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Abstract

In this white paper, experts from the Digital Pathology Association (DPA) define terminology and concepts in
the emerging field of computational pathology, with a focus on its application to histology images analyzed
together with their associated patient data to extract information. This review offers a historical perspective and
describes the potential clinical benefits from research and applications in this field, as well as significant obstacles
to adoption. Best practices for implementing computational pathology workflows are presented. These include
infrastructure considerations, acquisition of training data, quality assessments, as well as regulatory, ethical, and
cyber-security concerns. Recommendations are provided for regulators, vendors, and computational pathology
practitioners in order to facilitate progress in the field.
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Introduction: goals of this paper use in different contexts [1-3]. The expert authors of

the Digital Pathology Association (DPA) define CPATH
The term computational pathology (CPATH) has  as the ‘omics’ or ‘big-data’ approach to pathology,
become a buzz-word among the digital pathology  where multiple sources of patient information including
community, yet it often leads to confusion due to its  pathology image data and meta-data are combined to
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Table 1. Definitions of CPATH terms
Annotation

Artificial intelligence (Al)
Black box/glass box

Cloud computing

Computational pathology (CPATH)

Convolutional neural network (CNN)

Data augmentation

Deep learning

Digital pathology
Gold standard

Ground truth (as considered within Al)

Image analysis

Machine learning (ML)

Meta-data

Supervised machine learning

Unsupervised machine learning

Whole slide image

287

Indication of the position and/or outline of structures or objects within digital images, usually produced by
humans using a computer mouse or drawing tablet. Annotations may have associated labels and possible
other meta-data. Annotations can be manually generated or can be established by algorithm tools

A branch of computer science dealing with the simulation of intelligent behavior in computers

A neural network can be perceived as a black box that lacks a clear depiction of the image features used for a
decision. However, methods can be employed to transform it into a glass box in an effort to understand the
relationship between the input parameters and the output of the network

The practice of using a network of remote servers hosted on the internet to store, manage, and process data,
rather than a local server or a personal computer

A branch of pathology that involves computational analysis of a broad array of methods to analyze patient
specimens for the study of disease. In this paper, we focus on the extraction of information from digitized
pathology images in combination with their associated meta-data, typically using Al methods such as deep
learning

A type of deep neural network particularly designed for images. It uses a kernel or filter to convolve an image,
which results in features useful for differentiating images

Method commonly used in deep learning to increase the training data using operations such as rotating,
cropping, zooming, and image histogram-based modifications. This provides a number of advantages such
as promoting positional and rotational invariance, robustness to staining variability, and improves the
generalizability of the classifier

The subset of machine learning composed of algorithms that permit software to train itself to perform tasks
by exposing multilayered artificial neural networks to vast amounts of data. Data are fed into the input
layers and are sequentially processed in a hierarchical manner with increasing complexity at each layer,
modeled loosely after the hierarchical organization in the brain. Optimization functions are iteratively
trained to shape the processing functions of the layers and the connections between them

A blanket term that encompasses tools and systems to digitize pathology slides and associated meta-data,
their storage, review, analysis, and enabling infrastructure

The practical standard that is used to capture the ‘ground truth'. The gold standard may not always be
perfectly correct, but in general is viewed as the best approximation

A category, quantity, or label assigned to a dataset that provides guidance to an algorithm during training.
Depending on the task, the ground truth can be a patient- or slide-level characterization or can be applied
to objects or regions within the image. The ground truth is an abstract concept of the 'truth’

A method to extract typically quantifiable information from images. In this paper, we only discuss image
analysis as applied to images of histology slides, but the term itself is broader, and applies to the extraction
of information from any image, biomedical or not

A branch of Al in which computer software learns to perform a task by being exposed to representative data

In the context of digital pathology, the term meta-data describes descriptive data associated with the
individual, sample, or slide. They may include image acquisition information, patient demographic data,
pathologist annotation or classification, or outcome data from treatment. Typically, meta-data are entries
that allow searches in databases, for example. Highly complex, large, multiple-time-point associated data,
such as longitudinal image data (such as radiology) or genomic data, are not usually called 'meta-data’

Supervised learning is used to train a model to predict an outcome or to classify a dataset based on a label
associated with a data point (i.e. ground truth). An example of supervised machine learning includes the
design of classifiers to distinguish benign from malignant regions based on manual annotations

Unsupervised learning seeks to identify natural divisions in a dataset without the need for a ground truth,
often using methods such as cluster analysis or pattern matching. Examples of unsupervised machine
learning include the identification of images with similar attributes or the clustering of tumors into
subtypes

Digital representation of an entire histopathological glass slide, digitized at microscope resolution. These
whole slide scans are typically produced using slide scanners. Slide scan viewing software enables
inspection of the image in a way that mimics the use of a traditional microscope; the image can be viewed
at different magnifications

extract patterns and analyze features. In this white paper,
we will focus on a subset of this field, encompassing
CPATH applications related to whole slide imaging
(WSI) and analysis. CPATH is only one of a large
number of fashionable terms that are confusingly used
apparently interchangeably, yet mean somewhat differ-
ent things. To assist the reader, we have employed spe-
cialized terminology in bold case when they first appear,
and provided a short definition of each in Table 1.

As this review will discuss, the use of advanced
computational techniques such as machine learning
(ML), and in particular deep learning (DL), has been
a key element in the promise of CPATH. Both ML and

© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
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its subset DL are examples of artificial intelligence
(AI). A related concept is ML-powered image analy-
sis, which allows extremely accurate image classifica-
tion or segmentation of an image. The outputs of these
computer-based tools may later be integrated into a full
CPATH process, once these image features are corre-
lated to other types of patient information besides the
image itself. Whilst this type of analysis holds great
promise for a paradigm-shift in healthcare, multiple bar-
riers remain, precluding its widespread clinical use.
The goal of this white paper is to facilitate the under-
standing of CPATH by the pathology community and
regulators to enable a stronger collaboration with the
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CPATH industry. We discuss the history of CPATH and
best practices in deploying these methods for clinical
use, as well as technical and regulatory considerations,
design controls, and concerns. Finally, recommenda-
tions and future directions to help drive the field forward
are discussed.

History and promises of computational pathology

Introduction of whole slide imaging

Histopathology has been an integral part of the work
of pathologists since the 17th century [4]. Today,
histopathology largely remains a manual process in
which pathologists examine glass slides using conven-
tional brightfield microscopy. Advances in digitization
of glass slides in pathology occurred much later than
the digital transformation witnessed in radiology [5,6],
where digital sensors are widespread. When histologic
glass slides are digitized, they can be remotely viewed
by a pathologist on a computer screen, or digitally
analyzed using image analysis techniques [7].

At its inception, digital image analysis was pre-
dominantly used by researchers and often limited to
individual fields of views, which was cumbersome and
could introduce bias. WSI allowed developments that
have brought us from the application of traditional
image analysis techniques on small manually selected
regions of interest, to what is the current state-of-the-art
in digital pathology: techniques that process the entire
slide image automatically [7]. This allowed researchers
to identify features not easily analyzed by visual
evaluation alone [8,9].

Various whole slide scanners with brightfield and
fluorescent capabilities have entered the market [10]. In
the European Union, several WSI devices are marketed
for clinical use, whilst in the United States, only two
WSI devices have been cleared by regulators for pri-
mary diagnosis [11,12]. Whole slide image analysis
techniques are now routinely utilized for basic and
translational research, drug development, and clinical
diagnostics including laboratory-developed tests and in
vitro diagnostics.

Traditional image analysis enhanced by machine
learning

Traditional digital image analysis focuses on three broad
categories of measurements: localization, classification,
and quantification of image objects. This method is an
iterative process where typically a few parameters are
manually tuned, built into an algorithm, and often tested
only on a region of the slide image [13]. Aspects that fail
a quality control review are tweaked until the algorithm
performance meets pre-determined analysis criteria.
ML has facilitated significant advancements within
the field of image analysis, as it often allows the
generation of more robust algorithms that need fewer
iterative optimizations for each dataset, compared with

© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
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methods where parameters are manually tuned. Super-
vised ML techniques, in which an algorithm is trained
using ground truth labels, are particularly effective in
image segmentation (detection of specific objects) and
classification (such as tumor diagnosis) tasks [14]. The
ground truths may be a category or label assigned to a
dataset that provides guidance to an algorithm.

The capabilities of ML have dramatically expanded in
the last decade due to the developments in deep learning
[15], an approach that enables an algorithm to automat-
ically discover relevant image features that contribute
to computer-vision tasks. One of the first uses of deep
learning in histopathology was the work of Ciresan et al
in the International Conference on Pattern Recognition
(ICPR) challenge in 2012 [16], which focused on fully
automated recognition of mitotic figures in hematoxylin
and eosin (H&E)-stained breast cancer tissue [17].
Using convolutional neural networks (CNNs), a type
of deep learning algorithm, the authors were able to gen-
erate results that far exceeded those of the competition.

These early studies applied ML to histopathology
using small, manually selected regions of interest,
but later research showed that these techniques could
work equally well on whole slide images [18]. In DP,
ML-enhanced image analysis is now widely employed
by researchers and implemented in a number of com-
mercially available image analysis software products.

Correlating images to patient outcome

Researchers quickly found that ML algorithms could be
used in novel ways that were not limited to information
contained only in the slide image. ML algorithms could
be used to extract an enormous number of features in an
image. For example, ML-powered image analysis can
be used to identify objects in a histology image which
may be used to generate ‘histologic primitives’ such as
nuclei, tumor cells, etc. that a human would consider
an ‘object’ [14]. When these features are correlated to
non-image patient features from the medical record,
such as response to specific treatment, algorithms can
be developed that may predict these responses from
images alone. The image features need not necessarily
be ‘objects’ that may be recognized by a human. For
example, Beck ef al examined ‘a rich quantitative fea-
ture set’ consisting of 6642 engineered features express-
ing characteristics of both breast cancer epithelium and
stroma [19] and correlated these to patient outcome.
They identified a small number of stromal morpho-
logical features that yielded mutually independent
prognostic information about breast cancer. It is possible
to go a step further, and train a deep learning algorithm in
such a way that an enormous number of image features
are automatically extracted and used to obtain patient
outcome-related predictions from images [20]. There is
a trade-off: the larger the number and level of abstrac-
tion of image features used for the predictions, the
greater the difficulty in understanding those predictions
(see our section on understanding algorithms).

J Pathol 2019; 249: 286—-294
www.thejournalofpathology.com



Computational pathology definitions, best practices, and regulations 289

Nevertheless, these types of analyses are what many
consider to be the biggest promise of CPATH, particu-
larly in the field of oncology, where it may increase the
speed and accuracy of diagnosis.

Assisting diagnosis

One of the promises of CPATH is that it can be used to
build a clinical decision support tool for precision diag-
nosis of the patient. For example, algorithms have been
described that identify images likely to contain tumor
cells [21], compute mitotic counts [22], improve the
accuracy and precision of immunohistochemistry scor-
ing [23,24], or apply standardized histological scoring
criteria such as the Gleason score [25], which can be crit-
ically important in the management of cancer and guid-
ing treatment strategy [26]. Spatial relationships among
immune cells within the stromal or tumor compartments
of the tumor microenvironment can also be evaluated
using deep learning tools and correlated to response with
immunotherapy [27].

Another widely studied application is detection of
lymph node metastases [28], for which it was shown
that the use of a deep learning algorithm improved
sensitivity with equal specificity, while requiring signif-
icantly less time for diagnostics [29]. An ideal decision
support tool would incorporate such algorithms into a
user-friendly system, aiding clinicians in making the
best treatment decisions, while avoiding information
overload and decision paralysis [30,31].

Identifying novel features

The capacity of ML to identify new image features
may lead to the discovery of previously unrecognized
morphological characteristics with clinical relevance
that have not been used in visual assessment by pathol-
ogists, either because these features had not previously
been discovered or because they are beyond human
visual perception. For example, deep learning is capa-
ble of assessing morphological information from the
stroma neighboring ductal carcinoma in situ (DCIS)
breast lesions which correlates with DCIS grade [32]. It
should be noted that even though pathologists recognize
morphological changes as a consequence of the pres-
ence of tumor, they may not currently directly use this
information in diagnostics or to offer prognostic insight.
The fact that deep learning is capable of using such
‘hidden’ features is promising as it may yield prognostic
information not currently utilized. Once identified, it
may be possible to re-engineer a simpler image analysis
algorithm to identify the specific feature, which may
be more easily accepted by clinicians compared to the
deep learning algorithm.

Hurdles and solutions for implementing
computational pathology

Despite the promises of CPATH, most algorithms used
in current clinical practice are limited to traditional

© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
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image analysis of immunohistochemical stains, which
do not employ advanced ML techniques such as deep
learning. In this section, we address the many barriers
to implementing CPATH for clinical use, and potential
strategies to overcome them.

Infrastructure considerations

Implementation of CPATH may require a significant
investment in IT infrastructure. In general, data to be
analyzed are captured as images of tissue sections, often
scanned at 20x or 40X objective magnification. In clini-
cal practice, pathology images are commonly larger than
50000 by 50 000 pixels [33]. As a benchmark, this can
translate into estimated file sizes ranging from 0.5 to
4 GB for 40x images, depending on the size of the scan
area and image compression type.

The large size of these images may present a problem
for evaluation, storage, and inventory management. The
primary computing obstacles that users face are proces-
sor speed and memory requirements of local worksta-
tions, data storage requirements, and limitations of the
network. For CPATH to perform effectively, it is impor-
tant that there are safeguards to ensure that images are
fully loaded and that the analysis algorithm is not inter-
rupted due to insufficient bandwidth, processing power
or memory. Additional considerations when running
deep learning algorithms include, but are not limited to,
the number of intended users, flexibility of the server or
cloud configuration to accommodate new algorithms or
case-loads, cyber-security, and associated costs.

Processor speed and sources

The performance of any image processing is highly
dependent on processor speed [34]. Deep learning is
best performed using graphics processing units (GPUs),
which can provide significant performance enhancement
over central processing units (CPUs) [35]. Most comput-
ers are designed to perform computations on their CPU
and use the GPU simply to render graphics. It may be
necessary to purchase a more powerful GPU designed
for deep learning; these are generally more expensive
and tend to generate more heat. Some laboratories may
therefore elect to dedicate high-performance worksta-
tions strictly for deep learning. However, some vendors
offer the ability to perform image analysis at the server
or cloud level, which may provide significantly more
resources and can potentially distribute deep learning
capabilities to a much larger user base.

Network limitations

For implementations in which either data are stored
remotely or image processing is performed remotely,
network bandwidth becomes an important considera-
tion. The large size of whole slide images presents a
potential hurdle for efficient processing in environments
that lack sufficient bandwidth. Depending on the net-
work implementation, there are several data transfer
considerations. First, digital slide data from the whole
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slide scanner must be transferred to its network stor-
age location, which requires the file in its entirety. Sec-
ond, the digital slide must be transferred from its net-
work storage location to the image analysis environment
(which may reside locally, elsewhere on the network, or
in the cloud), which can often be accomplished in a more
efficient manner, since the entire image is unlikely to
be analyzed at once. Training a deep learning network
on an entire slide image at full resolution is currently
very challenging, so it usually operates on a smaller
tiled image or patch [33]. Downscaling (reducing res-
olution) of these images is one possible approach, but
this may lead to loss of discriminative details as using
small, high-resolution tiles may lose tissue context. The
optimal resolution and tile size for analysis are highly
case-dependent [36]. If only small regions of interest
are to be processed, or if the processing can occur at
a reduced magnification, smaller portions of the virtual
slide file need to be transferred due to the pyramid struc-
ture of most WSI file formats [37].

Acquiring training data

Deep learning is generally extremely data-hungry,
especially compared with traditional image analysis
where ‘important features’ are manually selected, as it
must automatically identify these features. For super-
vised learning, in addition to the raw image sets, a
ground truth must be included in the dataset to provide
appropriate diagnostic context. Algorithms can then be
trained to predict or characterize an image guided by the
ground truth provided. The ground truth may be derived
from patient outcome data, a field extracted from the
pathology report or laboratory information system
(e.g. histologic grade), a quantitative score assigned to
the case (e.g. molecular testing), or it can be a factor
manually provided by a pathologist reviewing the case
specifically to support the algorithm training. Obtain-
ing clinical ground truth data suitable for algorithm
development is often time-consuming and challenging.
It usually takes a long time to generate enough sur-
vival data from clinical patients, and clinical data are
generally locked into an unstructured format within
one or more disparate electronic medical records. The
data need to be manually or automatically [38] curated
before being incorporated into an algorithm.

Furthermore, training may also require manual anno-
tations applied to the digital slide, including the designa-
tion of specific areas of interest, for instance identifying
cancer from benign tissue.

Obtaining adequately annotated datasets for deep
learning by a trained expert can be difficult [39] due to
the amount of time required, associated expenses, and
the tedious nature of the task. The use of streamlined
workflows and a single common annotation tool with
an intuitive user interface can make the task of creat-
ing and sharing manual regional annotations consider-
ably easier. Web-based tools may be ideal in sharing
annotations between different research groups, as they
avoid the need to install specific software on multiple
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systems [40]. In addition, research has shown that, for
some tasks, annotations of expert observers (i.e. pathol-
ogists) may not always be necessary [41] (see the section
on crowdsourcing). Yet there is generally a trade-off
between quantity and accuracy. Also, training images
must be representative of the images that the algorithm is
designed to be applied to, and appropriately ‘balanced’;
for example, contain approximately similar numbers of
examples for different objects it is intended to identify.

Data variability

It is important that supervised algorithms are developed
using a wide variety of data sources, to more robustly
handle variations when exposed to other datasets. A con-
sideration is to implement prospective review using ret-
rospective data during development, and/or verification
or validation. When algorithms are developed using lim-
ited datasets supplied by only one or few pathology labo-
ratories, the algorithms may not have incorporated all of
the variations and artifacts encountered across different
labs, including pre-imaging, imaging, and post-imaging
steps within the WSI workflow. This is in part because,
in surgical pathology, there is currently no accepted
global standard for tissue processing, staining, and slide
preparation. Even digital acquisition may introduce vari-
ability [42]. As such, an algorithm designed to per-
form well on one set of WSIs may not perform equally
well when generalized and used around the world by
many laboratories. This could be somewhat alleviated
by implementing consistent pre-imaging steps, applying
manual or automated image quality control processes,
using larger and more representative training sets, and
calibrating algorithms for each lab prior to being used
for clinical work. It is also possible to apply image
pre-processing strategies such as color normalization
[43] to reduce the impact of stain and processing vari-
ability, and data augmentation to artificially add varia-
tion and increase (or balance) the training data to make
them more representative of the application data. Other
best practices include testing developed models using a
variety of test and validation sets to avoid over-fitting,
and clearly reporting characteristics of the patients used
to build a model, since additional training data may be
required for it to perform well on other populations. One
may consider the addition of prospective real-world data
collection to monitor and optimize performance.

Public sources

There are currently only limited publicly avail-
able datasets with annotated images and associated
non-image patient data that are required for CPATH.
This may be one of the greatest factors limiting progress
in the field of CPATH. However, some initiatives
to overcome these hurdles are described below. The
Cancer Genome Atlas (TCGA) has performed compre-
hensive molecular profiling on approximately 10000
cancers (National Cancer Institute, The Cancer Genome
Atlas, https://cancergenome.nih.gov/). In addition to
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the collection of molecular and clinical data, TCGA has
collected WSI data from a subset of its participants [39].
Some other examples of public digital slide datasets
are the breast cancer images used for the CAMELYON
competition [44]; the Medical Image Computing and
Computer Assisted Intervention Society (MICCAI)
2014 brain tumor digital pathology challenge for dis-
tinguishing brain cancer subtypes [45]; and the Tumor
Proliferation Assessment Challenge (TUPAC16), which
includes hundreds of cases [46]. The Grand Challenge
website (https://grand-challenge.org/challenges/) main-
tains a list of all challenges that have been organized
in the field of medical image analysis. Some of these
challenges offer developers additional pathology digital
datasets for CPATH. However, care must be taken as
the quality of public samples may be variable, so they
should be carefully tested before use.

Crowdsourcing

An alternative for obtaining large-scale image annota-
tions is crowdsourcing, in which this function is out-
sourced to an undefined and generally large group of
non-expert people in the form of an open call [47].
Crowdsourced image annotation has been successfully
used to serve a diverse set of scientific goals [40], includ-
ing detection of malaria from blood smears [39], and
estrogen receptor classification [47]. Compared with
public sources or pathologist annotations, crowdsourc-
ing may be cheaper and quicker, but has the potential
to introduce noise [33]. It is possible that this noise can
be compensated by a sufficiently large body of training
data [48], and by having multiple people annotate the
same slide to achieve consensus. But it is imperative to
ensure that all annotators are taught to perform the task
in the same way.

Active learning

Active learning is considered semi-supervised learning,
which may reduce the size of required training data [49].
In active learning, the algorithm interactively queries for
expert assistance to obtain annotations for ambiguous
data points. Essentially, the algorithm uses a sampling
strategy to select small sets of data iteratively for experts
to label, only when it has trouble determining the out-
come. For each iteration, the classifier is updated and
then all unlabeled data are re-evaluated for their ability
to further improve the classifier. Thus, active learning
offers a solution to the problem of limited data anno-
tations in pathology by having the pathologist engage
actively with the algorithm, which evolves through con-
tinuous learning.

Quality control and reliability of the algorithm

It is currently difficult to establish strict quality control
steps for deep learning algorithms, especially in segmen-
tation problems, for various reasons. A general principle
in training any machine learning algorithm is to split
the annotated data into ‘training’ and ‘test’ datasets, and
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ensure that these sets are independent when assessing
performance. The algorithm should be trained on the
training set and applied to the test set, then the results
compared with the ‘ground truth’ associated to the test
set. However, quality control for the segmentation step
may suffer from the ‘gold-standard paradox’ [8]. This
paradox arises from histopathological assessments by
the pathologist being considered the gold standard, but
the algorithm data may in fact be more reproducible
than human assessment. This may be partially overcome
by comparing the algorithm data to patient outcome, to
see whether it is better able to predict outcome com-
pared with manual pathology assessment/scoring. Still,
the best methods to determine the reliability of an algo-
rithm applied to novel datasets are an area of active
debate.

In addition, local regulations apply to legally market
any clinical-grade software solution. In the USA, such
an algorithm should be developed under the Food and
Drug Administration (FDA)’s existing Quality Sys-
tem Regulation (QSR, 21 CFR Part 820), and Good
Machine Learning Practices (GMLP; https://www.fda
.gov/media/122535/download), which are currently
being discussed.

Understanding algorithms

A principal concern with the use of deep learning is that
itis very difficult to understand some of the features and
neural pathways used to make decisions. In particular,
when deep learning is used to automatically extract fea-
tures from an image that are directly correlated to clin-
ical endpoints, without including a segmentation step
where image objects are first extracted (see the section
on correlating images to patient response), it is par-
ticularly challenging to understand why the algorithm
reached its conclusions. Artificial neural networks have
accordingly been described as a ‘black box’. This has
led to several concerns: difficulty in correcting an under-
performing algorithm; lack of transparency, explainabil-
ity, and provability for humans who may not trust how
an algorithm generates reliable results; and regulatory
concerns because, unlike traditional image analysis, in
deep learning the image features are abstracted in a
way that is very difficult for a human to understand. In
response, there have been efforts to convert deep learn-
ing algorithms into a ‘glass box’ by clarifying the inputs
and their relation to measured outputs, making it more
interpretable by a human using a variety of techniques
[49-51,53]. By providing information to the reviewing
pathologist about the histopathologic features used by
the algorithm in a particular instance, trust in the algo-
rithm can be fostered and a synergy between pathologist
and machine can be achieved that may exceed the per-
formance of either Al or pathologist alone [29].

Ethics

The demand for personal health data has grown in the big
data era. Researchers increasingly need to conduct stud-
ies using large amounts of data from disparate sources.
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This enables researchers to make novel connections
that never could have been made before. Whether to
publicly release data that went into creating an algo-
rithm is a complex ethical problem. Providing trans-
parency of the data used in developing an algorithm fos-
ters interpretability, openness of scientific discovery, and
increases acceptance and trust of the results. However,
not exposing the data used by a deep learning model
allows companies to create proprietary models that may
not be validated or challenged in the public space. On
the other hand, exposing private data of a patient (e.g.
digital image with associated identifiable unique muta-
tions) can present ethical concerns that violate privacy
and as a result may prompt restrictive governance poli-
cies and security models. Another emerging issue relates
to companies that leverage patient data in order to com-
mercialize artificial intelligence tools and services. This
raises ethical and legal concerns regarding data owner-
ship and intellectual property rights. It is also important
to have a system for data governance, which, among
other aspects, controls who has access to what types and
levels of data. Given the volume of data, their highly
confidential nature, and the need to respect the rights
of individuals — both for ethical reasons and to com-
ply with the law — organizations should develop formal
mechanisms to comprehensively address these issues,
rather than address them ad hoc.

Cyber-security

Cyber-security concerns of CPATH primarily stem from
storing large amounts of medical data in cloud-based
systems that can be accessed via the internet. In order
to minimize a data breach, it is prudent to decou-
ple CPATH data (i.e. digital images) from patient data
(i.e. personal identifiers such as medical record number
and date of birth). Several cloud service providers now
offer Health Insurance Portability and Accountability
Act (HIPAA) compliant solutions. In addition, the FDA
has created guidelines for cyber-security (U.S. Food
and Drug Administration, Postmarket Management of
Cyber-security in Medical Devices, 2016). The Euro-
pean Union’s general data protection regulation (GDPR)
[54] imposes similar security requirements on those who
process personal data.

Conclusion and future recommendations

Within the field of CPATH, the techniques for
ML-enhanced image analysis and its combination
with other data sources have evolved to the point where
they may soon be ready to be translated from the
research environment into practicing clinical laborato-
ries. Although the promises of CPATH are great, there
are also manifold hurdles that need to be overcome [55].
Regulators, vendors, and healthcare providers can all
help to drive the field forward to benefit patients.

There are many ways in which regulation could
be clarified around CPATH. Most importantly, the
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laboratory accreditation landscape must become flex-
ible enough to accommodate novel scoring and deep
learning methods that promise to improve accuracy
and reproducibility [55,57]. Encouragingly, in April
2019, the FDA released a discussion paper on Good
Machine Learning Practices (https://www.fda.gov/
media/122535/download), proposing a new regulatory
framework for continuously learning and ‘adaptive’
AI/ML algorithms by incorporating updates from
real-world use and experience. From a cyber-security
perspective, though current regulatory frameworks
impose penalties for failure to protect data and set
minimum standards, there should be clearer guidance
on best practices.

Regulators and vendors should work together to set
standards and increase interoperability of CPATH infras-
tructure components and software, and such standards
should be formalized via regulatory guidance. Improved
regulation would clarify the level of testing that ven-
dors have to execute to show that the device is safe and
effective, and benefit users who could combine differ-
ent devices in their existing healthcare infrastructure.
File format, compression, resolution reduction, selec-
tion of region size, and level of magnification could all
impact compatibility and interoperability. A first step
could be further developing a pathology-specific digi-
tal imaging and communications in medicine (DICOM)
standard [58], with associated tags that can be used in
combination with an image. A next step could be nor-
malizing images to allow interoperability; one of the
standards that could be used is that of the International
Color Consortium (ICC) profiles for visualization. Such
standards should be used and encouraged across the dig-
ital pathology industry, on platform-agnostic software
that could run on any combination of operating systems
and with any infrastructure architecture (further recom-
mendations may be found in ref 7). Another step toward
promoting the adoption of CPATH in routine pathology
practice is to integrate Al tools with existing labora-
tory devices (e.g. whole slide scanners, auto-stainers)
and software systems such as the digital pathology
platform, laboratory information system, and electronic
medical records. Again, standardization will support this
integration, for example working with the Integrating
the Healthcare Enterprise (IHE) [59]. Interoperability
should improve integration between platforms to facil-
itate interaction and collaboration between pathologists
across multiple laboratories as well as exchanging data
with the goal to improve continuously learning algo-
rithms. Such integration is crucial, since it is the pathol-
ogists who play the crucial role in human—computer
interaction studies, finding the most efficient use of algo-
rithms to maximize benefit for the diagnostic process,
and identifying issues [60].

Finally, healthcare institutions could be encouraged to
pool anonymized patient data and make them publicly
accessible, so that researchers around the world may
cooperate to develop more accurate diagnostic algo-
rithms. Deep learning is a numbers game, and obtaining
sufficient training data is often the primary hurdle, which
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can be addressed by collaborative data-sharing initia-
tives, similar to what exists in biomedical imaging [61]
but where digital pathology lags behind.

CPATH applications have the potential to transform
the lives of patients, but it may still take a frustratingly
long time. In order to capitalize sooner on the many
benefits of adopting Al in pathology, we need to garner
better cooperation among invested regulators, vendors,
and healthcare providers.
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