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Background and Purpose. Recently, tonsil-derived mesenchymal stem cells (T-MSCs) have attracted great attention in various
medical fields due to easier harvest of T-MSCs and more immunomodulatory effects than adipose-derived MSCs. However,
there was still little evidence of the effect of conditioned media from T-MSCs (T-MSCs-CM) on allergic rhinitis (AR). Therefore,
we investigated the impact of T-MSCs-CM on an AR mouse model. Methods. We isolated T-MSCs from human palatine tonsil
and evaluated the ingredients of T-MSCs-CM. The effect of T-MSCs-CM was evaluated in the AR mouse model that was
randomly divided into five groups (negative control, positive control, and T-MSCs-CM treated (0.1mg, 1mg, and 10mg)). To
investigate the therapeutic effect, we analyzed rhinitis symptoms, serum immunoglobulin (Ig), inflammatory cells, and cytokine
expression. We also assessed T cell receptor signal, including MAP kinase (ERK/JNK), p65, and NFAT1. Results. We identified
the increment of TGF-β1, PGE2, and HGF in the T-MSCs-CM. In an animal study, the T-MSCs-CM-treated group showed
significantly reduced allergic symptoms and infiltration of eosinophils and neutrophils in the nasal mucosa, whereas there was
no significant difference in total IgE and the OVA-specific IgE level. Additionally, we found that the 10mg T-MSCs-CM-treated
group showed a significantly decreased IL-4 mRNA expression, compared to the (+) Con group. In the analysis of T cell
receptor signal, the phosphorylation of MAP kinases, translocation of p65, and activation of NFAT1 were inhibited after T-
MSCs-CM. Conclusions. Our findings suggest that T-MSCs-CM showed a partial immunomodulatory effect on the AR mouse
model by the inhibition of T cell activation via MAP kinase, p65, and NFAT1.

1. Introduction

Allergic rhinitis (AR) is a common chronic nasal disease pre-
sented by the symptoms of sneezing, rhinorrhea, itchiness,
and nasal congestion [1]. It is characterized by Th2 immune
response with an increased influx of eosinophils [1]. To date,
various treatment options have been introduced to treat AR
patients, including medical treatment, surgery, and antigen-
specific immunotherapy [2]. However, the recurrences of
symptoms are common problems after drug withdrawal
and surgery. Additionally, the antigen-specific immunother-
apy has some limitations, such as adverse effect and ineffec-

tive outcome [3]. Therefore, new treatment options are
required in patients with AR to improve long-term efficacy.

Mesenchymal stem cells (MSCs) are multipotent progen-
itor cells that are capable of differentiating into various cell
types, such as adipocytes, osteoblasts, and chondrocytes [4].
Thus, those could contribute to the maintenance and regen-
eration of various connective tissues, including the bone,
muscle, adipose, and cartilage [5–7]. In addition to the poten-
tial for tissue repair, increasing evidences have demonstrated
that MSCs also exhibit strong immunomodulation potential
via their interaction with T lymphocytes, B lymphocytes, nat-
ural killer (NK) cells, and dendritic cells (DC) [8–10]. For
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this reason, several studies have been demonstrated that
MSCs derived from the bone marrow and adipose tissues
have the effect of immunosuppressive function on allergic
airway inflammation [11–14].

Recently, palatine tonsil tissue was also identified as a
source of MSCs and tonsil-derived MSCs (T-MSCs) showed
abundant expression of immunomodulatory proteins, com-
pared with MSCs derived from the bone marrow and adipose
tissue [15, 16]. Moreover, studies for T-MSCs described an
immunomodulatory effect on degenerative or inflammatory
diseases [17–20]. Our previous study also demonstrated an
immunomodulatory effect of T-MSCs in a mouse model of
allergic rhinitis [21]. However, conditioned media released
by T-MSCs (T-MSCs-CM) are more feasible for preparation
and application than T-MSCs themselves. Therefore, in this
study, we investigated the immunomodulatory effect of T-
MSCs-CM on the allergic rhinitis mouse model and also
evaluated the inhibitory mechanism of T cell activation by
T-MSCs-CM.

2. Materials and Methods

2.1. Isolation of Tonsil-Derived Mesenchymal Stem Cells
(T-MSCs) and Preparation of Conditioned Media from
T-MSCs. To isolate T-MSCs from human palatine tonsil
[21], we harvested tonsil tissue after tonsillectomy and it
was cultured in stem cell-enrichment condition, which con-
sisted of RPMI-1640 media (Gibco, Grand Island, NY) with
10% fetal bovine serum (Gibco) and 1% penicillin and strep-
tomycin (Gibco) at a density of 2 × 104 cells/cm2. The follow-
ing day, the cells were switched to serum-free RPMI-1640
media. After 3 days, cell supernatants were collected and cen-
trifuged to remove cell debris. The supernatants were freeze-
dried to make the concentration of T-MSCs-CM. T-MSCs
between passages 4 and 7 were used for T-MSCs-CM gener-
ation. This study was approved by the institutional review
board of Dankook University Hospital (2015-005).

2.2. Flow Cytometry. T-MSCs were characterized by flow
cytometry using surface markers. The following antibodies
with recommended dilutions were used: CD90-FITC (clone
5E10; BD Pharmingen, San Jose, CA), CD105-PE (clone
266; BD Pharmingen), CD31 (clone JC70A; Dako, Glostrup,
Denmark), CD34 (clone B1–3C5; Millipore, Billerica, MA),
CD45-FITC (clone F10–89-4; Abcam, Cambridge, UK),
Alexa Fluor 488 anti-mouse IgG (Invitrogen), and Alexa
Flour 594 anti-rabbit IgG (Invitrogen).

2.3. Experimental Design of Allergic Mouse Model. Twenty
female BALB/c mice (4 weeks old, 18–20 g; NarabioTech,
Inc., Seoul, Korea) were used and divided into five groups:
(-) Con (phosphate-buffered saline- (PBS-) treated group,
n = 5), (+) Con (AR model group, n = 5), and 0.1mg, 1mg,
and 10mg T-MSCs-CM groups (T-MSCs-CM-treated groups,
each n = 5). Briefly, mice in the experimental groups were
systemically sensitized with 25μg of ovalbumin (OVA;
Sigma-Aldrich, St. Louis, MO, USA) dissolved in 300μl of
PBS in the presence of 2mg of aluminum hydroxide gel as
an adjuvant by intraperitoneal injection on days 0, 7, and

14. The negative control group was injected with PBS. And
then, the mice were immunized with 5μg OVA by nasal
instillation at 21-27 days. PBS was administered to the nasal
cavity instead of OVA in the negative control group. In T-
MSCs-CM-treated groups, T-MSCs-CM with 20μl condi-
tioned medium were administered intranasally on days 14
to 18 and 21 to 25 of the experimental period. The mice were
sacrificed via cervical dislocation on day 29, and all experi-
ments were repeated three times. The committee on the use
and care of animals approved all animal experiments, and
we followed strict governmental and international guidelines
on animal experimentation (DKU-2014–039).

2.4. Evaluation of Symptom Score, Serum Total
Immunoglobulin E, and OVA-Specific IgE. After the final
OVA challenge on day 28, a blinded observer recorded the
frequencies of sneezing and nasal rubbing for a 15-minute
period. The mice were sacrificed 24 hours after the last
OVA challenge, and tissue samples were collected. After per-
fusion with 3.7% paraformaldehyde, the heads of the mice
from each group were removed en bloc and then fixed in
3.7% paraformaldehyde. After removing the nasal cavity
from the head of the remaining mice, the nasal mucosa was
meticulously removed by using a small curette. Immediate
liquid nitrogen immersion of the nasal mucosa was followed
by -70°C storage until further use in reverse transcription-
polymerase chain reaction. The serum levels of total and
OVA-specific immunoglobulin E (IgE) were measured by a
solid phase enzyme-linked immunosorbent assay.

2.5. Measurement of Cytokines and Total IgE in Tissue
Homogenates. Spleen single-cell suspensions were plated in
24-well tissue culture plates at a final concentration of 3 ×
106 cells/ml by using RPMI-1640 media (Gibco, Grand
Island, NY). The cells were incubated with OVA in a CO2
incubator at 37°C for 72 hours and stored at -70°C until cyto-
kines were measured. Cytokines were assayed in a culture
supernatant by using a sandwich enzyme-linked immuno-
sorbent assay kit (R&D Systems, Minneapolis, MN) accord-
ing to the manufacturer’s instructions. After measuring the
optical density at 450 nm, the concentrations of interleukin-
(IL-) 4, IL-5, IL-6, IL-17, interferon- (IFN-) γ, and eotaxin-
2 were determined by interpolation from a standard curve,
and all data were expressed as nanograms per milliliter.

2.6. Quantitative Real-Time PCR. Total RNA was extracted
from the nasal mucosa of each mouse group by using the
TRIzol reagent kit (Invitrogen, Carlsbad, CA). Equivalent
amounts of RNA were reverse transcribed by using the

Table 1: List of gene-specific TaqMan probes for qRT-PCR.

Gene TaqMan primer Assay ID Amplicon length (bp)

IL-4 Mm00445258_g1 63

IL-5 Mm01290072_g1 133

IL-6 Mm00446190_m1 78

IL-17A Mm00439618_m1 80

IFN-γ Mm99999071_m1 63
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iScript cDNA Synthesis Kit (Bio-Rad Laboratories; Hercu-
les, CA). The messenger RNA (mRNA) expression analy-
sis was performed by using an Applied Biosystems 7500
Real-Time PCR System (Applied Biosystems, Foster City,
CA). Corresponding primers and probes for the cytokines
and chemokines listed in Table 1 were purchased from
Applied Biosystems.

2.7. Western Blot Analysis. The BCA kit (Pierceprotein Stint®
Inc., BCA Protein Assay Kit, Thermo Scientific USA) was
used, a total 50μg protein of SDS-PAGE was separated
through electrophoresis after, and the nitrocellulose mem-
brane (Hybond ECL, GE Healthcare Life sciences, UK) was
transferred. The protein is a membrane to transfer 3% skim
milk (BD Difco, USA) after each block with diluted primary
antibodies phospho-ERK (1 : 1000; Cell Signaling, Danvers,
MA, USA), ERK (1 : 2,000, Cell Signaling, Danvers, MA,
USA), phospho-JNK (1 : 500; Santa Cruz, CA), JNK (1 : 500;
Santa Cruz, CA), p65 (1 : 1,000; Cell Signaling, Danvers,
MA, USA), NFAT1 (information), and β-actin (1 : 10000;
Sigma-Aldrich, USA) antibody overnight. Tris-buffered
saline with Tween 20 (+0.1% Tween 20; TBS-T) as a cleanser
and secondary antibodies ((p)-ERK, p38, (p)-(p)-p65, HRP-
anti-rabbit; p-JNK, HRP-anti-goat; and β-actin, JNK, HRP-
anti-mouse) triggered the reaction. ECL Western blotting
and the detection solution (Amersham detection reagents;
GE Healthcare Life Sciences, UK) react with the Gel Doc
image analysis system (Bio-Rad, Hercules) which was con-
firmed using protein bands.

2.8. Statistical Analysis. The statistical analyses were per-
formed using GraphPad Prism 4 software. Results are shown
as the mean ± SEM. A Mann-Whitney U test was used to
compare results between groups. A P value < 0.05 was con-
sidered statistically significant. P values < 0.05 were indicated

by “∗”; P values < 0.01 were indicated by “∗∗” and < 0.001 by
“∗∗∗”.

3. Results

3.1. Characterization of Tonsil-Derived Mesenchymal Stem
Cell. To characterize the profile of T-MSCs, we performed
flow cytometry analyses (Figure 1(a)). We found that cells
were positively labeled with human MSC markers, such as
CD90 (Thy-1) and CD105 (endoglin), whereas there was
the negative expression for human endothelial cell markers
(CD34, CD31, and KDR) and hematopoietic cell marker
(CD45). Based on the surface antigen expression, our find-
ings indicated that the expanded cells included a large popu-
lation of T-MSCs, but these cells did not contaminate with
the endothelial cell and hematopoietic cell. Next, we evalu-
ate the ingredients of T-MSCs-CM, which were expected
to have immunomodulatory effects. In this study, we mea-
sured the concentrations of prostaglandin E2 (PGE2), trans-
forming growth factor beta (TGF-β), hepatocyte growth
factor (HGF), IL-10, nitric oxide (NO), and indoleamine-
pyrrole 2,3-dioxygenase (IDO) (Figure 1(b)). We found that
the concentrations of TGF-β1, PGE2, and HGF increased
more than 200 pg/ml, whereas those of IL-10, NO, and
IDO were negligible.

3.2. Immunomodulatory Effect of Conditioned Media from
Tonsil-Derived Mesenchymal Stem Cell. To investigate the
therapeutic potential of T-MSCs-CM in allergic rhinitis, we
used a murine model of allergic rhinitis (Figure 2(a)). This
murine model showed that the symptom score was observed
as 23.6 in the (-) Con, 53.2 in the (+) Con, 42.2 in 0.1mg
T-MSCs-CM-treated, 33.2 in 1mg T-MSCs-CM-treated,
and 35.0 in 10mg T-MSCs-CM-treated groups. These
findings indicated that 1mg or 10mg T-MSCs-CM-treated
groups showed significantly decreased symptom scores

CD90
400

300

200

100

0

C
ou

nt
C

ou
nt

C
ou

nt

4.3 5 6 7.2

4.3 5 6 7.2

C
ou

nt

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

1 2 3 4 5 6 7.2 1 2 3 4 5 6 7.2

CD105 CD31

CD34 KDR CD45

400

300

200

100

0

C
ou

nt

0

50

100

150

200

(a)

500

400

300

200

100

TGF-𝛽1 HGF PGE IL-10 NO IDO

pg
/m

l

0

(b)

Figure 1: (a) Flow cytometry analysis of surface antigen expression on cultured tonsil-derived mesenchymal stem cells (T-MSCs). Isotype
antibody (dark gray color) and experimental antibodies (light gray color) were used. (b) Ingredients of T-MSC conditioned medium were
evaluated, including PGE2, TGF-β1, HGF, IL-10, NO, and IDO.
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compared with the (+) Con group (Figure 1(b)). However,
there was no significant difference in total IgE or OVA-
specific IgE between (+) Con and T-MSCs-CM-treated
groups (Figure 1(c)). We also observed that the numbers of
infiltrated eosinophils and neutrophils were significantly
decreased in the 1mg or 10mg T-MSCs-CM-treated groups
compared to the (+) Con group (Figures 1(d) and 1(e)).
Next, to verify the change in the infiltration of eosinophils
after treating T-MSCs-CM, we evaluated the mRNA expres-
sion of nasal cytokine profiles (Figure 1(f)). The (+) Con
group had an increased IL-4, IL-5, IL-6, IL-17, and IFN-γ

mRNA expression in the nasal mucosa, whereas only the
10mg T-MSCs-CM-treated group showed a significantly
reduced expression of IL-4 mRNA level, compared to the
(+) Con group.

3.3. Inhibitory Effect of Conditioned Media from Tonsil-
Derived Mesenchymal Stem Cells on T Cell Activation.
To investigate whether T-MSCs-CM could inhibit T cell
activation, we assessed T cell receptor signaling, such as
MAP kinase (ERK/JNK), p65, and NFAT1 transcription
factors in Jurkat T cell stimulated with CD3 and CD28
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Figure 2: Effect of tonsil-derived mesenchymal stem cells (T-MSCs) on an allergic mouse model. (a) The protocol for generating the murine
model of allergic rhinitis. (b) Symptom scores such as sneezing and nasal rubbing were evaluated for 15 minutes after OVA challenge. (c)
Total serum and OVA-specific IgE levels were compared among groups. The number of (d) infiltrated, (e) eosinophils, and (f)
neutrophils. Cytokine profiles from the nasal mucosa were compared among groups using quantitative real-time polymerase chain reaction.
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antibodies (Figure 3). We detected the decreased expres-
sion of ERK/JNK phosphorylation, p65 phosphorylation,
and NFAT1 activation according to the concentration of T-
MSCs-CM on Western blot. Additionally, the phosphoryla-
tion of ERK/JNK and P65 was significantly decreased by
10mg T-MSCs-CM, compared with only anti-CD3/CD28-
stimulated Jurkat T cells.

4. Discussion

To the best of our knowledge, this is the first study to evalu-
ate the therapeutic effect of T-MSCs-CM in a mouse model
for AR. In the present study, we found that T-MSCs-CM
showed the increased TGF-β1, PGE2, and HGF expressions
which are considered immunomodulatory factors. In the
animal study, the addition of T-MSCs-CM induced a signif-
icantly decreased allergic symptoms, eosinophil infiltration,
and Th2 cytokine (IL-4) expression between (+) Con and
T-MSCs-CM-treated groups, although there was no effect
on the total IgE and OVA-specific IgE level. Additionally,
we observed that T cell receptor signaling, such as MAP
kinase (ERK/JNK), p65, and NFAT1 was suppressed in the
T-MSCs-CM-treated group, compared to the (+) Con group.
Therefore, T-MSCs-CM may have a partial immunomodu-
latory effect on allergic inflammation by the inhibition of T
cell activation via MAP kinase (ERK/JNK), p65, and NFAT1
transcription factors.

It has been known that MSCs have the ability to modulate
immune responses through surface molecules and soluble
mediators, which then assist the cells in avoiding allogeneic
reactions for successful implantation [22–24]. The bone mar-
row and adipose tissues are considered to be major sources of
MSCs. Recently, the human palatine tonsil was reported as a
source of MSCs, and T-MSCs also have the potential immu-
nomodulatory effect [25]. Contrasted with other sources of
MSCs, we could easily acquire human palatine tonsil tissues
after tonsillectomies, a commonly performed surgical proce-
dure in children [26]. It means that the human palatine tonsil
is an attractive MSC source for clinical applications because
tissue collection does not need unnecessary invasive tech-

niques. However, to date, the effect of T-MSCs-CM has not
been investigated thoroughly compared to that of T-MSCs
themselves. A prior study for chronic colitis model showed
that T-MSCs-CM-treated group has an equivalent effect to
T-MSCs-treated group regarding the immunomodulatory
effect [27]. Consistent with this, the addition of T-MSCs-
CM on the AR mouse model showed a similar immunomod-
ulatory effect, compared with the previous study regarding T-
MSCs on the AR mouse model. It is a clinically meaningful
finding because T-MSCs-CM is easier to prepare and admin-
ister to patients.

The family of MAP kinases includes ERK, p38, and JNK.
MAP kinase pathways are major pathways induced by T cell
receptor stimulation, and they play a major role in the devel-
opment and function of T cells [28, 29]. The NF-κB/Rel fam-
ily comprises five members, including p50, p52, p65 (Rel-A),
c-Rel, and Rel-B proteins. NF-κB subunits play a specific
role in regulating T cell development and effector functions
[30, 31]. Among those, the most abundant form of NF-κB
activated by pathologic stimuli is the p65:p50 heterodimer
[32]. The NFAT family of transcription factors consists of
five members (NFAT1–NFAT5), and T cells express three
of the four calcium-regulated NFAT proteins, such as
NFAT1, NFAT2, and NFAT4. NFAT proteins are activated
following T cell receptor ligation, and thus, these proteins
are key regulators of T cell differentiation and development
[33, 34]. Interestingly, our findings showed that T-MSCs-
CM inhibited the phosphorylation of MAP kinase, the
migration of p65 to the nucleus, and the decreased activation
of the NFAT1 transcription factor. These results suggested
that T-MSCs-CM may show the immunomodulatory effect
on the allergic inflammatory response via inhibition of T cell
activation.

In conclusion, T-MSCs-CM showed a partial immuno-
modulatory effect in the AR mouse model. Additionally, the
ingredient of T-MSCs-CM, such as TGF-β1, PGE2, and
HGF has an inhibitory effect of T cell activation via the sup-
pression of T cell receptor signal. Therefore, it is expected
that administration of T-MSCs-CM, and not the T-MSCs
themselves, may exert a therapeutic effect in patients with
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Figure 3: The immunoblotting results of T cell receptor signaling pathways in the human Jurkat T cell. Western blots of cytoplasmic protein
with antibodies to ERK, JNK, p65, phospho-ERK, phospho-JNK, phosphor-p65, NFAT1, and β-actin. Relative intensities of blot bands were
measured with ImageJ software.

5Mediators of Inflammation



AR. This application is desirable because it would be easier to
perform and would also be accompanied by fewer side effects.
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