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Background: Genetic profiling of resected tumor or biopsy samples is increasingly used for cancer diagnosis
and therapy selection for thyroid and other cancer types. Although mutations occur in cell DNA and are
typically detected using DNA sequencing, recent attempts focused on detecting pathogenic variants from RNA.
The aim of this study was to determine the completeness of capturing mutations using RNA sequencing (RNA-
Seq) in thyroid tissue and fine-needle aspiration (FNA) samples.
Methods: To compare the detection rate of mutations between DNA sequencing and RNA-Seq, 35 tissue
samples were analyzed in parallel by whole-exome DNA sequencing (WES) and whole-transcriptome RNA-
Seq at two study sites. Then, DNA and RNA from 44 thyroid FNA samples and 47 tissue samples were studied
using both targeted DNA sequencing and RNA-Seq.
Results: Of 162 genetic variants identified by WES of DNA in 35 tissue samples, 77 (48%) were captured by
RNA-Seq, with a detection rate of 49% at site 1 and 46% at site 2 and no difference between thyroid and
nonthyroid samples. Targeted DNA sequencing of 91 thyroid tissue and FNA samples detected 118 pathogenic
variants, of which 57 (48%) were identified by RNA-Seq. For DNA variants present at >10% allelic frequency
(AF), the detection rate of RNA-Seq was 62%, and for those at low (5–10%) AF, the detection rate of RNA-Seq
was 7% ( p < 0.0001). For common oncogenes (BRAF and RAS), 94% of mutations present at >10% AF and
11% of mutations present at 5–10% AF were captured by RNA-Seq. As expected, none of TERT promoter
mutations were identified by RNA-Seq. The rate of mutation detection by RNA-Seq was lower in FNA samples
than in tissue samples (32% vs. 49%, p = 0.02).
Conclusions: In this study, RNA-Seq analysis detected only 46–49% of pathogenic variants identifiable by
sequencing of tumor DNA. Detection of mutations by RNA-Seq was more successful for mutations present at a
high allelic frequency. Mutations were more often missed by RNA-Seq when present at low frequency or when
tested on FNA samples. All TERT mutations were missed by RNA-Seq. These data suggest that RNA-Seq does
not detect a significant proportion of clinically relevant mutations and should be used with caution in clinical
practice for detecting DNA mutations.
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Introduction

Genetic profiling of human tumors is increasingly
used to improve cancer diagnosis and prognostication

and to identify potential therapeutic targets (1). For thyroid

nodules, molecular testing is frequently used when fine-
needle aspiration (FNA) cytology is indeterminate, and more
accurate prediction of cancer probability is needed to in-
form patient management (2). A number of genetic alter-
ations, such as TERT promoter mutations, have emerged as
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important prognostic markers that define the most aggressive
class of thyroid cancers (3). In advanced thyroid cancer,
genetic analysis is helpful to identify therapeutic targets such
as BRAFV600E and RET mutations and NTRK and ALK gene
fusions (4).

Although sequencing of DNA isolated from cells collected by
FNA or tumor tissue sections is a standard approach used for
detecting DNA variants, the utility of RNA converted to cDNA
has been recently explored as an alternative template for se-
quencing and detection of DNA mutations (5–9). Such approach
is based on the premise that specific DNA regions encoding
genes that are expressed in the tissue of interest are transcribed
into mRNA, and DNA mutations located in the coding regions of
these genes can be detected by RNA sequencing (RNA-Seq).

The use of RNA for detecting DNA variants would simplify
the workflow as it would allow detection of two main classes
of genetic alterations found in thyroid tumors, that is, point
mutations and gene fusions, using a single RNA-based ap-
proach. However, the use of RNA for detecting gene mutations
is expected to be limited to the expressed gene areas and de-
pends on the stability and abundance of mRNA transcribed
from the gene of interest in specific cell types. Indeed, several
studies have demonstrated that only about half of all genetic
variants detectable by sequencing of human tissue and cell line
DNA could be captured using RNA-Seq (5–8). Furthermore,
only limited information is available on the completeness of
detection of genetic variants using the RNA-Seq data in thy-
roid nodules and cancer (9).

The aim of this study was to assess the completeness of
capturing DNA mutations using RNA-Seq. To achieve this
aim, we performed side-by-side sequencing of DNA and
RNA from tissue and FNA samples and compared the de-
tection rate of mutations in different genes and DNA regions
using these two sequencing approaches.

Materials and Methods

Samples and study design

De-identified DNA and RNA samples isolated from 35
randomly selected tissue specimens were studied using whole-
exome DNA sequencing (WES) and whole-transcriptome
(RNA-Seq) analysis at two study sites, the Englander Institute
for Precision Medicine, Weill Cornell Medicine, New York,
NY (site 1, n = 18, brain tumors) and the University of Pitts-
burgh Medical Center, Pittsburgh, PA (site 2, n = 17, thyroid
tumors) with the approval by respective institutional review

boards. In addition, DNA and RNA from 44 thyroid FNA
samples and 47 thyroid tissues were studied by targeted DNA
sequencing (112-gene panel) and RNA-Seq at the University
of Pittsburgh Medical Center. The samples were pre-selected
to represent all mutations most commonly occurring in thyroid
cancer and mutations present at various levels including low
level. The summary of the study design is given in Figure 1.
Detected genetic alterations are summarized in Supplementary
Tables S1–S3.

Whole-exome DNA sequencing

Whole-exome DNA sequencing was performed using DNA
as a template independently at the two study sites. At site 1,
DNA was isolated and whole-exome DNA sequencing was
performed as previously reported (10). Briefly, library prep-
arations were performed using Agilent HaloPlex Library
(Agilent Technologies, Inc., Santa Clara, CA). Sequencing
was conducted on Illumina HiSeq 2500 (Illumina, Inc., San
Diego, CA). Sequencing reads alignment was performed
using BWA with GRC37/hg19 reference genome (11), and
mutations were detected using EXaCT-1 pipeline v0.9 using
patient-matched tumor/normal samples (10).

At site 2, DNA isolation and whole-exome DNA se-
quencing were carried out as previously described (12). Li-
braries were prepared using KAPA HyperPlus and xGen
Exome Research Panel v1.0 (Integrated DNA Technologies,
Inc., Coralville, IA). Sequencing was performed on Illumina
NovaSeq using NovaSeq S1 300 Kit (Illumina) and reads
alignment using BWA aligner (11) and Picard tools. For all
analyses, the reference genome build GRC37/h19 was used.
The aligned reads were preprocessed using Genome Analysis
Tool Kit (GATK) (13). Mutations were detected using Mu-
tect2 pipeline using ‘‘somatic only’’ settings. A panel of
normal variants was created using data from the 1000 Gen-
omes Project (14). The variants were annotated using AN-
NOVAR and filtered using quality metrics such as variant
quality score recalibration, in-house database, and external
databases such as Cosmic (15,16).

Whole-transcriptome sequencing (RNA-Seq)

RNA-Seq analysis and detection of mutations were per-
formed using protocols established at each study site. At site
1, RNA isolated from frozen specimens was prepared for
RNA-Seq using TruSeq RNA Library Preparation Kit v2 or
riboZero as previously described (17). Sequencing was per-
formed on GAII, HiSeq 2000, or HiSeq 2500. RNA-Seq and
data processing were conducted as previously reported
(18,19). The reads were aligned using STAR_2.4.0f1 (20).
SAMTOOLS v0.1.19 was used for sorting and indexing reads
(21). Cufflinks (2.0.2) was used to estimate the expression
values (FPKMS) (22) and GENCODE v19 GTF file for an-
notation (23). Since the sequenced samples from the published
data sets were processed using different library preps, batch
normalization was performed using ComBat (24) from sva
bioconductor package (25). Mutations were identified using
in-house program rnaseqmut (v0.6).

At site 2, RNA isolation and sequencing were performed as
previously reported (12). To detect mutations from whole-
transcriptome data, the best practice guidelines for RNA-Seq
short variant discovery from the Broad Institute were used.
The preprocessing was performed on raw RNA-Seq readsFIG. 1. Summary of the study design.
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using STAR aligner (20) and Picard software. After recali-
bration of the bases on RNA-Seq reads, the variant calling
was performed using HaplotypeCaller (26).

Targeted next generation sequencing (NGS) panel

Targeted next generation sequencing analysis was per-
formed to genotype surgically removed tissue samples (n = 47)
and FNA samples (n = 44, Supplementary Table S1) from
thyroid nodules using the ThyroSeq v3 GC assay, as previously
described (27). The assay uses targeted amplification-based
NGS technology to detect genomic alterations in 112 thyroid-
related genes by sequencing DNA and RNA on the Ion Gen-
eStudio S5 System (Thermo Fisher Scientific, Waltham, MA)
according to the manufacturer’s protocol. To detect mutations
from targeted NGS data, the signal data from sequencing were
analyzed using Torrent Suite software v5.8. For 17 thyroid
tumor samples that were sequenced by whole-exome DNA
sequencing, targeted DNA sequencing, and RNA-Seq, all
discrepant mutations were visually inspected in addition to
automated variant calling pipeline.

Statistical analysis

Statistical analysis was performed using RStudio (1.0.136)
package with R (v3.3.2) and ggplot2 (2.2.1). Comparison
between the detection rate of DNA variants by different se-
quencing approaches was performed using t-test; p-values
were two-sided and considered significant if <0.05. To
evaluate the accuracy of detecting pathogenic variants by
several approaches, positive percentage agreement (PPA)
was calculated (28). To compare the differences in the allelic
frequency (AF), root mean square (RMS) error was used. All
confidence intervals were two-sided 95% and were computed
using the Wald test (29).

Results

Detection of genetic variants by RNA-Seq compared
with whole-exome DNA sequencing

To evaluate the rate of detection of cancer-related genetic
variants that occur in DNA using tumor RNA, 35 tumor tissue
samples were analyzed using whole-exome DNA sequencing
and whole-transcriptome RNA-Seq at two participating study
sites. Each study site performed detection of variants inde-
pendently using their own clinical sequencing protocols and
bioinformatics pipelines. Only cancer-related genetic vari-
ants were used for comparison between sequencing of DNA

and RNA at each site. The results of the analysis are sum-
marized in Table 1. Overall, the whole-exome DNA se-
quencing detected 162 gene variants in 35 tumor tissue
samples. Of those, 77 (48%) were detected by RNA-Seq.
Specifically, at site 1, 18 brain tumors were analyzed by
whole-exome DNA sequencing and 32 pathogenic variants
were identified, of which 15 (46%) were also detected by
RNA-Seq. Site 2 analyzed 17 thyroid tumors and detected
130 variants by whole-exome DNA sequencing, of which 64
(49%) were identified by RNA-Seq. The detection rate of
cancer-related genetic variants by RNA-Seq was signifi-
cantly lower compared with whole-exome DNA sequencing
( p < 0.0001). There was no difference in the detection rate of
variants by RNA-Seq between the two study sites ( p = 0.89).

Detection of genetic variants by RNA-Seq compared
with targeted next-generation DNA sequencing

Next, we determined the rate of detection of pathogenic
genetic variants, that is, mutations, by RNA-Seq compared
with targeted DNA sequencing (ThyroSeq v3 GC) in thyroid
samples. Forty-seven tissue samples and 44 thyroid FNA
samples were used. Among the FNA samples, 21 were di-
agnosed as Bethesda III, 8 as Bethesda IV, 13 as Bethesda V,
and 2 as Bethesda VI. Overall, targeted DNA sequencing
detected 118 gene mutations in 91 thyroid samples (Sup-
plementary Table S2), of which 57 (48%) were identified by
RNA-Seq (Table 2). Furthermore, 17 thyroid tumor samples
in this group were sequenced by all three methods, that is,
whole-exome DNA sequencing, targeted DNA sequencing,
and RNA-Seq. All 118 mutations detected by targeted DNA
sequencing were confirmed by whole-exome DNA se-
quencing (PPA, 100%).

Detection rate of mutations varied for different genes.
We further analyzed the sequencing data to examine whether
the rate of detection of mutations by RNA-Seq varies

Table 1. Detection Rates of Cancer-Related

Variants by RNA Sequencing Analysis Compared

with Whole-Exome DNA Sequencing

Study
sites Samples

Variants
detected
by WES

Variants
detected

by RNA-Seq
RNA-Seq
(PPAa)

Site 1 18 32 15 46% (30–64%)
Site 2 17 130 64 49% (41–58%)

aPPA is accuracy of detection of cancer-related genomic variants
by RNA-Seq, which is calculated as a percentage of variants
detected by RNA-Seq out of all genomic variants detected by DNA
sequencing (WES).

PPA, positive percentage agreement; RNA-Seq, RNA sequenc-
ing; WES, whole-exome DNA sequencing.

Table 2. Detection Rates of Mutations by RNA

Sequencing Analysis Compared with Targeted

DNA Sequencing in 91 Thyroid Samples (47 Tissue

and 44 Fine-Needle Aspiration Samples)

Gene/variants

Variants
detected

by
targeted

DNA
sequencing

Variants
detected

by
RNA-Seq

RNA-Seq
(PPAa)

BRAF 27 13 48% (29–67%)
RAS (NRAS,

HRAS, KRAS)
25 19 76% (59–93%)

TERT 23 0 0%
TP53 16 12 75% (54–96%)
EIF1AX 15 6 40%(15–65%)
PTEN 6 3 50% (10–90%)
PIK3CA 3 1 33% (0–87%)
TSHR 2 2 100%
DICER1 1 1 100%
All variants 118 57 48% (39–57%)

aPPA is accuracy of detection of cancer-related genomic variants
by RNA-Seq, which is calculated as a percentage of variants
detected by RNA-Seq out of all genomic variants detected by DNA
sequencing (targeted next generation sequencing panel).
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between different mutations. The most common mutations
detected by targeted DNA sequencing in thyroid samples
were BRAF (n = 27) and RAS (n = 25), of which RNA-Seq
detected 13 (48%) of BRAF and 19 (75%) of RAS mutations
(Table 2). For tumor suppressor genes TP53 and PTEN, the
detection rate was 75% and 50%, respectively. Other muta-
tions were detected in expressed RNA at various rates, from
33% for PIK3CA and 44% for EIF1AX splice mutations to
100% for TSHR (Table 2). Finally, none of 23 samples with
TERT promoter mutations (19 C228T, 4 C250T) were de-
tected using RNA-Seq. If TERT promoter mutations were
excluded, the overall detection rate of expressed DNA vari-
ants by RNA-Seq would increase from 48% to 68%.

Detection rate dropped for low allelic frequency mutations.
Next, we determined whether the rate of detection of muta-
tions in these samples varied for mutations present at dif-
ferent allelic frequencies. Allelic frequency of a mutation is
calculated as a percentage of sequencing reads containing
the mutation divided by total number of reads covering the
locus. It allows estimating the proportion of clonal tumor
cells to all (neoplastic and nonneoplastic) cells collected
from each sample (by multiplying the allelic frequency by 2
as most mutations are heterozygous). This is important for
clinical samples that may contain low proportion of cancer
cells, such as thyroid FNA samples. This is because thyroid
tumors not infrequently have significant infiltration by
lymphocytes and other inflammatory cells, stromal fibro-
blasts, or other nonneoplastic cells that ‘‘dilute’’ tumor cells
collected by FNA.

In our group of samples, among 118 DNA mutations de-
tected by targeted DNA sequencing, 89 had allelic frequency
of >10% (i.e., a heterozygous mutation present in >20% of
collected cells), which was designated as ‘‘high.’’ The re-
maining 29 variants had a ‘‘low’’ allelic frequency of 5–10%
(i.e., were present in 10–20% of collected cells). When the
rate of mutations detected by RNA-Seq was examined sep-
arately in different allelic frequency groups, we observed that
62% of high allelic frequency mutations and only 7% of low
allelic frequency mutations were captured using RNA
( p < 0.0001). These detection rates without TERT promoter
mutation in these data sets will be 78% and 8% for ‘‘high’’
and ‘‘low’’ AF, respectively. Among the most common

mutations that affect BRAF and RAS oncogenes, 94% of those
present at a high (>10%) allelic frequency and 11% of those
present at a low (5–10%) allelic frequency were captured by
RNA-Seq. None of the TP53, PIK3CA, and EIF1AX muta-
tions present at low allelic frequency were detected using the
RNA-Seq. None of the TERT mutations were captured by
RNA-Seq regardless of allelic frequency. These results are
summarized in Figure 2.

Detection rate of mutations in thyroid FNA samples.
When the detection of gene variants was examined separately
in the 44 FNA samples, of 74 variants identified using tar-
geted DNA sequencing, 27 (36%) were detected in expressed
RNA (Supplementary Table S1). The detection rate would
increase to 47% if the TERT promoter mutations are ex-
cluded. The detection of all mutations by RNA-Seq in thyroid
FNA samples was significantly lower compared with tissue
samples (36% vs. 49%, p = 0.02), and it remained significant
after TERT mutations were excluded (47% vs. 79%,
p = 0.008). The difference in the detection rate was due to
more common presence of variants with low allelic fre-
quency in the FNA samples (i.e., 38% of thyroid FNA sam-
ples had low-level variants compared with 7% of thyroid
tumor tissues). Indeed, among mutations present in the FNA
samples at an allelic frequency of >10%, the detection rate by
RNA-Seq was 80% for BRAF, 50% for RAS, and 58% for
other mutations. For mutations with a 5–10% allelic fre-
quency, the detection rate by RNA-Seq dropped to 7% for
BRAF and RAS, whereas TP53 and EIF1AX mutations were
not detected (Supplementary Table S1).

AF of mutations cannot be reliably detected by RNA-Seq.
Finally, we explored the accuracy of detection of allelic
frequency of gene mutations in the RNA-Seq data. Ninety-
one thyroid tissue and FNA samples were used to compare
the mutation allelic frequency detectable using the RNA-
Seq data with those calculated using targeted DNA se-
quencing. Only variants that were detected by both methods
were included in the comparison. Overall, correlation be-
tween the two methods was poor and showed a RMS error of
0.26 (Fig. 3). These results suggest that AFs of gene mu-
tations may not be reliably determined using the RNA-Seq
data.

FIG. 2. RNA-Seq detection rate of mutations that were present at high and low allelic frequencies on DNA sequencing: a
study of 47 thyroid tissues and 44 thyroid FNA samples sequenced by RNA-Seq and targeted next generation sequencing
panel. FNA, fine-needle aspiration; RNA-Seq, RNA sequencing.
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Discussion

This study assessed the completeness of detecting genetic
variants using RNA-Seq and revealed that only 46–49% of
pathogenic variants detectable by DNA sequencing could be
captured by RNA-Seq. There was no difference in the de-
tection rate of such variants in nonthyroid and thyroid sam-
ples and when different sequencing and detection pipelines
were used at the two participating study sites.

Our findings closely recapitulate the results of previously
reported studies that compared the detection of genetic var-
iants using DNA sequencing and RNA-Seq. Indeed, in a
study by Piskol et al., RNA-Seq identified 40–48% of all
coding variants detected by whole-genome sequencing of
DNA (8). In a study by Cirulli et al., 40% of exonic variants
identified by whole-genome sequencing were captured using
RNA-Seq (7).

There are several reasons for the limited detection of DNA
variants using RNA-Seq (5–8). First, since only coding re-
gions of genes are transcribed into mRNA, RNA-Seq cannot
detect any of the variants located in noncoding DNA regions.
The examples of such variants are TERT C228T and C250T
mutations located in the promoter region of the gene, which is
not transcribed. As expected, our study confirmed that all
TERT promoter mutations were missed by RNA-Seq. TERT
promoter mutations are important diagnostic and particularly
prognostic markers for thyroid cancer (3). For example, in a
nodule that contains both RAS and TERT promoter mutations,
inability to detect TERT would yield an isolated RAS-positive
test result, which would indicate a moderate probability of a
low-risk cancer. In contrast, the correct identification of both
RAS and TERT mutation would yield a high probability of
high-risk cancer (30). Such limitations of RNA-Seq should be
taken into account when the results of FNA analysis are in-
tended for clinical decision-making.

The second reason for missing some genetic variants in the
RNA-Seq data is that not all genes are well expressed in the
source tissue, and some loss-of-function mutations may lead
to decreased stability and increased degradation of respective
mRNA molecules. The low number of copies of mRNA

molecules makes the detection of mutations in these genes
more difficult by RNA-Seq. In one study, after the analysis
was restricted to those genes that were well expressed in the
source tissue, the detection rate of genetic variants increased
from 40% to 81% (7). In thyroid tissues, this may affect the
detection of loss-of-function mutations that occur in tumor
suppressor genes, such as TP53 and PTEN. Among those,
TP53 mutations are of particular importance as they represent
a marker of more invasive, high-risk thyroid cancers, par-
ticularly in Hürthle cell tumors (31,32).

The third reason that can affect the detection of DNA
variants using RNA-Seq is related to the intrinsic complexity
of the computational analysis of RNA data, which require
correct mapping of RNA-Seq reads to the reference human
genome (6,8). Such analysis has to account for mRNA
splicing, which can be affected by different factors including
mutations at the gene splice sites. One of such genes relevant
to thyroid cancer is EIF1AX, which harbors mutations fre-
quently affecting the splice sites between intron 5 and exon 6
of the gene (33). Indeed, in this study, only 6 of 15 (40%)
EIF1AX mutations were captured when using RNA-Seq.

Yet another factor that may affect the detection of het-
erozygous mutations by RNA-Seq is related to expression
balance and specific situations when the normal allelic of the
gene is more highly expressed than the mutant allelic (6,34).
Deviation from a 1:1 ratio of the mutant:normal allelic
present in DNA in favor of the normal allelic in the se-
quencing reads generated by RNA-Seq can impair the de-
tection of such mutations, particularly when they are present
at a low allelic frequency. A significant drop in the detection
rate of mutations present at low allelic frequency (5–10%)
was observed for most mutations in this study. This con-
firmed previously reported findings by Angell et al. who
observed that the detection rate of genetic variants in thyroid
samples analyzed by RNA-Seq was higher for the variants
present at an allelic frequency of >20% compared with those
present at an allelic frequency of >5% (9). Detecting low-
level mutations in thyroid FNA samples is diagnostically
important, particularly for mutations that have strong asso-
ciation with cancer, such as BRAFV600E. This mutation, even
when found at a low allelic frequency (e.g., 5%), confers a
very high probability of cancer. Missing low-level
BRAFV600E mutation in the FNA sample would decrease di-
agnostic accuracy of RNA-Seq for nodules with only partial
cancer sampling or those with extensive infiltration by lym-
phocytes or other inflammatory cells, which would more
often yield FNA samples containing a small proportion of
cells carrying a given mutation.

The difference in the overall detection rate of genetic
variants in thyroid samples by RNA-Seq between this study
and one reported by Angell et al. (9) (48% vs. 74%, respec-
tively) could be due to several reasons, including difference
in mutation profiles between the tested samples. The current
study included samples with a broader range of mutated
genes, including BRAF, RAS, TP53, PTEN, and TERT,
whereas in the study by Angell et al., most of the samples
were positive for BRAF, RAS, and TSHR mutations. Notably,
even among thyroid samples that did not carry TERT, TP53,
and other rare but clinically relevant mutations, 47/181 (26%)
of mutations were missed when using RNA-Seq (9).

Similar or higher rates of genetic variants missed by RNA-
Seq can be expected in thyroid FNA samples compared with
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FIG. 3. Comparison of the allelic frequencies of mutations
detected by both RNA-Seq and targeted DNA sequencing in
47 thyroid tissues and 44 thyroid FNA samples. Color
images are available online.
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the tissue samples. This is because FNA samples frequently
contain a significant proportion of nonneoplastic cells, in-
cluding inflammatory and stromal cells, in addition to normal
thyroid cells adjacent to the tumor nodule. In the tissue
samples, most of these nonneoplastic cells can be excluded
before molecular analysis by selecting the most cellular tu-
mor areas using microscopic guidance. The higher fraction of
normal cells in FNA samples would lead to lowering the
mutant allelic frequency, which, as discussed earlier, de-
creases the chance for mutations to be detected by RNA-Seq.

Finally, the findings of this study suggest that allelic fre-
quency of mutations cannot be reliably calculated from the
RNA-Seq data. This is not surprising in light of the known
variability in expression levels of the normal and mutant al-
lelics. Knowing the allelic frequency of mutations may help
to provide a more specific cancer probability assessment in
the tested nodules (35), although such calculations may be
inaccurate based on the data generated by RNA-Seq.

In summary, the results of this study, as well as previous
reports, indicate that a significant proportion of coding mu-
tations and all noncoding TERT promoter mutations are
missed by sequencing of RNA isolated from thyroid samples,
similar to other tissue types. This should be taken into ac-
count when RNA-Seq is used in clinical practice for diag-
nosis, prognostication, and selection of targeted therapies for
thyroid and other cancer types.
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