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Abstract In this review, the physiological rationale for

atrioventricular and interventricular delay optimization of

cardiac resynchronization therapy is discussed including

the influence of exercise and long-term cardiac resyn-

chronization therapy. The broad spectrum of both invasive

and non-invasive optimization methods is reviewed with

critical appraisal of the literature. Although the spectrum of

both invasive and non-invasive optimization methods is

broad, no single method can be recommend for standard

practice as large-scale studies using hard endpoints are

lacking. Current efforts mainly investigate optimization

during resting conditions; however, there is a need to

develop automated algorithms to implement dynamic

optimization in order to adapt to physiological alterations

during exercise and after anatomical remodeling.
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Introduction

In patients with symptomatic systolic heart failure and pro-

longed QRS duration, cardiac resynchronization therapy

(CRT) has proven to be of additional value on top of rec-

ommended medical therapy [1, 2]. Nevertheless, there

remain a considerable number of non-responders to CRT that

can be as high as 30% [3]. The non-response can be partly

caused by inappropriate settings of atrioventricular (AV)

and interventricular (VV) intervals leading to persistent

atrioventricular, interventricular and intraventricular dys-

synchrony. In this review, we will discuss the physiological

and pathophysiological rationale for AV and VV optimiza-

tion followed by an overview of available optimization

methods.

Physiological electrical activation and mechanical

contraction

A coordinate contraction sequence of the heart chambers is

facilitated by rapid activation via the specialized conduc-

tion system. The cardiac action potential originates in the

sinus node and reaches the atrioventricular node (AV node)

within 100 milliseconds (ms). Slowing of conducting

through the AV node delays the onset of ventricular acti-

vation with approximately 80 ms to allow optimal atrial

contribution to ventricular preload. Rapid conduction of the

electrical impulse through the His bundle, bundle branches

and the Purkinje system activates the whole left ventricle

(LV) within 60–80 ms. Ventricular activation proceeds

from subendocardially located breakthroughs of the bundle

branches to the epicardium in a centrifugally and tangen-

tially direction [4].

Cardiac output is dependent on preload (Frank–Starling

relation), afterload and myocardial contractility. The latter

is not only influenced by neurohormones, but also depen-

dent on heart rate (staircase phenomenon or Bowditch

effect) and afterload (Anrep effect). Autonomic and neu-

rohormonal regulatory mechanisms ensure adequate car-

diac output under varying physiological conditions.

Regulation and feedback is provided by pressure sensors in

the venous and arterial vascular system [5].
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Sympathetic stimulation at increasing heart rate shortens

AV delay and ventricular systole, thus preventing atrial

systole to occur against a closed mitral valve during

exercise. Shortening of ventricular systole also enables

longer ventricular filling time [6].

Pathophysiological electrical activation and mechanical

contraction

Apart from decreased myocardial contractility, there are

several other causes for decreased cardiac output in heart

failure. First, in a subset of patients, there is a disturbance

in coordination of atrial and ventricular activation with

suboptimal timing of atrial contraction (AV dyssynchrony).

The atrial contraction enhances ventricular preload by

optimizing sarcomere length of ventricular myocytes prior

to contraction which in turn increases LV stroke volume.

This booster function generates an increase in LV end-

diastolic pressure at a relatively low mean venous pressure,

thus protecting the pulmonary system from edema [7]. In

case of a shortened or prolonged AV conduction, this

preload enhancement is diminished or even lost. As the

atrial booster effect also contributes to timely closure of the

atrioventricular valves, a prolonged AV delay can also lead

to premature inversion of the atrioventricular pressure

gradient resulting in diastolic mitral regurgitation [6, 8].

Secondly, a large number of heart failure patients have

ventricular conduction disturbances, predominantly left

bundle branch block (LBBB). Although the term ‘‘block’’

suggests an abrupt interruption of conduction, there is a

spectrum of conduction abnormalities varying from a

proximal barrier to a more diffuse slowing of conduction.

As a consequence, the LV is electrically activated

throughout myocardial tissue [9]. Compared to the spe-

cialized conduction system, conduction velocity in myo-

cardial tissue is slower and the activation front spreads

preferably in a circumferential than in a perpendicular

direction [10]. This can lead to mechanical interventricular

(and intraventricular) dyssynchrony.

Because of their serial alignment and intimate anatom-

ical relationship, the mechanical properties of both ven-

tricles are influenced by each other. This close interaction

is further influenced by the interventricular septum and

pericardium. Changes in preload or afterload of one ven-

tricle alter the pressure in the other ventricle [11, 12].

Although this interaction is negligible in the healthy heart,

both systolic and diastolic interactions are augmented in

case of heart failure [13, 14]. Difference in activation

timing with the right ventricle (RV) contracting earlier than

the LV (as with LBBB) deteriorates LV function [15, 16].

Thirdly, asynchronous electrical activation of the LV in

case of LBBB leads to an altered contraction pattern.

Initially, the septum shortens during the isovolumic con-

traction time, causing an early systolic stretching of the

opposing, still non-activated posterolateral wall. Eventu-

ally, this posterolateral wall is activated late and exhibits a

late systolic or even post-systolic shortening after the

aforementioned early systolic stretching. This intraven-

tricular dyssynchrony reduces the efficiency of the LV

pumping function as part of the metabolic energy is wasted

in intraventricular volume shifts rather than in ventricular

ejection [17].

Atrioventricular and interventricular synchronization

in CRT

Physiological rationale for optimization

As outlined above, from a physiological point of view, it

seems reasonable to assume that correction of atrio-, inter-

and intraventricular dyssynchrony improves cardiac func-

tion and efficiency. In the contemporary era of CRT, this

can be achieved by programming both AV and VV timings.

It should be stressed that intrinsic AV, programmed AV

and programmed VV delay can all influence ventricular

activation and filling. Thus, depending on the device set-

tings, there can be up to three activation fronts that

potentially determine the degree of intraventricular dys-

synchrony: intrinsic right bundle branch activation, right

and left ventricular pacing, respectively (Fig. 1) [16].

The interaction between these three activation fronts is

illustrated in Fig. 2 showing a 12-lead electrocardiogram

(ECG) recording during three different programmed AV

delays in two patients with a CRT device. In Fig. 2a, it can

Fig. 1 Schematic pathway of different ventricular activation fronts

during normal conduction, LBBB and LBBB with biventricular

pacing. During normal conduction (left), activation of right ventricle

(RV) and left ventricle (LV) occurs through intrinsic activation, and

the time of activation (TRV and TLV) is similar. During LBBB

(middle), activation to the LV lateral wall (TLV) is delayed because of

slow myocardial conduction (TRV–LV). During biventricular pacing

(right) RV and LV lateral wall can be activated by a pacing stimulus

(TA–RVpace and TA–LVpace, respectively) if stimulation occurs before

intrinsic activation. (From Vernooy et al. [16], with permission)
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be appreciated that there is a progressive change in QRS

morphology between the AV delays. As the intrinsic PR

interval of this patient is 156 ms, the smallest QRS com-

plex is seen at a programmed AV delay of 170 ms allowing

maximal contribution of all three activation fronts. In

Fig. 2b on contrary, no change in QRS morphology is

noted between the AV delays. The intrinsic PR interval of

this patient is 289 ms, and therefore, intrinsic conduction

does not contribute to ventricular activation.

Most patients not only have variable intra-atrial, inter-

ventricular and intraventricular conduction delays, but also

different positions of right atrial, RV and LV leads, making

it difficult to predict the optimal AV and VV timings [18].

This supports the concept of an individualized and tailored

optimization of AV and VV timings.

The importance of AV and VV optimization has already

been shown in general pacing. RV single chamber pacing

disturbs the temporal relation between atria and ventricles

leading to decreased ventricular performance especially in

case of compromised cardiac function [19, 20]. In the early

nineties, the use of DDD pacing was proposed in patients

with refractory terminal heart failure and a long atrioven-

tricular delay [21]. It was anticipated that improvement in

the atrioventricular dyssynchrony by sequential atrioven-

tricular pacing would lead to improved outcome. However,

this potentially beneficial effect was hampered by the

aggravated inter- and intraventricular dyssynchrony caused

by RV pacing [22]. These observations have set the base

for the current therapy of biventricular pacing.

It has been demonstrated that diastolic mitral valve

regurgitation (MR) can be reversed by AV sequential

pacing with short AV intervals [23]. The mechanism for

improvement in functional systolic MR is more complex. It

is caused by an imbalance between closing and tethering

forces on the mitral valve leaflets. Due to LV and mitral

valve annular dilation, there is a restrictive leaflet motion

requiring a higher (systolic) transmitral pressure gradient to

close the valve [24]. Moreover, LV dyssynchrony can lead

to dyscoordinate contraction of both papillary muscles

contributing to a synchronization of tethering forces [25].

In contrast, closing forces are reduced as a consequence of

decreased LV systolic function. CRT improves LV systolic

function and can result in an immediate reduction of MR

[24]. In patients with late activation of the posterior pap-

illary muscle, an acute reduction can also be observed with

CRT. Long-term resynchronization induces LV reverse

remodeling with reduction in LV and mitral annular

dimension resulting in further improvement in MR [26].

Evidence for atrioventricular optimization

The beneficial effect of optimizing AV timing has been

mainly investigated in patients with an indication for per-

manent dual-chamber (right atrial and RV) pacing. The

majority of these small-scale, non-randomized studies

focus on acute hemodynamic effects of atrioventricular

optimization without evaluation of long-term morbidity

and mortality. However, these results cannot be directly

extrapolated to the CRT population [27].

In a CRT population, the PAcing THerapies in Con-

gestive Heart Failure (PATH-CHF) trial demonstrated a

significant acute hemodynamic effect of varying the AV

delay in RV, LV and biventricular pacing [28, 29]. Inter-

estingly, the optimal AV delay for left ventricular dP/dtmax

(LV dP/dtmax) was significantly shorter for RV and

Fig. 2 Registration of 12-lead electrocardiogram in two patients with

different intrinsic conduction during biventricular pacing with varying

AV delays. Panel A in this patient with an intrinsic PR interval of

156 ms, there is progressive change in QRS morphology between

different AV delays. At an AV delay of 170 ms, there is maximal

contribution of all 3 activation fronts resulting in the smallest QRS

complex. Panel B in case of a very long intrinsic PR interval of

289 ms, there is no change in QRS complex at different AV delays as

intrinsic conduction does not contribute to ventricular activation
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biventricular pacing compared to LV pacing in the group of

responders. This variable acute hemodynamic response to

different AV delays was also observed in the PATH-CHF-

II trial [30]. This could be explained by the fact that during

left ventricular pacing, a left-sided atrioventricular delay is

set which should be longer to allow fusion with intrinsic

conduction coming from the normal-conducting right

bundle branch (Fig. 1).

An example of the effect of varying AV delay during

left ventricular pacing is shown in Fig. 3. At an AV delay

that is programmed 40 ms shorter than the intrinsic PR

interval (indicated as ‘‘AV1’’ in Fig. 3), there is fusion with

intrinsic right bundle branch conduction which can be

appreciated from the surface ECG and RV electrogram.

Fusion is lost with shorter AV delays (AV2, AV3 and

AV4) [31].

Atrial sensing or atrial pacing will result in different

optimal AV delays and has to be accounted for during

optimization. Compared to atrial sensing, the optimal AV

delay needs to be prolonged during atrial pacing in order to

obtain similar synchronization. In practice, one could first

optimize AV and VV delays during atrial pacing. To get

the same resynchronization, it suffices to adjust the AV

delay during atrial sensing to match QRS morphology of

the optimal AV delay obtained during atrial pacing (Fig. 4)

[32].

Only a small number of prospective and/or randomized

clinical studies compare the optimization of AV delay to an

empirical AV delay. Although these studies are small scale

and use different optimization techniques, optimization of

the AV delay shows a significant beneficial effect on acute

hemodynamic response, New York Heart Association

(NYHA) class, LV ejection fraction and brain natriuretic

peptide level [33–35].

So far, there has been no large-scale, prospective and

randomized trial evaluating the effect of AV optimization

on morbidity and mortality. Nevertheless, most large CRT

trials applied some form of AV delay optimization [1–3,

18]. It is unknown whether the beneficial effects of CRT in

these trials would also be present without AV delay opti-

mization. Based on the trials’ methodology and results,

current guidelines of the European Society of Cardiology

are recommended to optimize the AV delay [36].

Evidence for interventricular optimization

The relative position of right and left ventricular leads also

influences timing of activation. As a consequence, VV

optimization may compensate for suboptimal lead place-

ment [37]. However, even in case of optimal lead place-

ment, VV delay optimization can be of importance: some

patients exhibit a significant delay between LV pacemaker

stimulation and LV depolarization which can be counter-

acted by pre-exciting the LV pacing lead relative to the RV

pacing lead (Fig. 5).

None of the larger CRT trials included VV optimization

in their protocol, partly because this feature was not

available at time of inclusion [38]. In smaller studies, an

Fig. 3 During LV pacing, there

is fusion at AV interval 1

(AV1); however, no fusion is

observed at shorter AV intervals

(AV2, AV3 and AV4), as can be

appreciated from the 12-lead

electrocardiogram. Notice the

change in morphology of the

RV electrogram (RV EGM)

when there is no fusion with the

intrinsic RBB. (From van

Gelder et al. [31], with

permission)
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improvement in acute hemodynamic response measured by

LV dP/dtmax [39, 40], exercise capacity [41] and echocar-

diographic left ventricular ejection fraction has been

demonstrated [42, 43]. However, the larger, randomized

DECREASE-HF trial showed a trend toward greater

reduction in left ventricular systolic diameter for the group

with simultaneous biventricular pacing compared to

sequential biventricular pacing [44], and the single-

Fig. 4 Example of the

difference in optimal paced AV

(PAV) interval and optimal

sensed AV (SAV) interval. In

this patient, CRT was optimized

during sequential AV pacing

using LV dP/dtmax. The optimal

PAV interval was 150 ms

resulting in a LV dP/dtmax of

862 mmHg/s. To determine the

optimal SAV interval, the

stimulation rate was reduced

below the intrinsic sinus rate,

and a 12-lead electrocardiogram

was recorded during

incremental shortening of the

SAV interval. At a SAV interval

of 110 ms, the QRS complex

matches the QRS complex at the

optimal PAV interval.

Determination of optimal SAV

interval is also confirmed by the

LV dP/dtmax measurement

Fig. 5 Twelve-lead

electrocardiogram recording

during RV pacing (left panel),
LV pacing (middle panel) and

biventricular (BV) pacing with

VV delay of 80 ms (right
panel). The total activation

time, defined as time from onset

of pacing until the end of the

QRS complex, indicated

between the two vertical dotted
lines in each panel. During RV

pacing, the total activation time

is 218 ms; however, it is

increased during LV pacing

until 274 ms. During BV

pacing, this delayed activation

can be compensated by pre-

activating LV 80 ms before RV
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blinded, randomized RHYTHM-II trial did not find a

benefit on functional endpoints of VV optimization com-

pared to simultaneous biventricular pacing [45]. The recent

randomized, multicenter RESPONSE-HF trial evaluated

the effect of VV optimization on top of AV optimization.

Patients who were non-responders after 3 months of CRT

(with simultaneous biventricular pacing) were randomized

to either sequential biventricular pacing with VV optimi-

zation or simultaneous biventricular pacing. Non-response

was defined on the basis of NYHA class and 6-min hall

walk distance. After 9 months of follow-up, the response

rate in the sequential group (n = 29) was 18.9% higher

than the simultaneous group (n = 36) [46].

In all but one of these studies [39], VV delay optimi-

zation was performed on top of prior AV optimization. In

the overall CRT population, the benefit of VV optimization

compared to simultaneous biventricular pacing is relatively

small: van Gelder et al. noted a mean increase in LV

dP/dtmax of 66 mmHg/s (7%) on top of simultaneous

biventricular pacing with optimized AV delay [40]. VV

optimization may probably be more beneficial in a subset

of patients who show no or little response to CRT. It can be

concluded on the basis of current data that the role of VV

optimization is still under debate. This could partly be

explained by the use of inaccurate optimization methods

with high inter- and intraobserver variability.

There is no consensus in what order to optimize the AV

and VV delays. However, in a small study, the hemody-

namic effect (measured by fingerphotoplethysmography) of

simultaneously adjusting AV and VV delays was evalu-

ated. There was a curvilinear effect with a clear optimal

combination of AV and VV delays. VV optimization pro-

vided an additional, but smaller hemodynamic effect

compared to AV optimization alone [47].

Intra-individual variation in optimal AV and VV delays

The optimal AV and VV delays should not be regarded as

static values, but may vary in time and in different cir-

cumstances. In general, optimization of AV and VV delays

is performed during resting conditions in a supine or sitting

position, thus neglecting the effect of exercise. In the

healthy heart, AV conduction time shortens during exercise

as a result of increased sympathetic tone and inter- and

intraventricular activation delays are virtually absent and

not different from the resting condition [48]. This is also

the rationale for rate-adaptive atrial pacing with progres-

sive shortening of the programmed AV delay during

exercise. However, in the CRT population, it is question-

able whether rate-adaptive pacing is favorable, as the effect

of exercise on atrial and ventricular conduction is more

heterogeneous and complex [49]. Several small studies

investigating the effect of exercise on the optimal AV delay

reported mixed results: some reported individual variation

in optimal AV delay during exercise [50], others advise

prolongation of the AV delay during exercise [51] while

others notice no change in optimal AV delay [52].

VV optimization during exercise has been only spo-

radically investigated, using different optimization meth-

ods and including a limited number of patients. Lafitte

et al. reported a change in interventricular dyssynchrony

(defined as the interventricular mechanical delay) during

bicycle exercise testing in 60% of 65 heart failure patients

[48]. In contrast, Valzania et al. showed no significant

change in interventricular mechanical delay during dobu-

tamine stress testing [53]. Two other small studies showed

that the optimal VV delay changes during bicycle exercise

testing in about 55% of patients [52, 54]. In one study in

patients with atrial fibrillation and absent intrinsic AV

conduction, a decrease in optimal VV delay with increasing

pacing rate was noted [55].

Besides the effect of exercise, optimal AV and VV

delays may also change in time as a result of reverse

remodeling. Also here, data regarding the effect of long-

term CRT on optimal AV and VV delays are limited and

contradicting. In one study, there was a decrease in optimal

AV delay and increase in LV pre-excitation in VV setting

after 6 months of CRT [56]; however, another study

showed an opposite effect after 9 months of CRT [57].

Although patient population was comparable, both trials

used different optimization methods.

The large prospective, randomized and multicenter

‘‘Frequent Optimization Study Using the QuickOpt

method (FREEDOM)’’ trial compared frequent AV and

VV optimization every 3 months using an algorithm

based on the intracardiac electrogram to standard care

with empiric programming or one-time optimization at

the discretion of the investigator. A heart failure clinical

composite score was used as primary endpoint after

12 months of follow-up. In 1,525 patients analyzed,

there was no significant difference in primary endpoint

regardless of optimization [58].

Methods for optimization of AV and VV delays

There are numerous invasive and non-invasive methods

available to optimize both AV and VV delays. It seems

reasonable to assume that optimal delays result in highest

forward stroke volume. The ideal optimization method

should therefore be able to measure left ventricular (for-

ward) stroke volume or an equivalent in a preferably

reproducible, easy-to-perform and non-invasive way.
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Invasive optimization methods

First derivate of left ventricular pressure pulse

The ultimate way to determine contractile properties is

measuring the force that is generated by a muscle; how-

ever, it not possible to measure this in clinical practice. As

an alternative, the rate of left ventricular pressure change

(LV dP/dt) has been proposed [59, 60]. Pressure is defined

as force per unit area and is thus related to wall force. The

rate of pressure development is influenced by the con-

tractile properties of the LV. Changes in contractility alter

the slope of the pressure curve resulting in an increased or

decreased peak rise in intraventricular pressure (dP/dtmax)

during isovolumetric contraction [61]. However, LV

dP/dt is a complex function that is not only dependent on

contractility, but also dependent on preload, afterload and

heart rate [62, 63]. However, within physiological limits,

LV dP/dtmax shows mainly dependence on contractility and

preload [64]. This properties make LV dP/dtmax a useful

instrument to evaluate the effect of both AV and VV delays

on myocardial performance.

LV dP/dt is optimally derived from a left ventricular

pressure curve obtained by a micromanometer that is

introduced endovascular into the LV [65]. We have pre-

viously described an alternative method using a 0.014 high-

fidelity pressure wire (Radiwire, St. Jude Medical Inc.,

St. Paul, MN, USA) introduced either retrogradely or

transseptally into the LV [40]. In order to adequately

determine the effect of different pacing settings on LV

dP/dtmax, different protocols have been described [65, 66].

In order to overcome the influence of heart rate on LV

dP/dt, the atrium is paced at 5–10 beats above the intrinsic

rate. In patients with atrial fibrillation, ventricular stimula-

tion is performed above the intrinsic rate to ensure continu-

ous capture. First, a baseline LV dP/dtmax is measured and

averaged out over several heart beats or seconds, excluding

premature and post-extrasystolic beats from analysis. After

baseline measurement, AV optimization is performed first

during simultaneous biventricular pacing. The optimal AV

delay with the highest LV dP/dtmax is selected to perform the

subsequent VV optimization. The optimization procedure

should proceed under stable conditions to minimize any

influence on LV dP/dt measurement.

This method has the advantage that it is easily imple-

mented, even during the implantation procedure. Interpre-

tation is not dependent on operator skills or technical

limitations as with echocardiography. Also, it allows the

evaluation of multiple pacing sites in a short time frame.

Due to these characteristics, it is a suitable method to

evaluate the acute hemodynamic effect of different pacing

sites, either epicardially or even endocardially as has been

demonstrated in a recent case report [67]. As an example,

we implanted a left endocardial lead in a patient who

showed no clinical or echocardiographic response to stan-

dard CRT. The definite LV pacing site was determined

with optimal LV dP/dtmax during a temporary pacing study

of different endocardial sites. At long-term follow-up, there

were both clinical and echocardiographic improvements.

A disadvantage of the LV dP/dtmax optimization method

is its invasive nature. However, as only a 4-French guiding

is needed, no more complications than with standard

angiography are to be expected. Nevertheless, in our

opinion, the advantages of this invasive technique out-

weigh the relatively low risk. Alternatively, the pressure

wire can be introduced via the radial artery or even via

transseptal puncture.

The use of continuous wave Doppler imaging of the

mitral regurgitation signal is advocated as a non-invasive

alternative to determine LV dP/dtmax [68]. Importantly,

this method does not measure the true maximal LV dP/dt,

but an averaged slope of the left ventricular pressure curve

between 4 mmHg and 36 mmHg. This measure has not

been validated in an experimental physiological set-up, as

has been in case of invasively measured LV dP/dtmax [61,

63, 64]. Further, it requires the presence of a detectable

mitral regurgitation signal which is not always present

[69], has a lower temporal resolution than the invasive

method and is more laborious to average over multiple

heart beats.

Both PATH-CHF and PATH-CHF II trials used invasive

LV dP/dtmax to optimize the AV delay [30, 65]. So far,

there are no randomized controlled trials evaluating the

long-term outcome of CRT optimization by LV dP/dtmax.

Pressure–volume loops

LV pressure–volume loops can be used to calculate stroke

work defined as the integrated area within the pressure–

volume loop (in mmHg mL). This index is mainly

dependent on contractility and preload with little effect of

changes in afterload [64].

To acquire pressure–volume curves, a 6-French or

7-French pressure-conductance catheter is inserted in the

LV via the femoral artery. The signals are digitized and

transformed to pressure–volume loops by dedicated soft-

ware [64, 70].

Except for its invasiveness, there are other disadvan-

tages to the use of pressure–volume loops. The relatively

inaccurate measurement of LV volume in dilated hearts

combined with a low signal-to-noise ratio make it difficult

to acquire a reliable signal in heart failure patients [71].

Also, the pressure-conductance catheter needs calibrating,

has a larger size and is more expensive compared to the

micromanometer used for left ventricular pressure mea-

surements [72].
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In contrary to LV dP/dtmax measurement, the pressure–

volume loop covers both the systolic and the diastolic

phases of the cardiac cycle and incorporates both pressure

and volume changes. This makes stroke work more sensi-

tive to measure CRT-induced volume changes caused by

alteration in mitral regurgitation. Further, the internal flow

fraction derived from the conductance signals can be used

to quantify LV mechanical dyssynchrony [73]. In selected

cases, this dyssynchrony index could be used to support the

indication for resynchronization therapy [74].

Compared to LV dP/dtmax, pressure–volume loops have

been used only limited in early cardiac resynchronization

studies [71]. Interestingly, when evaluating the acute

hemodynamic response to CRT by both LV dP/dtmax and

stroke work, both measures do not match in up to 50% of

the cases when using a cutoff value of 10% change to

define response to CRT [72]. A sustained long-term

hemodynamic response at 6 months has been demonstrated

in a small-scale trial [70].

Automated algorithms

Several manufacturers of CRT devices have implemented

automated algorithms to adjust AV and/or VV delays. As

the optimal delays may change in time as a consequence of

reverse remodeling after CRT as well as during exercise,

these algorithms may be of additional value. However,

adaptation during exercise can only be achieved if opti-

mization performed continuously in a closed loop config-

uration. Optimization for reverse remodeling could be

performed intermittently with automated algorithms.

Algorithms based on the intracardiac electrogram

QuickOpt. The QuickOpt algorithm (St. Jude Medical, St.

Paul, MN, USA) has been designed to optimize both AV

and VV delays using intracardiac electrograms. It has been

demonstrated that the optimal AV delay can be calculated

by measuring the time difference between onset of right

atrial activation and end of left atrial activation using the

intracardiac electrogram [75]. The QuickOpt algorithm

uses the right intra-atrial electrogram to calculate the

interatrial conduction delay. Depending on this delay, an

offset is added to determine the optimal AV delay. For VV

delay optimization, it is assumed that ventricular activation

is optimal when the two depolarization wave fronts from

right and left ventricular leads meet near the interventric-

ular septum. The optimal VV delay is based on the con-

duction delay of both intrinsic rhythm and ventricular

pacing. To measure this delay, intracardiac electrograms of

both right and left ventricular leads are used. The interval

between intrinsic activation of RV and LV leads is defined

d, and the difference between RV pacing to LV sensing and

LV pacing to RV sensing is defined e. The optimal VV

interval is then calculated using the formula 0.5 (d ? e).

Although the algorithm shows a strong linear correlation

with echocardiographic measurement of aortic velocity

time integral [76], there is no correlation with the optimal

VV delay determined by LV dP/dtmax [77]. The correlation

with the optimal AV and VV delays measured by echo-

cardiography (using the iterative method for AV optimi-

zation and left ventricular outflow tract velocity time

integral for VV optimization) is also poor [78].

The recent FREEDOM trial demonstrated that frequent

optimization using QuickOpt did not significantly influence

outcome as defined by the heart failure clinical composite

score [58]. However, these results may be due to inaccu-

racy of the QuickOpt algorithm.

SMART-AV. The SMART-AV electrogram optimiza-

tion algorithm (Boston Scientific Corporation, St. Paul,

MN, USA) is part of the Expert Ease for Heart Failure

feature and has been developed from results of large

clinical trials [3, 30, 79]. Both sensed and paced AV

delays are derived from the intracardiac electrogram and

added to the QRS duration on the surface electrocardio-

gram in either mode. A correction factor is used

depending on left ventricular lead position. This algorithm

has been compared to two echocardiographic optimization

methods (Ritter’s and aortic velocity time integral

method). In 28 patients examined, the electrogram opti-

mization method correlated significantly better with LV

dP/dtmax than the Ritter method [80]. The ongoing ran-

domized, multicenter SMART-AV trial has been designed

to compare the effect of different atrioventricular opti-

mization methods on left ventricular remodeling. The

electrogram optimization method will be compared to

echocardiographic AV optimization (iterative method)

and a fixed AV delay [81].

Peak endocardial acceleration

During the isovolumetric contraction period, the myocar-

dium generates vibrations that are transmitted throughout

the heart. The audible frequencies of these vibrations can

be appreciated as the first (and second) heart sound. With a

microaccelerometer (SonR, Sorin Biomedica, Saluggia,

Italy) located on a lead inside the heart, it is possible to

record the full-frequency spectrum and derive the peak

endocardial acceleration (PEA). Early experimental

research has shown that changes in PEA correlates well

with changes in contractility induced by inotropic stimu-

lation [82]. The optimal AV delay determined by PEA

correlates well with those obtained by echocardiography

(Ritter’s method) [83–85]. In CRT, PEA increases signif-

icantly during LV or biventricular pacing compared to RV

pacing only [86].
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The randomized, multicenter CLinical Evaluation of

Advanced Resynchronization (CLEAR) study compared

AV and VV optimization by PEA to standard care for the

composite endpoint of NYHA class, heart failure hospi-

talization and quality of life at 12 months in 186 patients.

Patients optimized with PEA (n = 66) showed a signifi-

cantly higher response rate [87].

Finger photoplethysmography

The conventional pulse oximetry probe measures the

arterial pulsations of the fingertip vascular bed using a

photo detector. It is possible to measure systolic blood

pressure, pulse pressure and mean arterial pressure. As

aortic pulse pressure is influenced by stroke volume and

thus left ventricular performance, finger photoplethys-

mography may be used to optimize atrioventricular and

interventricular delay. It seems a promising tool in cardiac

resynchronization optimization because of its non-invasive

nature and high reproducibility. However, measurements

are highly influenced by waveform reflections in the arte-

rial system and autonomic effects on peripheral resistance.

To overcome these issues, measurements are only taken

a few beats after an atrioventricular delay change and an

algorithm is used to correct for vasodilation and/or vaso-

constriction. In patients who show a positive change in

aortic pulse pressure during CRT (invasively measured),

finger photoplethysmography (using the correction algo-

rithm described) was able to predict the AV delay with the

highest aortic pulse pressure change in up to 80% of the

patients [88].

Another technique uses a volume-clamp circuit around

the finger that dynamically follows arterial pressure

(Finapres Medical System, Amsterdam, the Netherlands)

[89]. The use of systolic blood pressure change measured

by this technique responds to changing AV intervals and is

claimed to be highly reproducible [89, 90]. Alternatively,

Nexfin (BMEYE B.V., Amsterdam, the Netherlands)

combines the volume-clamp technique with a dedicated

algorithm to calculate stroke volume [91]. This method

shows a good agreement with aortic valve velocity time

integral to measure changes in stroke volume and to

determine the optimal AV delay [92].

Echocardiography

Echocardiographic techniques for optimization of both AV

and VV delays have been comprehensively described in

recent review papers [27, 93, 94]. In general, echocardi-

ography is a widely available and non-invasive technique

without significant burden for the patient. However, these

optimization techniques are subject of higher intra- and

interobserver variability than invasive measurements. Still,

echocardiography remains a cornerstone in CRT because

of its ability to evaluate response to CRT in terms of

reverse remodeling and to identify other factors that might

influence a non-response to CRT (e.g. RV failure, pul-

monary hypertension, valvular disease).

Evaluation of LV systolic function

Pulsed wave left ventricular outflow tract velocity time

integral (LVOT-VTI). This parameter has been used to

optimize both AV and VV delays. In a few small-scale,

uncontrolled studies, the optimal AV delay was defined as

the delay with the highest stroke distance measured by

LVOT-VTI, but there is no correlation with outcome [35,

51]. In a post hoc analysis, the InSync III study compared

VV optimization using LVOT stroke volume to simulta-

neous biventricular pacing. There was only a significant

improvement in 6-min walking test (6MWT) compared to

the control group; quality of life and NYHA class were not

significantly different [95]. Also, the previously described

RHYTHM II ICD trial used LVOT-VTI measurements for

VV optimization, but reported no benefit on functional

endpoints [45]. One small, non-randomized study used

LVOT-VTI to optimize both AV and VV delays after

3 months of non-optimized CRT and concluded that the

method was feasible, reproducible and able to improve

response to CRT [96].

Continuous wave aortic valve velocity time integral

(AV-VTI). Sawhney et al. showed in a randomized, pro-

spective trial in 40 patients that compared to an empirical

AV delay of 120 ms, AV optimization using AV-VTI

yields a significant improvement in NYHA class, quality of

life and 6MWT [33]. Another prospective study in 40

patients compared AV optimization by AV-VTI to the

Ritter’s method and concluded that the AV-VTI method

resulted in greater systolic improvement [97]. However,

the methodology of both studies has been questioned [27].

LV dP/dt. Even though proposed as a surrogate for

invasive LV dP/dtmax measurement [68], this measurement

is not recommended as optimization method as reproduc-

ibility has been reported as suboptimal [96].

Tissue Doppler imaging (TDI). Although TDI has the

potential to assess left ventricular dyssynchrony, it is sub-

ject to high inter- and intra-observer variability [96, 98].

TDI was used to optimize VV delay and was compared to

empirical AV and VV delays by Vidal et al. in 100 patients

[99]. The optimal VV delay was defined as the setting with

the greatest superposition of TDI curves of opposing LV

walls in 2-chamber and 4-chamber view. There was only a

significant improvement in 6MWT in the optimized group.

However, 25% of patients in the optimized group did not

receive AV optimization because of atrial fibrillation and

a power calculation justifying the included number of
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patients is lacking. Another study used TDI based on

measurement of regional electromechanical delay of 18 LV

segments in the 3 apical views. The AV and VV delays

were defined as optimal when the basal septal segment and

the segments containing the right and left ventricular leads

(as identified by computer tomography) were synchro-

nized. Comparing a limited number of VV intervals,

derived optimal VV delay coincided with the greatest

cardiac output as measured by thermodilution. Although

complex and time-consuming, this method is one of the

few based on the underlying physiological concept of

synchronizing the three activation fronts [100].

Evaluation of LV diastolic function

Iterative method. The AV delay is shortened by increments

of 20 ms until truncation of the A-wave on the pulsed

Doppler transmitral flow pattern. Next, the AV delay is

increased again by increments of 10 ms until A-wave

truncation disappears. The latter is defined as the optimal

AV delay. The iterative method was used for AV optimi-

zation in the CARE-HF trial and the aforementioned study

of Vidal et al. [99, 101].

Ritter’s formula. This method was originally proposed

for patients with complete heart block [102]. Even though

it has only been presented as an abstract and no further

validation has been published, its use has been extrapolated

to the CRT population without extensive validation. The

formula defines the optimal AV delay as the AV interval

that bridges the end of the A-wave with closure of the

mitral valve or the onset of ventricular contraction. To do

so, the time from onset of QRS complex to time of

termination of the A-wave (QA interval) is measured at

both a long (AVlong) and a short AV delays (AVshort). The

optimal AV delay is calculated from following formula:

AVopt = AVlong - (QAshort - QAlong). Ritter’s formula

has also been compared to the QuickOpt algorithm and

AV-VTI for AV optimization using LV dP/dtmax as gold

standard. This study showed that Ritter’s formula was least

accurate [80].

Mitral inflow velocity time integral. On the pulsed

Doppler transmitral flow pattern, the VTI is calculated

representing the stroke distance of mitral inflow as a sur-

rogate of LV filling volume. The AV delay with the largest

VTI is considered the optimal setting. The method showed

a good correlation with optimization by LV dP/dtmax

(r = 0.96) in a small study of 30 patients [103].

Meluzin’s method. A simplified method to merge the end

of atrial contraction with mitral valve closure was proposed

by Meluzin [104]. A long AV delay is programmed and the

pulsed Doppler transmitral inflow pattern is recorded. The

time between end of the A-wave and onset of systolic

mitral regurgitation is calculated. This time is subtracted

from the programmed AV delay to determine the optimal

AV interval. The method was only validated in a study of

18 patients which showed a significantly higher cardiac

output measured by thermodilution when comparing the

optimal AV delay to longer and shorter AV delays [104].

Obviously, application of this method is dependent on a

clear mitral regurgitation signal.

Evaluation of LV systolic and diastolic function

Myocardial performance index (MPI). The MPI (or Tei

index) is based on cardiac timing intervals and has been

introduced as a measurement incorporating both LV sys-

tolic and diastolic functions. The mitral-closure-to-opening

(MCO) interval is measured on the pulsed Doppler trans-

mitral flow signal, and the ejection time (ET) is derived

from the pulsed Doppler LVOT flow signal. As the total of

the isovolumetric contraction and relaxation time (ICT and

IRT) is obtained by subtracting ET from MCO, the index

incorporates both systolic and diastolic indices [105]. Two

small studies used MPI to optimize AV delay [106, 107]

and/or VV delay [106]. Both studies lacked a control group

and well-defined endpoints.

Conclusion

Experimental physiological and pathophysiological

research supports the rationale to optimize AV and VV

delays in CRT. Although there is a spectrum of possible

optimization methods, no evident golden standard has

emerged, partly due to the lack of large-scale studies

evaluating these methods to outcome. Thus, at present, no

single method can be recommended for standard practice.

Present studies support the physiological rationale for AV

optimization, but data concerning VV optimization are still

conflicting. As the incremental benefit of VV optimization

is relatively small, the effect is probably more of impor-

tance in a subset of CRT patients (with special attention for

non-responders). Although current efforts mainly investi-

gate optimization during resting conditions, there is a need

to develop automated algorithms to implement dynamic

optimization in order to adapt to physiological alterations

during exercise and after anatomical remodeling.

Conflict of interest Berry M. van Gelder is a consultant for Med-

tronic Trading NL B.V. All other authors state that they have no

conflicting interests to declare.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

272 Heart Fail Rev (2011) 16:263–276

123



References

1. Bristow MR, Saxon LA, Boehmer J et al (2004) Cardiac re-

synchronization therapy with or without an implantable defi-

brillator in advanced chronic heart failure. N Engl J Med

350(21):2140–2150

2. Cleland JG, Daubert JC, Erdmann E et al (2005) The effect of

cardiac resynchronization on morbidity and mortality in heart

failure. N Engl J Med 352(15):1539–1549

3. Abraham WT, Fisher WG, Smith AL et al (2002) Cardiac re-

synchronization in chronic heart failure. N Engl J Med

346(24):1845–1853

4. Durrer D, van Dam RT, Freud GE, Janse MJ, Meijler FL,

Arzbaecher RC (1970) Total excitation of the isolated human

heart. Circulation 41(6):899–912

5. Prinzen FW, Spinelli J, Auricchio A (2007) Basic physiology

and hemodynamics of cardiac pacing. In: Ellenbogen KA, Kay

GN, Lau CP, Wilkoff B (eds) Clinical cardiac pacing, defibril-

lation, and resynchronization therapy. Saunders Elsevier, Phil-

adelphia, pp 291–335

6. Mitchell J, Gilmore J, Sarnoff S (1962) The transport function of

the atrium. Factors influencing the relation between mean left

atrial pressure and left ventricular end diastolic pressure. Am J

Cardiol 9:237–247

7. Burchell H (1964) A clinical appraisal of atrial transport func-

tion. Lancet 1(7337):775–779

8. Skinner N Jr, Mitchell J, Wallace A, Sarnoff S (1963) Hemo-

dynamic effects of altering the timing of atrial systole. Am J

Physiol 205:499–503

9. Fung JW, Yu CM, Yip G et al (2004) Variable left ventricular

activation pattern in patients with heart failure and left bundle

branch block. Heart 90(1):17–19

10. Frazier DW, Krassowska W, Chen PS et al (1988) Transmural

activations and stimulus potentials in three-dimensional aniso-

tropic canine myocardium. Circ Res 63(1):135–146

11. Weber KT, Janicki JS, Shroff S, Fishman AP (1981) Contractile

mechanics and interaction of the right and left ventricles. Am J

Cardiol 47(3):686–695

12. Antoni H (1996) Functional properties of the heart. In: Greger R,

Windhorst U (eds) Comprehensive human physiology. From

cellular mechanisms to integration, vol 2. Springer Verlag,

Berlin, pp 1801–1824

13. Farrar DJ, Woodard JC, Chow E (1993) Pacing-induced dilated

cardiomyopathy increases left-to-right ventricular systolic

interaction. Circulation 88(2):720–725

14. Atherton JJ, Moore TD, Lele SS et al (1997) Diastolic ventric-

ular interaction in chronic heart failure. Lancet 349(9067):

1720–1724

15. Kosowsky BD, Scherlag BJ, Damato AN (1968) Re-evaluation

of the atrial contribution to ventricular function: study using His

bundle pacing. Am J Cardiol 21(4):518–524

16. Vernooy K, Verbeek XA, Cornelussen RN et al (2007) Calcu-

lation of effective VV interval facilitates optimization of AV

delay and VV interval in cardiac resynchronization therapy.

Heart Rhythm 4(1):75–82

17. Prinzen FW, Hunter WC, Wyman BT, McVeigh ER (1999)

Mapping of regional myocardial strain and work during ven-

tricular pacing: experimental study using magnetic resonance

imaging tagging. J Am Coll Cardiol 33(6):1735–1742

18. Cazeau S, Leclercq C, Lavergne T et al (2001) Effects of multisite

biventricular pacing in patients with heart failure and intraven-

tricular conduction delay. N Engl J Med 344(12):873–880

19. Samet P, Castillo C, Bernsein WH (1968) Hemodynamic con-

sequences of sequential atrioventricular pacing. Subjects with

normal hearts. Am J Cardiol 21(2):207–212

20. Wilkoff BL, Cook JR, Epstein AE et al (2002) Dual-chamber

pacing or ventricular backup pacing in patients with an

implantable defibrillator: the Dual Chamber and VVI

Implantable Defibrillator (DAVID) trial. JAMA 288(24):

3115–3123

21. Hochleitner M, Hortnagl H, Ng CK, Hortnagl H, Gschnitzer F,

Zechmann W (1990) Usefulness of physiologic dual-chamber

pacing in drug-resistant idiopathic dilated cardiomyopathy. Am

J Cardiol 66(2):198–202

22. Gold MR, Feliciano Z, Gottlieb SS, Fisher ML (1995) Dual-

chamber pacing with a short atrioventricular delay in congestive

heart failure: a randomized study. J Am Coll Cardiol

26(4):967–973

23. Nishimura RA, Hayes DL, Holmes DR Jr, Tajik AJ (1995)

Mechanism of hemodynamic improvement by dual-chamber

pacing for severe left ventricular dysfunction: an acute Doppler

and catheterization hemodynamic study. J Am Coll Cardiol

25(2):281–288

24. Breithardt OA, Sinha AM, Schwammenthal E et al (2003) Acute

effects of cardiac resynchronization therapy on functional mitral

regurgitation in advanced systolic heart failure. J Am Coll

Cardiol 41(5):765–770

25. Kanzaki H, Bazaz R, Schwartzman D, Dohi K, Sade LE,

Gorcsan J III (2004) A mechanism for immediate reduction in

mitral regurgitation after cardiac resynchronization therapy:

insights from mechanical activation strain mapping. J Am Coll

Cardiol 44(8):1619–1625

26. Ypenburg C, Lancellotti P, Tops LF et al (2008) Mechanism of

improvement in mitral regurgitation after cardiac resynchroni-

zation therapy. Eur Heart J 29(6):757–765

27. Stanton T, Hawkins NM, Hogg KJ, Goodfield NE, Petrie MC,

McMurray JJ (2008) How should we optimize cardiac resyn-

chronization therapy? Eur Heart J 29(20):2458–2472

28. Auricchio A, Stellbrink C, Block M et al (1999) Effect of pacing

chamber and atrioventricular delay on acute systolic function of

paced patients with congestive heart failure. The Pacing Ther-

apies for Congestive Heart Failure Study Group. The Guidant

Congestive Heart Failure Research Group. Circulation 99(23):

2993–3001

29. Auricchio A, Ding J, Spinelli JC et al (2002) Cardiac resyn-

chronization therapy restores optimal atrioventricular mechani-

cal timing in heart failure patients with ventricular conduction

delay. J Am Coll Cardiol 39(7):1163–1169

30. Butter C, Auricchio A, Stellbrink C et al (2001) Effect of re-

synchronization therapy stimulation site on the systolic function

of heart failure patients. Circulation 104(25):3026–3029

31. van Gelder BM, Bracke FA, Meijer A, Pijls NH (2005) The

hemodynamic effect of intrinsic conduction during left ven-

tricular pacing as compared to biventricular pacing. J Am Coll

Cardiol 46(12):2305–2310

32. Van Gelder BM, Bracke FA, VoP Van Der, Meijer A (2007)

Optimal sensed atrio-ventricular interval determined by paced

QRS morphology. Pacing Clin Electrophysiol 30(4):476–481

33. Sawhney NS, Waggoner AD, Garhwal S, Chawla MK, Osborn J,

Faddis MN (2004) Randomized prospective trial of atrioven-

tricular delay programming for cardiac resynchronization ther-

apy. Heart Rhythm 1(5):562–567

34. Morales MA, Startari U, Panchetti L, Rossi A, Piacenti M

(2006) Atrioventricular delay optimization by doppler-derived

left ventricular dP/dt improves 6-month outcome of resynchro-

nized patients. Pacing Clin Electrophysiol 29(6):564–568

35. Hardt SE, Yazdi SH, Bauer A et al (2007) Immediate and

chronic effects of AV-delay optimization in patients with

cardiac resynchronization therapy. Int J Cardiol 115(3):318–

325

Heart Fail Rev (2011) 16:263–276 273

123



36. Vardas PE, Auricchio A, Blanc JJ et al (2007) Guidelines for

cardiac pacing and cardiac resynchronization therapy: the task

force for cardiac pacing and cardiac resynchronization therapy

of the European society of cardiology. Developed in collabo-

ration with the European Heart Rhythm Association. Eur Heart J

28(18):2256–2295

37. Asirvatham SJ, Hayes DL (2004) Optimization of biventricular

devices. In: Hayes DL, Wang P, Sackner-Bernstein J, Asirva-

tham SJ (eds) Resynchronization and defibrillation for heart

failure. A practical approach. Blackwell Publishing, Oxford,

pp 139–162

38. Mortensen PT, Sogaard P, Mansour H et al (2004) Sequential

biventricular pacing: evaluation of safety and efficacy. Pacing

Clin Electrophysiol 27(3):339–345

39. Perego GB, Chianca R, Facchini M et al (2003) Simultaneous

vs. sequential biventricular pacing in dilated cardiomyopathy: an

acute hemodynamic study. Eur J Heart Fail 5(3):305–313

40. van Gelder BM, Bracke FA, Meijer A, Lakerveld LJ, Pijls NH

(2004) Effect of optimizing the VV interval on left ventricular

contractility in cardiac resynchronization therapy. Am J Cardiol

93(12):1500–1503

41. Leon AR, Abraham WT, Brozena S et al (2005) Cardiac re-

synchronization with sequential biventricular pacing for the

treatment of moderate-to-severe heart failure. J Am Coll Cardiol

46(12):2298–2304

42. Sogaard P, Egeblad H, Pedersen AK et al (2002) Sequential

versus simultaneous biventricular resynchronization for severe

heart failure: evaluation by tissue Doppler imaging. Circulation

106(16):2078–2084

43. Vanderheyden M, De Backer T, Rivero-Ayerza M et al (2005)

Tailored echocardiographic interventricular delay programming

further optimizes left ventricular performance after cardiac re-

synchronization therapy. Heart Rhythm 2(10):1066–1072

44. Rao RK, Kumar UN, Schafer J, Viloria E, De Lurgio D, Foster E

(2007) Reduced ventricular volumes and improved systolic

function with cardiac resynchronization therapy: a randomized

trial comparing simultaneous biventricular pacing, sequential

biventricular pacing, and left ventricular pacing. Circulation

115(16):2136–2144

45. Boriani G, Muller CP, Seidl KH et al (2006) Randomized

comparison of simultaneous biventricular stimulation versus

optimized interventricular delay in cardiac resynchronization

therapy. The Resynchronization for the HemodYnamic Treat-

ment for Heart Failure Management II implantable cardioverter.

Am Heart J 151(5):1050–1058

46. Weiss R, Malik M, Dinerman J, Lee L, Petrutiu S, Khoo M

(2010) V-V optimization in cardiac resynchronization therapy

non-responders: RESPONSE-HF trail results. Heart Rhythm

7(5):S26

47. Whinnett ZI, Davies JE, Willson K et al (2006) Haemodynamic

effects of changes in atrioventricular and interventricular delay

in cardiac resynchronisation therapy show a consistent pattern:

analysis of shape, magnitude and relative importance of atrio-

ventricular and interventricular delay. Heart 92(11):1628–1634

48. Lafitte S, Bordachar P, Lafitte M et al (2006) Dynamic ven-

tricular dyssynchrony: an exercise-echocardiography study.

J Am Coll Cardiol 47(11):2253–2259

49. Bogaard MD, Kirkels JH, Hauer RN, Loh P, Doevendans PA,

Meine M (2010) Should we optimize cardiac resynchronization

therapy during exercise? J Cardiovasc Electrophysiol 21(11):

1307–1316

50. Mokrani B, Lafitte S, Deplagne A et al (2009) Echocardio-

graphic study of the optimal atrioventricular delay at rest and

during exercise in recipients of cardiac resynchronization ther-

apy systems. Heart Rhythm 6(7):972–977

51. Scharf C, Li P, Muntwyler J et al (2005) Rate-dependent AV

delay optimization in cardiac resynchronization therapy. Pacing

Clin Electrophysiol 28(4):279–284

52. Valzania C, Eriksson MJ, Boriani G, Gadler F (2008) Cardiac

resynchronization therapy during rest and exercise: comparison

of two optimization methods. Europace 10(10):1161–1169

53. Valzania C, Gadler F, Eriksson MJ, Olsson A, Boriani G,

Braunschweig F (2007) Electromechanical effects of cardiac

resynchronization therapy during rest and stress in patients with

heart failure. Eur J Heart Fail 9(6–7):644–650

54. Bordachar P, Lafitte S, Reuter S et al (2006) Echocardiographic

assessment during exercise of heart failure patients with cardiac

resynchronization therapy. Am J Cardiol 97(11):1622–1625

55. van Gelder BM, Meijer A, Bracke FA (2008) Stimulation rate

and the optimal interventricular interval during cardiac resyn-

chronization therapy in patients with chronic atrial fibrillation.

Pacing Clin Electrophysiol 31(5):569–574

56. Porciani MC, Dondina C, Macioce R et al (2006) Temporal

variation in optimal atrioventricular and interventricular delay

during cardiac resynchronization therapy. J Card Fail 12(9):

715–719

57. O’Donnell D, Nadurata V, Hamer A, Kertes P, Mohamed U

(2005) Long-term variations in optimal programming of cardiac

resynchronization therapy devices. Pacing Clin Electrophysiol

28(Suppl 1):S24–S26

58. Abraham WT, Gras D, Yu CM et al (2010) Results from the

freedom trial—assess the safety and efficacy of frequent opti-

mization of cardiac resynchronization therapy. Heart Rhythm

7(5):2–3

59. Mason DT, Braunwald E, Covell JW, Sonnenblick EH, Ross J Jr

(1971) Assessment of cardiac contractility. The relation between

the rate of pressure rise and ventricular pressure during isovol-

umic systole. Circulation 44(1):47–58

60. van den Bos GC (1972) Indices of contractility in the intact

heart. Proc R Soc Med 65(6):545–547

61. Reeves T, Hefner L, Jones W et al. (1960) The hemodynamic

determinants of the rate of change in pressure in the left ven-

tricle during isometric contraction. Am Heart J 60:745–761

62. Wiggers CJ (1914) Some factors controlling the shape of the

pressure curve in the right ventricle. Am J Physiol 33(3):

382–396

63. Wallace A, Skinner N Jr, Mitchell J (1963) Hemodynamic

determinants of the maximal rate of rise of left ventricular

pressure. Am J Physiol 205:30–36

64. Kass DA, Maughan WL, Guo ZM, Kono A, Sunagawa K,

Sagawa K (1987) Comparative influence of load versus inotro-

pic states on indexes of ventricular contractility: experimental

and theoretical analysis based on pressure-volume relationships.

Circulation 76(6):1422–1436

65. Auricchio A, Stellbrink C, Sack S et al (1999) The pacing

therapies for congestive heart failure (PATH-CHF) study:

rationale, design, and endpoints of a prospective randomized

multicenter study. Am J Cardiol 83(5B):130D–135D

66. Jansen AH, van Gelder BM (2008) Visual LV motion and

invasive LVdP/dtmax for selection and optimisation of car-

diac resynchronisation therapy. Neth Heart J 16(Suppl 1):S32–

S35

67. Bracke FA, Houthuizen P, Rahel BM, van Gelder BM (2010)

Left ventricular endocardial pacing improves the clinical effi-

cacy in a non-responder to cardiac resynchronization therapy:

role of acute haemodynamic testing. Europace 12(7):1032–1034

68. Bargiggia GS, Bertucci C, Recusani F et al (1989) A new

method for estimating left ventricular dP/dt by continuous wave

Doppler-echocardiography. Validation studies at cardiac cathe-

terization. Circulation 80(5):1287–1292

274 Heart Fail Rev (2011) 16:263–276

123



69. Tournoux FB, Alabiad C, Fan D et al (2007) Echocardiographic

measures of acute haemodynamic response after cardiac resyn-

chronization therapy predict long-term clinical outcome. Eur

Heart J 28(9):1143–1148

70. Steendijk P, Tulner SA, Bax JJ et al (2006) Hemodynamic

effects of long-term cardiac resynchronization therapy: analysis

by pressure-volume loops. Circulation 113(10):1295–1304

71. Kass DA, Chen CH, Curry C et al (1999) Improved left ven-

tricular mechanics from acute VDD pacing in patients with

dilated cardiomyopathy and ventricular conduction delay. Cir-

culation 99(12):1567–1573

72. de Roest G, Knaapen P, Gotte M et al (2009) Stroke work or

systolic dP/dtmax to evaluate acute response to cardiac resyn-

chronization therapy: are they interchangeable? Eur J Heart Fail

11(7):706–708

73. Steendijk P, Tulner SA, Schreuder JJ et al (2004) Quantification

of left ventricular mechanical dyssynchrony by conductance

catheter in heart failure patients. Am J Physiol Heart Circ

Physiol 286(2):H723–H730

74. Penicka M, Kocka V, Herman D, Trakalova H, Herold M (2010)

Cardiac resynchronization therapy for the causal treatment of

heart failure with preserved ejection fraction: insight from a

pressure-volume loop analysis. Eur J Heart Fail 55(16):1701–

1710

75. Worley SJ, Gohn C, Smith T (2004) Optimization of cardiac

resynchronization: left atrial electrograms measured at implant

eliminates the need for echo and identifies patients where AV

optimization is not possible. J Card Fail 10(4):S62

76. Baker J II, McKenzie J III, Beau S et al (2007) Acute evaluation

of programmer-guided AV/PV and VV delay optimization

comparing an IEGM method and echocardiogram for cardiac

resynchronization therapy in heart failure patients and dual-

chamber ICD implants. J Cardiovasc Electrophysiol 18(2):

185–191

77. van Gelder BM, Meijer A, Bracke FA (2008) The optimized

V-V interval determined by interventricular conduction times

versus invasive measurement by LVdP/dtMAX. J Cardiovasc

Electrophysiol 19(9):939–944

78. Kamdar R, Frain E, Warburton F et al (2010) A prospective

comparison of echocardiography and device algorithms for

atrioventricular and interventricular interval optimization in

cardiac resynchronization therapy. Europace 12(1):84–91

79. Auricchio A, Stellbrink C, Sack S et al (2002) Long-term

clinical effect of hemodynamically optimized cardiac resyn-

chronization therapy in patients with heart failure and ventric-

ular conduction delay. J Am Coll Cardiol 39(12):2026–2033

80. Gold MR, Niazi I, Giudici M et al (2007) A prospective com-

parison of AV delay programming methods for hemodynamic

optimization during cardiac resynchronization therapy. J Car-

diovasc Electrophysiol 18(5):490–496

81. Corporation BS (2008) Comparison of AV optimization meth-

ods used in cardiac resynchronization therapy (CRT) (SMART-

AV). http://www.clinicaltrials.gov/ct2/show/NCT00677014

82. Rickards AF, Bombardini T, Corbucci G, Plicchi G (1996) An

implantable intracardiac accelerometer for monitoring myocar-

dial contractility. The multicenter PEA study group. Pacing Clin

Electrophysiol 19(12 Pt 1):2066–2071

83. Ritter P, Padeletti L, Gillio-Meina L, Gaggini G (1999) Deter-

mination of the optimal atrioventricular delay in DDD pacing.

Comparison between echo and peak endocardial acceleration

measurements. Europace 1(2):126–130

84. Leung SK, Lau CP, Lam CT et al (2000) Automatic optimiza-

tion of resting and exercise atrioventricular interval using a peak

endocardial acceleration sensor: validation with Doppler echo-

cardiography and direct cardiac output measurements. Pacing

Clin Electrophysiol 23(11 Pt 2):1762–1766

85. Dupuis JM, Kobeissi A, Vitali L et al (2003) Programming

optimal atrioventricular delay in dual chamber pacing using

peak endocardial acceleration: comparison with a standard

echocardiographic procedure. Pacing Clin Electrophysiol

26(1 Pt 2):210–213

86. Bordachar P, Garrigue S, Reuter S et al (2000) Hemodynamic

assessment of right, left, and biventricular pacing by peak

endocardial acceleration and echocardiography in patients with

end-stage heart failure. Pacing Clin Electrophysiol 23(11 Pt 2):

1726–1730

87. Ritter P, Nagele H, Lunati M et al (2010) Clinical benefit of

cardiac resynchronization therapy patients optimized by SonR or

standard methods: final results from the CLEAR study. Euro-

pace 12(Suppl 1):i50

88. Butter C, Stellbrink C, Belalcazar A et al (2004) Cardiac re-

synchronization therapy optimization by finger plethysmogra-

phy. Heart Rhythm 1(5):568–575

89. Whinnett ZI, Davies JE, Willson K et al (2006) Determination

of optimal atrioventricular delay for cardiac resynchronization

therapy using acute non-invasive blood pressure. Europace

8(5):358–366

90. Whinnett ZI, Davies JE, Nott G et al (2008) Efficiency, repro-

ducibility and agreement of five different hemodynamic mea-

sures for optimization of cardiac resynchronization therapy. Int J

Cardiol 129(2):216–226

91. Eeftinck Schattenkerk D, van Lieshout J, van den Meiracker A

et al (2009) Nexfin noninvasive continuous blood pressure val-

idation against Riva-Rocci/Korotkoff. Am J Hypertens 22(4):

378–383

92. van Geldorp IE, Delhaas T, Hermans B et al. (2010) Comparison

of a non-invasive arterial pulse contour technique and echo

Doppler aorta velocity-time integral on stroke volume changes

in optimization of cardiac resynchronization therapy. Europace.

doi:10.1093/europace/euq348

93. Bhan A, Kapetanakis S, Monaghan MJ (2008) Optimization of

cardiac resynchronization therapy. Echocardiography 25(9):

1031–1039

94. Bertini M, Delgado V, Bax JJ, Van de VN (2009) Why, how and

when do we need to optimize the setting of cardiac resynchro-

nization therapy? Europace 11(Suppl 5):v46–v57

95. Leon AR, Abraham WT, Curtis AB et al (2005) Safety of

transvenous cardiac resynchronization system implantation in

patients with chronic heart failure: combined results of over 2,

000 patients from a multicenter study program. J Am Coll

Cardiol 46(12):2348–2356

96. Thomas DE, Yousef ZR, Fraser AG (2009) A critical compar-

ison of echocardiographic measurements used for optimizing

cardiac resynchronization therapy: stroke distance is best. Eur J

Heart Fail 11(8):779–788

97. Kerlan JE, Sawhney NS, Waggoner AD et al (2006) Prospective

comparison of echocardiographic atrioventricular delay optimi-

zation methods for cardiac resynchronization therapy. Heart

Rhythm 3(2):148–154

98. Chung ES, Leon AR, Tavazzi L et al (2008) Results of the

predictors of response to CRT (PROSPECT) trial. Circulation

117(20):2608–2616

99. Vidal B, Sitges M, Marigliano A et al (2007) Optimizing the

programation of cardiac resynchronization therapy devices in

patients with heart failure and left bundle branch block. Am J

Cardiol 100(6):1002–1006

100. Novak M, Lipoldova J, Meluzin J et al (2008) Contribution to

the V–V interval optimization in patients with cardiac resyn-

chronization therapy. Physiol Res 57(5):693–700

101. Cleland JG, Daubert JC, Erdmann E et al (2001) The CARE-HF

study (CArdiac REsynchronisation in Heart Failure study):

rationale, design and end-points. Eur J Heart Fail 3(4):481–489

Heart Fail Rev (2011) 16:263–276 275

123

http://www.clinicaltrials.gov/ct2/show/NCT00677014
http://dx.doi.org/10.1093/europace/euq348


102. Ritter P, Lelieve T, Lavergne T (1994) Quick determination of

the optimal AV delay at rest in patients paced in DDD mode for

complete AV block. Eur J Cardiac Pacing Electrophysiol

4(2):A163

103. Jansen AH, Bracke FA, van Dantzig JM et al (2006) Corre-

lation of echo-Doppler optimization of atrioventricular delay

in cardiac resynchronization therapy with invasive hemody-

namics in patients with heart failure secondary to ischemic

or idiopathic dilated cardiomyopathy. Am J Cardiol 97(4):

552–557

104. Meluzin J, Novak M, Mullerova J et al (2004) A fast and simple

echocardiographic method of determination of the optimal

atrioventricular delay in patients after biventricular stimulation.

Pacing Clin Electrophysiol 27(1):58–64

105. Tei C, Ling LH, Hodge DO et al (1995) New index of combined

systolic and diastolic myocardial performance: a simple and

reproducible measure of cardiac function–a study in normals

and dilated cardiomyopathy. J Cardiol 26(6):357–366

106. Porciani MC, Dondina C, Macioce R et al (2005) Echocardio-

graphic examination of atrioventricular and interventricular

delay optimization in cardiac resynchronization therapy. Am J

Cardiol 95(9):1108–1110

107. Stockburger M, Fateh-Moghadam S, Nitardy A, Langreck H,

Haverkamp W, Dietz R (2006) Optimization of cardiac resyn-

chronization guided by Doppler echocardiography: haemody-

namic improvement and intraindividual variability with

different pacing configurations and atrioventricular delays. Eu-

ropace 8(10):881–886

276 Heart Fail Rev (2011) 16:263–276

123


	Atrioventricular and interventricular delay optimization in cardiac resynchronization therapy: physiological principles and overview of available methods
	Abstract
	Introduction
	Physiological electrical activation and mechanical contraction
	Pathophysiological electrical activation and mechanical contraction
	Atrioventricular and interventricular synchronization in CRT
	Physiological rationale for optimization
	Evidence for atrioventricular optimization
	Evidence for interventricular optimization
	Intra-individual variation in optimal AV and VV delays

	Methods for optimization of AV and VV delays
	Invasive optimization methods
	First derivate of left ventricular pressure pulse
	Pressure--volume loops

	Automated algorithms
	Algorithms based on the intracardiac electrogram
	Peak endocardial acceleration
	Finger photoplethysmography

	Echocardiography
	Evaluation of LV systolic function
	Evaluation of LV diastolic function
	Evaluation of LV systolic and diastolic function

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


