:693–700. doi: 10.1111/bju.14792

- Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. *PloS Med* (2009) 6(7):e1000100. doi: 10.1136/bmj.b2700
- Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical Methods for Incorporating Summary Time-to-Event Data Into Meta-Analysis. *Trials* (2007) 8:16–. doi: 10.1186/1745-6215-8-16
- Wang J, Zhang Y, Wei C, Gao X, Yuan P, Gan J, et al. Prognostic Value of Androgen Receptor Splice Variant 7 in the Treatment of Metastatic Castration-Resistant Prostate Cancer: A Systematic Review and Meta-Analysis. Front Oncol (2020) 10:562504. doi: 10.3389/fonc.2020.562504
- Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Nakazawa M, et al. Androgen Receptor Splice Variant 7 and Efficacy of Taxane Chemotherapy in Patients With Metastatic Castration-Resistant Prostate Cancer. JAMA Oncol (2015) 1(5):582–91. doi: 10.1001/jamaoncol.2015.1341
- Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Zhu Y, et al. Clinical Significance of Androgen Receptor Splice Variant-7 Mrna Detection in Circulating Tumor Cells of Men With Metastatic Castration-Resistant Prostate Cancer Treated With First- and Second-Line Abiraterone and Enzalutamide. J Clin Oncol (2017) 35(19):2149–56. doi: 10.1200/ JCO.2016.70.1961
- Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and Resistance to Enzalutamide and Abiraterone in Prostate Cancer. *New Engl J Med* (2014) 371(11):1028–38. doi: 10.1056/NEJMoa1315815
- Armstrong AJ, Halabi S, Luo J, Nanus DM, Giannakakou P, Szmulewitz RZ, et al. Prospective Multicenter Validation of Androgen Receptor Splice Variant 7 and Hormone Therapy Resistance in High-Risk Castration-Resistant Prostate Cancer: The PROPHECY Study. J Clin Oncol (2019) 37(13):1120– 9. doi: 10.1200/JCO.18.01731
- Armstrong AJ, Luo J, Nanus DM, Giannakakou P, Szmulewitz RZ, Danila DC, et al. Prospective Multicenter Study of Circulating Tumor Cell AR-V7 and Taxane Versus Hormonal Treatment Outcomes in Metastatic Castration-Resistant Prostate Cancer. *JCO Precis Oncol* (2020) 4:1285–301. doi: 10.1200/ PO.20.00200
- Belderbos BPS, Sieuwerts AM, Hoop EO, Mostert B, Kraan J, Hamberg P, et al. Associations Between AR-V7 Status in Circulating Tumour Cells, Circulating Tumour Cell Count and Survival in Men With Metastatic Castration-Resistant Prostate Cancer. *Eur J Cancer* (2019) 121:48–54. doi: 10.1016/ j.ejca.2019.08.005

- Cattrini C, Rubagotti A, Zinoli L, Cerbone L, Zanardi E, Capaia M, et al. Role of Circulating Tumor Cells (CTC), Androgen Receptor Full Length (AR-FL) and Androgen Receptor Splice Variant 7 (AR-V7) in a Prospective Cohort of Castration-Resistant Metastatic Prostate Cancer Patients. *Cancers* (2019) 11 (9):1365. doi: 10.3390/cancers11091365
- Chung JS, Wang Y, Henderson J, Singhal U, Qiao Y, Zaslavsky AB, et al. Circulating Tumor Cell–Based Molecular Classifier for Predicting Resistance to Abiraterone and Enzalutamide in Metastatic Castration-Resistant Prostate Cancer. *Neoplasia (United States)* (2019) 21(8):802–9. doi: 10.1016/ j.neo.2019.06.002
- 22. De Laere B, Oeyen S, Mayrhofer M, Whitington T, van Dam PJ, Van Oyen P, et al. TP53 Outperforms Other Androgen Receptor Biomarkers to Predict Abiraterone or Enzalutamide Outcome in Metastatic Castration-Resistant Prostate Cancer. *Clin Cancer Res* (2019) 25(6):1766–73. doi: 10.1158/1078-0432.CCR-18-1943
- 23. Del Re M, Biasco E, Crucitta S, Derosa L, Rofi E, Orlandini C, et al. The Detection of Androgen Receptor Splice Variant 7 in Plasma-Derived Exosomal RNA Strongly Predicts Resistance to Hormonal Therapy in Metastatic Prostate Cancer Patients. *Eur Urol* (2017) 71(4):680–7. doi: 10.1016/j.eururo.2016.08.012
- Erb HHH, Sparwasser P, Diehl T, Hemmerlein-Thomas M, Tsaur I, Jüngel E, et al. AR-V7 Protein Expression in Circulating Tumour Cells is Not Predictive of Treatment Response in Mcrpc. Urologia Internationalis (2020) 104(3):253– 62. doi: 10.1159/000504416
- Graf RP, Hullings M, Barnett ES, Carbone E, Dittamore R, Scher HI. Clinical Utility of the Nuclear-Localized AR-V7 Biomarker in Circulating Tumor Cells in Improving Physician Treatment Choice in Castration-Resistant Prostate Cancer. *Eur Urol* (2020) 77(2):170–7. doi: 10.1016/ j.eururo.2019.08.020
- 26. Gupta S, Hovelson DH, Kemeny G, Halabi S, Foo WC, Anand M, et al. Discordant and Heterogeneous Clinically Relevant Genomic Alterations in Circulating Tumor Cells vs Plasma DNA From Men With Metastatic Castration Resistant Prostate Cancer. *Genes Chromosomes Cancer* (2019) 59(4):225–39. doi: 10.1002/gcc.22824
- Joncas FH, Lucien F, Rouleau M, Morin F, Leong HS, Pouliot F, et al. Plasma Extracellular Vesicles as Phenotypic Biomarkers in Prostate Cancer Patients. *Prostate* (2019) 79(15):1767–76. doi: 10.1002/pros.23901
- Kwan EM, Fettke H, Docanto MM, To SQ, Bukczynska P, Mant A, et al. Prognostic Utility of a Whole-Blood Androgen Receptor-Based Gene Signature in Metastatic Castration-Resistant Prostate Cancer. *Eur Urol Focus* (2021) 7:63–70. doi: 10.1016/j.euf.2019.04.020
- 29. Di Lorenzo G, Zappavigna S, Crocetto F, Giuliano M, Ribera D, Morra R, et al. Assessment of Total, PTEN(-), and AR-V7(+) Circulating Tumor Cell Count by Flow Cytometry in Patients With Metastatic Castration-Resistant Prostate Cancer Receiving Enzalutamide. *Clin Genitourin Cancer* (2021) 19:e286–98. doi: 10.1016/j.clgc.2021.03.021
- 30. Maillet D, Allioli N, Peron J, Plesa A, Decaussin-Petrucci M, Tartas S, et al. Improved Androgen Receptor Splice Variant 7 Detection Using a Highly Sensitive Assay to Predict Resistance to Abiraterone or Enzalutamide in Metastatic Prostate Cancer Patients. *Eur Urol Oncol* (2021) 4:609–17. doi: 10.1016/j.euo.2019.08.010
- 31. Marín-Aguilera M, Jiménez N, Reig Ô, Montalbo R, Verma AK, Castellano G, et al. Androgen Receptor and its Splicing Variant 7 Expression in Peripheral Blood Mononuclear Cells and in Circulating Tumor Cells in Metastatic Castration-Resistant Prostate Cancer. *Cells* (2020) 9(1):203. doi: 10.3390/cells9010203
- 32. Markowski MC, Wang H, Sullivan R, Rifkind I, Sinibaldi V, Schweizer MT, et al. A Multicohort Open-Label Phase II Trial of Bipolar Androgen Therapy in Men With Metastatic Castration-Resistant Prostate Cancer (RESTORE): A Comparison of Post-Abiraterone Versus Post-Enzalutamide Cohorts. *Eur Urol* (2021) 79:692–9. doi: 10.1016/j.eururo.2020.06.042
- 33. Miyamoto DT, Lee RJ, Kalinich M, LiCausi JA, Zheng Y, Chen T, et al. An RNA-Based Digital Circulating Tumor Cell Signature is Predictive of Drug Response and Early Dissemination in Prostate Cancer. *Cancer Discovery* (2018) 8(3):288–303. doi: 10.1158/2159-8290.CD-16-1406
- 34. Okegawa T, Ninomiya N, Masuda K, Nakamura Y, Tambo M, Nutahara K. AR-V7 in Circulating Tumor Cells Cluster as a Predictive Biomarker of Abiraterone Acetate and Enzalutamide Treatment in Castration-Resistant

Prostate Cancer Patients. Prostate (2018) 78(8):576-82. doi: 10.1002/pros.23501

- 35. Onstenk W, Sieuwerts AM, Kraan J, Van M, Nieuweboer AJM, Mathijssen RHJ, et al. Efficacy of Cabazitaxel in Castration-Resistant Prostate Cancer is Independent of the Presence of AR-V7 in Circulating Tumor Cells. *Eur Urol* (2015) 68(6):939–45. doi: 10.1016/j.eururo.2015.07.007
- 36. Qu F, Xie W, Nakabayashi M, Zhang H, Jeong SH, Wang X, et al. Association of AR-V7 and Prostate-Specific Antigen RNA Levels in Blood With Efficacy of Abiraterone Acetate and Enzalutamide Treatment in Men With Prostate Cancer. *Clin Cancer Res* (2017) 23(3):726–34. doi: 10.1158/1078-0432.CCR-16-1070
- Scher HI, Graf RP, Schreiber NA, Jayaram A, Winquist E, McLaughlin B, et al. Assessment of the Validity of Nuclear-Localized Androgen Receptor Splice Variant 7 in Circulating Tumor Cells as a Predictive Biomarker for Castration-Resistant Prostate Cancer. JAMA Oncol (2018) 4(9):1179–86. doi: 10.1001/jamaoncol.2018.1621
- Scher HI, Graf RP, Schreiber NA, McLaughlin B, Lu D, Louw J, et al. Nuclear-Specific AR-V7 Protein Localization is Necessary to Guide Treatment Selection in Metastatic Castration-Resistant Prostate Cancer. *Eur Urol* (2017) 71(6):874–82. doi: 10.1016/j.eururo.2016.11.024
- Scher HI, Lu D, Schreiber NA, Louw J, Graf RP, Vargas HA, et al. Association of AR-V7 on Circulating Tumor Cells as a Treatment-Specific Biomarker With Outcomes and Survival in Castration-Resistant Prostate Cancer. JAMA Oncol (2016) 2(11):1441–9. doi: 10.1001/jamaoncol.2016.1828
- 40. Seitz AK, Thoene S, Bietenbeck A, Nawroth R, Tauber R, Thalgott M, et al. AR-V7 in Peripheral Whole Blood of Patients With Castration-Resistant Prostate Cancer: Association With Treatment-Specific Outcome Under Abiraterone and Enzalutamide. *Eur Urol* (2017) 72(5):828–34. doi: 10.1016/ j.eururo.2017.07.024
- Sepe P, Verzoni E, Miodini P, Claps M, Ratta R, Martinetti A, et al. Could Circulating Tumor Cells and ARV7 Detection Improve Clinical Decisions in Metastatic Castration-Resistant Prostate Cancer? The Istituto Nazionale Dei Tumori (INT) Experience. *Cancers* (2019) 11(7):980. doi: 10.3390/ cancers11070980
- 42. Škereňová M, Mikulová V, Čapoun O, Švec D, Kološtová K, Soukup V, et al. Gene Expression Analysis of Immunomagnetically Enriched Circulating Tumor Cell Fraction in Castration-Resistant Prostate Cancer. Mol Diagnosis Ther (2018) 22(3):381–90. doi: 10.1007/s40291-018-0333-0
- 43. Tagawa ST, Antonarakis ES, Gjyrezi A, Galletti G, Kim S, Worroll D, et al. Expression of AR-V7 and Arv(567es) in Circulating Tumor Cells Correlates With Outcomes to Taxane Therapy in Men With Metastatic Prostate Cancer Treated in TAXYNERGY. *Clin Cancer Res* (2019) 25(6):1880–8. doi: 10.1158/ 1078-0432.CCR-18-0320
- 44. Tommasi S, Pilato B, Carella C, Lasorella A, Danza K, Vallini I, et al. Standardization of CTC AR-V7 PCR Assay and Evaluation of its Role in Castration Resistant Prostate Cancer Progression. *Prostate* (2018) 79(1):54– 61. doi: 10.1002/pros.23710
- Wang S, Yang S, Nan C, Wang Y, He Y, Mu H. Expression of Androgen Receptor Variant 7 (AR-V7) in Circulated Tumor Cells and Correlation With Drug Resistance of Prostate Cancer Cells. *Med Sci Monitor* (2018) 24:7051–6. doi: 10.12659/MSM.909669
- Galletti G, Leach BI, Lam L, Tagawa ST. Mechanisms of Resistance to Systemic Therapy in Metastatic Castration-Resistant Prostate Cancer. *Cancer Treat Rev* (2017) 57:16–27. doi: 10.1016/j.ctrv.2017.04.008
- 47. Nimir M, Ma Y, Jeffreys SA, Opperman T, Young F, Khan T, et al. Detection of AR-V7 in Liquid Biopsies of Castrate Resistant Prostate Cancer Patients: A Comparison of AR-V7 Analysis in Circulating Tumor Cells, Circulating Tumor RNA and Exosomes. *Cells* (2019) 8(7):688. doi: 10.3390/cells8070688
- Zhang G, Liu X, Li J, Ledet E, Alvarez X, Qi Y, et al. Androgen Receptor Splice Variants Circumvent AR Blockade by Microtubule-Targeting Agents. Oncotarget (2015) 6(27):23358–71. doi: 10.18632/oncotarget.4396
- Wang Z, Shen H, Ma N, Li Q, Mao Y, Wang C, et al. The Prognostic Value of Androgen Receptor Splice Variant 7 in Castration-Resistant Prostate Cancer Treated With Novel Hormonal Therapy or Chemotherapy: A Systematic Review and Meta-Analysis. *Front Oncol* (2020) 10:572590. doi: 10.3389/ fonc.2020.572590
- 50. Zhou J, Liu R. The Association Between Androgen Receptor Splice Variant 7 Status and Prognosis of Metastatic Castration-Resistant Prostate Cancer: A

Systematic Review and Meta-Analysis. Andrologia (2020) 52(7):e13642. doi: 10.1111/and.13642

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Khan, Becker, Scott, Descallar, de Souza, Chua and Ma. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.