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Abstract: Model-based clustering with finite mixture models has become a widely used clustering
method. One of the recent implementations is MCLUST. When objects to be clustered are summary
statistics, such as regression coefficient estimates, they are naturally associated with estimation errors,
whose covariance matrices can often be calculated exactly or approximated using asymptotic theory.
This article proposes an extension to Gaussian finite mixture modeling—called MCLUST-ME—that
properly accounts for the estimation errors. More specifically, we assume that the distribution of each
observation consists of an underlying true component distribution and an independent measurement
error distribution. Under this assumption, each unique value of estimation error covariance
corresponds to its own classification boundary, which consequently results in a different grouping
from MCLUST. Through simulation and application to an RNA-Seq data set, we discovered that
under certain circumstances, explicitly, modeling estimation errors, improves clustering performance
or provides new insights into the data, compared with when errors are simply ignored, whereas the
degree of improvement depends on factors such as the distribution of error covariance matrices.

Keywords: gaussian finite mixture model; clustering analysis; uncertainty; expectation-maximization
algorithm; classification boundary; gene expression; RNA-seq

1. Introduction

Model-based clustering [1,2] is one of the most commonly used clustering methods. The authors
of [3] introduced the methodology of clustering objects through analyzing a mixture of distributions.
The main assumption is that objects within a class share a common distribution in their characteristics,
whereas objects from a different class will follow a different distribution. The entire population
will then follow a mixture of distributions, and the purpose of clustering would be to take such a
mixture and analyze it into simple components and estimate the “probabilities of membership”, that
is, the probabilities that each observation belongs to each cluster.

One of the most recent implementations of model-based clustering is MCLUST [4–6], in which
each observation is assumed to follow a finite mixture of multivariate Gaussian distributions. MCLUST
describes cluster geometries (shape, volume, and orientation) by reparameterizing component
covariance matrices [7], and formulates different models by imposing constraints on each geometric
feature. The expectation-maximization (EM) algorithm [8,9] is used for maximum likelihood estimation,
and the Bayesian information criterion (BIC) [10,11] is used for selection of optimal model(s).

In most cases, observations to be clustered are assumed to have been precisely measured, whereas
there are situations where this assumption is clearly not feasible. This article proposes an extension
to Gaussian mixture modeling that properly accounts for measurement or estimation errors in the
special case when the error distributions are either known or can be estimated, as well as introduces
the clustering algorithm built upon it, which we named MCLUST-ME. The real data example that

Genes 2020, 11, 185; doi:10.3390/genes11020185 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
http://dx.doi.org/10.3390/genes11020185
http://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/11/2/185?type=check_update&version=2


Genes 2020, 11, 185 2 of 23

motivated our study is where we apply clustering algorithm to coefficients from gene-wise regression
analysis of an RNA-seq data set (see Section 3.3 for details). For each gene, five of the fitted regression
coefficients correspond to log fold changes in mean expression levels between two groups of Arabidopsis
plants at five time points after treatment. In such a case, we can reasonably approximate the
error covariances of the regression coefficients by inverting the observed information matrix. In
general, whenever one applies clustering analysis to a set of summary statistics, it is often possible
to approximate the distribution of their estimation errors with, for instance, Gaussian distributions.
In this paper, we describe how the estimation/measurement errors, with known or estimated error
covariances, can be incorporated into the model-based clustering framework. An obvious alternative
strategy in practice is to ignore the individual estimation/measurement errors. We will use simulations
and the real data example to understand in what circumstances explicitly modeling the estimation
errors will improve the clustering results, and to what degree.

In Section 3.3, we will compare the results of applying the MCLUST method and our new
MCLUST-ME method to cluster the log fold changes of 1000 randomly selected genes from the
RNA-seq data set mentioned above at two of the time points where the gene expressions were most
active. Here, we briefly summarize the input data structure for the clustering analysis and the
highlights of the results. Columns 2 and 3 of Table 1 list the estimated log fold changes and their
standard errors for 15 representative genes at the two time points being analyzed: these are from the
regression analysis applied to each row (gene) of the RNA-seq data set. (The standard errors are the
square roots of the corresponding diagonal entries of the error covariances.) In particular, we included
10 genes that are classified differently by the MCLUST and the MCLUST-ME methods. We note that
there is sizable variation among the standard errors of the log fold changes. When MCLUST was used
to cluster the log fold changes, the estimation errors will be ignored: As long as two genes have the
same log fold changes at the two time points, they will always belong to the same cluster. However,
we understand that, in this context, a moderate log fold change with a high estimation error is less
significant than the same log fold change with low estimation error: this would be obvious if we were
to perform a hypothesis test for differential expression (DE), but existing clustering methods such as
MCLUST cannot readily incorporate such information into a clustering analysis. The MCLUST-ME
method we propose in this paper aims to incorporate information about the estimation errors into the
clustering analysis. One distinctive feature of the new MCLUST-ME method is that two points with
similar log fold changes may not belong to the same cluster: it also depends on the error covariances of
the log fold changes. We note that when the 1000 genes were classified into two clusters by MCLUST
and MCLUST-ME, the two clusters for this data set roughly correspond to a “DE” cluster and a
“non-DE” cluster. Columns 4 and 5 of Table 1 list the probabilities to the “non-DE” cluster estimated by
MCLUST and by MCLUST-ME. We see that the genes that were classified into the “non-DE” cluster by
MCLUST-ME, but to the “DE” cluster by MCLUST tend to be genes having moderate log fold changes,
but relatively large error covariances. We do not have the ground truth for this data set, but the results
from the new MCLUST-ME method alert us that not all log fold changes are created equal.

The organization of the rest of this article is as follows. Section 2 briefly reviews the MCLUST
method and then introduces our extension, MCLUST-ME. In particular, Section 2.6 investigates
decision boundaries of the two methods for two-group clustering. Sections 3.1 and 3.2 give simulation
settings and results on comparing MCLUST-ME with MCLUST in terms classification accuracy and
uncertainty. Section 3.3 gives an example where we cluster a real-life data set using both methods.
Finally, conclusions and perspectives for future work are addressed in Section 4.
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Table 1. Estimated log fold changes at two time points, associated standard errors, and estimated
membership probabilities to the “non-DE” cluster by MCLUST and by MCLUST-ME, for 15 genes
selected from the real-data example. Column 2 and 3 are estimated log fold changes at 1 h and 3 h and
their standard errors. Column 4 and 5 are estimated membership probabilities to the “non-DE” cluster
by MCLUST and by MCLUST-ME. The first 5 rows are randomly selected from 1000 genes that we
analyzed. The second 5 rows are selected among the genes that are classified to the “non-DE” cluster
by MCLUST, but to the “DE” cluster by MCLUST-ME: the standard errors of the log fold changes tend
to be low in this group; the last 5 rows are selected among genes that are classified to the “DE” cluster
by MCLUST, but to the “non-DE” cluster by MCLUST-ME: the standard errors of the log fold changes
tend to be high in this group.

Gene ID Log Fold Change (SE) 1h Log Fold Change (SE) 3h z1 MCLUST z1 MCLUST−ME

AT2G42230 −0.277 (0.006) 0.152 (0.006) 0.920 0.921
AT3G56110 0.081 (0.121) 0.228 (0.099) 0.919 0.895
AT1G23330 0.351 (0.018) −0.209 (0.012) 0.862 0.870
AT5G23060 −0.243 (0.005) −0.909 (0.005) 0.684 0.751
AT5G06240 −0.680 (0.022) 0.103 (0.012) 0.774 0.764

AT3G20350 −0.952 (0.007) −0.090 (0.009) 0.562 0.396
AT1G30440 −1.056 (0.010) −0.398 (0.009) 0.511 0.375
AT1G30490 −0.983 (0.008) −0.322 (0.006) 0.612 0.480
AT1G23400 −1.017 (0.011) −0.275 (0.006) 0.547 0.418
AT1G17980 0.734 (0.001) −0.001 (0.006) 0.524 0.363

AT2G30890 −1.040 (0.150) −0.142 (0.125) 0.445 0.771
AT5G15160 −0.044 (0.129) −1.059 (0.225) 0.332 0.866
AT5G45310 −0.221 (0.162) −1.404 (0.313) 0.042 0.837
AT5G46871 0.373 (0.065) 0.886 (0.094) 0.305 0.581
AT2G22240 0.076 (0.016) −0.975 (0.043) 0.371 0.690

2. Materials and Methods

2.1. Review of MCLUST Model

Finite mixture model Let f1(yyy; ΘΘΘ1), f2(yyy; ΘΘΘ2), ..., fG(yyy; ΘΘΘG) be G probability distributions defined
on the d-dimensional random vector yyy, and a mixture of the G distributions is formed by taking
proportions {τk} of the population from components { fk}, with probability density given by

f (yyy; ΘΘΘ) =
G

∑
k=1

τk fk(yyy; ΘΘΘk), (1)

where ΘΘΘ = (ΘΘΘ1, ..., ΘΘΘG) are model parameters.
Component density The MCLUST model assumes that the distribution of each yyy is a mixture of
multivariate normal distributions. Under the MCLUST model, the component density of yyy in group
k is

fk(yyy; µµµk, ΣΣΣk) =
exp

{
− 1

2 (yyy−µµµk)
TΣΣΣ−1

k (yyy−µµµk)
}

√
det[2πΣΣΣk]

, (2)

In other words,

yyy|k ∼ Nd(µµµk, ΣΣΣk). (3)

The (marginal) probability density of yyy is given by

f (yyy) =
G

∑
k=1

τk fk(yyy; µµµk, ΣΣΣk). (4)
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Likelihood function Suppose a sample of n independent and identically distributed (iid) random
vectors yyy = (yyy1, ..., yyyn) is drawn from the mixture. The (observed) log likelihood of the sample is then

lO(ΘΘΘ; yyy) =
n

∑
i=1

log f (yyyi) =
n

∑
i=1

log
G

∑
k=1

τk fk(yyyi; µµµk, ΣΣΣk), (5)

where ΘΘΘ = (τ1, ..., τG; µµµ1, ..., µµµG; ΣΣΣ1, ..., ΣΣΣG) are the model parameters.

2.2. MCLUST-ME Model

We extend the MCLUST model by associating each data point with an error term and assumes
that the covariance matrix of each error term is either known or can be estimated.
Component density Given that yyy belongs to component k, the MCLUST-ME models assumes that
there exists a latent variable www, representing its “truth” part, and εεε, representing its “error” part,
such that 

yyy = www + εεε,

www|k ∼ Nd(µµµk, ΣΣΣk),

εεε ∼ Nd(000, ΛΛΛ),

(6)

where www and εεε are independent. µµµk and ΣΣΣk are unknown mean and covariance parameters (same as in
the MCLUST model), and ΛΛΛ is the known error covariance matrix associated with yyy. The distribution
of yyy being in component k is then

yyy|k ∼ Nd(µµµk, ΣΣΣk +ΛΛΛ), (7)

with density function

gk(yyy; µµµk, ΣΣΣk, ΛΛΛ) =
exp

{
− 1

2 (yyy−µµµk)
T (ΣΣΣk +ΛΛΛ)−1 (yyy−µµµk)

}
√

det[2π(ΣΣΣk +ΛΛΛ)]
, (8)

and the (marginal) probability density of yyy is given by

g(yyy) =
G

∑
k=1

τkgk(yyy; µµµk, ΣΣΣk, ΛΛΛ). (9)

Likelihood function Suppose a sample of n iid random vectors yyy = (yyy1, ..., yyyn) is drawn from the
mixture, where each yyyi is associated with known error covariance matrix ΛΛΛi. The (observed) log
likelihood of the sample is then

lO(ΘΘΘ; yyy) =
n

∑
i=1

log g(yyyi) =
n

∑
i=1

log
G

∑
k=1

τkgk(yyyi; µµµk, ΣΣΣk, ΛΛΛi), (10)

where ΘΘΘ = (τ1, ..., τG; µµµ1, ..., µµµG; ΣΣΣ1, ..., ΣΣΣG) are the model parameters.
In summary, the MCLUST-ME and MCLUST models have the same set of model parameters

for the normal components and the mixing proportions. The key difference is that under the
MCLUST-ME model, the measurement or observation errors of the observations are explicitly modeled,
and observations are each associated with a given error covariance matrix.

2.3. Expectation-Maximization (EM) Algorithm

In the original MCLUST method, the EM algorithm is used to estimate the unknown parameters
and compute the membership probabilities. In this subsection, we will first review the EM algorithm
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under the general MCLUST framework, and then highlight the differences in implementation between
the MCLUST method and the MCLUST-ME method.
Complete data log likelihood Given observations (yyy1, ..., yyyn), suppose that each yyyi is associated
with one of G states. Then, there exists unobserved indicator vectors {zzzi = (zi1, ..., ziG)} where

zzzi
iid∼MultG(1, τττ) with τττ = (τ1, ..., τG). The complete data then consists of xxxi = (yyyi, zzzi). Assuming

that the conditional probability density of yyyi given zzzi is ∏G
k=1 fk(yyyi; µµµk, ΣΣΣk, ΛΛΛi)

zik , the complete data log
likelihood can be derived as follows,

lC = log
n

∏
i=1

f (yyyi, zzzi)

= log
n

∏
i=1

f (yyyi|zzzi) f (zzzi)

= log
n

∏
i=1

[
G

∏
k=1

fk(yyyi; µµµk, ΣΣΣk, ΛΛΛi)
zik

] [
G

∏
k=1

τ
zik
k

]

= log
n

∏
i=1

G

∏
k=1

[τk fk(yyyi; µµµk, ΣΣΣk, ΛΛΛi)]
zik

=
n

∑
i=1

G

∑
k=1

zik log [τk fk(yyyi; µµµk, ΣΣΣk, ΛΛΛi)] .

(11)

EM iterations The EM algorithm consists of iterations of an M step and an E step, as described below.

• M step: Given current estimates of {zik}, maximize the complete-data log-likelihood lC with
respect to (τk, µµµk, ΣΣΣk).

• E step: Given estimates (τ̂k, µ̂µµk, Σ̂ΣΣk) from last M step, for all i = 1, ..., n and k = 1, ..., G, compute the
membership probabilities

ẑik =
τ̂k fk(yyyi; µ̂µµk, Σ̂ΣΣk, ΛΛΛi)

∑G
j=1 τ̂j f j(yyyi; µ̂µµj, Σ̂ΣΣj, ΛΛΛi)

. (12)

The two steps alternate until the increment in lO is small enough. Upon convergence, a membership
probability matrix is produced and each observation is assigned to the most probable cluster, that is,

membership of yyyi = argmaxk{ẑik}, (13)

and the classification uncertainty for yyyi is defined as

1−max
k
{ẑik}. (14)

In two-group clustering, the classification uncertainty cannot exceed 0.5 (otherwise the point is
incorrectly assigned).

For MCLUST, the component density fk is defined in (2), and for MCLUST-ME, fk is substituted
by gk in (8).
M-step implementation details For likelihood maximization in the M step, a closed-form solution
always exists for τ̂k, k = 1, . . . , G (see [12] for more details):

τ̂k =
1
n

n

∑
i=1

zik (15)
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We can derive the estimation equations for µµµk and ΣΣΣk (k = 1, . . . , G) by taking the partial derivatives of
lC with respect to µµµk and ΣΣΣk and setting the derivatives to 000. For MCLUST-ME (see [13] for a summary
of useful matrix calculus formulas, in particular (11.7) and (11.8)):

∂lC
∂µµµk

=
n

∑
i=1

zik(ΣΣΣk +ΛΛΛi)
−1(yyyi −µµµk) = 000 (16)

and

∂lC
∂ΣΣΣk

=
1
2

n

∑
i=1

zik(ΣΣΣk +ΛΛΛi)
−1(yyyi −µµµk)(yyyi −µµµk)

T(ΣΣΣk +ΛΛΛi)
−1 − 1

2

n

∑
i=1

zik(ΣΣΣk +ΛΛΛi)
−1 = 000. (17)

For estimation equations under the MCLUST model, one set all the ΛΛΛi’s to 000 in the above two equations.
Note that under MCLUST, if there is no constraint on ΣΣΣk, there are closed-form solutions for µµµk and ΣΣΣk:

µ̂µµk =
∑n

i=1 zikyyyi

∑n
i=1 zik

(18)

and

Σ̂ΣΣk =
∑n

i=1 zik(yyyi − µ̂µµk)(yyyi − µ̂µµk)
T

∑n
i=1 zik

. (19)

For MCLUST-ME, each yyyi corresponds to a different ΛΛΛi. One can see that, in general, there is
no closed-form solution for (µµµk, ΣΣΣk). In our implementation of the MCLUST-ME M step, we solve µµµk
from (16),

µ̂µµk =

[
n

∑
i=1

zik(ΣΣΣk +ΛΛΛi)
−1

]−1 n

∑
i=1

zik(ΣΣΣk +ΛΛΛi)
−1yyyi, (20)

and plug it into (17), and then use the limited-memory BFGS, a quasi-Newton method in R (function
optim [14]), to obtain an optimal solution for ΣΣΣk numerically. We obtain µ̂µµk by substituting the resulting
Σ̂ΣΣk into (20).

The complexity of the EM algorithm for the MCLUST-ME increase with the number of clusters,
the number of parameters (which is determined by the dimension of the data), and the number of
observations. It is much slower than the original MCLUST algorithm due to the fact we have to use a
numerical optimization routine to find the maximum likelihood estimate (MLE) of µµµk’s and ΣΣΣk’s in the
M step. (See Conclusion and Discussion for a brief summary of running time of MCLUST-ME on the
real data example.)

2.4. Initial Values

Owing to its iterative nature, the EM algorithm can start with either an E step or an M step. In the
context of model-based clustering, initiation with the M step takes advantage of the availability of other
existing clustering methods, in the sense that, given a data set, we can acquire their initial memberships
by first clustering the data with other methods. MCLUST adopts model-based agglomerative
hierarchical clustering [7,15] to generate initial memberships. Model-based hierarchical clustering aims
at maximizing the classification likelihood instead of (5) or (10); at each stage, the maximum-likelihood
pair of clusters are merged together. Although the resulting partitions are suboptimal due to its
heuristic nature, model-based hierarchical clustering has been shown to often yield reasonable results
and is relatively easy to compute [16]. In light of this, we also use model-based hierarchical clustering
to obtain initial memberships for MCLUST-ME. For the choice of initial values when starting with E
step (i.e., initial parameter estimates), see [17] for a nice discussion.
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2.5. Model Selection

Within MCLUST framework, selection for the number of clusters can be achieved through the
use of the Bayesian information criterion (BIC). Given a random sample of n independent d-vectors
yyy = (yyy1, ..., yyyn) drawn from (4) and (9) with some value of G, the BIC for this G-component mixture
model is given by:

BICG = 2lO(Θ̂ΘΘ; yyy)− νG log(n), (21)

where Θ̂ΘΘ is the MLE for model parameters, lO is the observed likelihood as in (5) or (10), and νG is
the number of independent parameters to be estimated. In the most simplistic case, we allow the
mean and covariance of each component to vary freely—this is the case we will focus on in this
paper. Therefore, for a G-component mixture model, we have νG = (G− 1) + Gd + Gd(d− 1)/2. For
comparison purpose, in this paper, we will compare MCLUST-ME results to MCLUST results with the
same number of components.

2.6. Decision Boundaries for Two-Group Clustering

In this subsection, we examine decision boundaries produced by MCLUST and MCLUST-ME for
partitioning a sample into G = 2 clusters.

2.6.1. MCLUST Boundary

Suppose we would like to separate a d-dimensional i.i.d. random sample S = {yyyi}N
i=1 into two

clusters with MCLUST. Let (τ̂k, µ̂µµk, Σ̂ΣΣk) denote MLEs for (τk, µµµk, ΣΣΣk) upon convergence. If we assign
each point to the more probable cluster, then the two clusters can be expressed as follows.

E1 = {yyyi ∈ S : τ̃1 f1(yyyi; µ̂µµ1, Σ̂ΣΣ1)− τ̃2 f2(yyyi; µ̂µµ2, Σ̂ΣΣ2) > 0}; E2 = S \ E1, (22)

and the decision boundary separating E1 and E2 is

B = {ttt ∈ Rd : τ̃1 f1(ttt; µ̂µµ1, Σ̂ΣΣ1)− τ̂2 f2(ttt; µ̂µµ2, Σ̂ΣΣ2) = 0}, (23)

where fk, k = 1, 2, is defined in (2). Equivalently, the boundary B is the set of all points in Rd with
classification uncertainty equal to 0.5. Notice that since the solution set B does not depend on i,
a common boundary is shared by all observations. When d = 2, under the model assumption of
MCLUST, the boundary B is a straight line when Σ̂ΣΣ1 = Σ̂ΣΣ2, and a conic section when Σ̂ΣΣ1 6= Σ̂ΣΣ2, with its
shape and position determined by the values of the MLEs. This can be shown by simplifying the
equality in (23) (see [12] for more details).

2.6.2. MCLUST-ME Boundary

Consider the data S = {yyyi}N
i=1 and each yyyi is associated with known error covariance ΛΛΛi for all i.

Suppose our goal is to partition S into two clusters. Let (τ̃k, µ̃µµk, Σ̃ΣΣk) be MLEs from the MCLUST-ME
model. If we assign each observation to the more probable cluster, the two clusters can be expressed
as follows,

E∗1 = {yyyi ∈ S : τ̃1g1(yyyi; µ̃µµ1, Σ̃ΣΣ1, ΛΛΛi)− τ̃2g2(yyyi; µ̃µµ2, Σ̃ΣΣ2, ΛΛΛi) > 0}; E∗2 = S \ E∗1 ,

where gk is defined in (8). The above decision rule (and therefore boundary) of classifying each point
yyyi now depends not only on the values of MLEs, but also on the error covariance matrix, ΛΛΛi, of yyyi.
Instead of producing a common boundary for all points in S, the MCLUST-ME model specifies an
individualized classification boundary for each yyyi as follows,

B∗(ΛΛΛi) = {ttt ∈ Rd : τ̃1g1(ttt; µ̃µµ1, Σ̃ΣΣ1, ΛΛΛi)− τ̃2g2(ttt; µ̃µµ2, Σ̃ΣΣ2, ΛΛΛi) = 0}.
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Similar to our argument in Section 2.6.1, when d = 2, B∗(ΛΛΛi) is either a straight line or a conic section.
When ΛΛΛi = ΛΛΛj for some i 6= j, that is, when two points are associated with the same error

covariance, it can be seen that B∗(ΛΛΛi) = B∗(ΛΛΛj), meaning that the two points share a common
classification boundary. In the special case where ΛΛΛi = ΛΛΛj ∀i 6= j, all boundaries B∗(ΛΛΛi) will coincide
with each other.

One consequence of the existence of multiple decision boundaries is that the classification
uncertainty of each point will depend on its corresponding value of ΛΛΛi. In MCLUST, points with high
uncertainty (≈ 0.5) are aligned around the single classification boundary, whereas in MCLUST-ME,
each highly uncertain point is close to its own boundary. Consequently, as we will see in Section 3.1, our
method allows intermixing of points belonging to different clusters, while MCLUST creates clear-cut
separation between clusters.

2.7. Related Methods

The authors of [18] discussed a clustering method for data with measurement errors. They also
assumed that each observation, yyyi, is associated with a known covariance matrix, Λ̃ΛΛi, but they assume
that this covariance matrix is for the distance between the observation and the center of a cluster. Their
conceptual model, using our notation, assumes that

yyyi|k ∼ Nd(µµµk, Λ̃ΛΛi) (24)

when observation i belongs to cluster k (under their model, group membership is deterministic, not
probabilistic). Comparing (24) to our MCLUST-ME model (6) and (7), we see that their model lacks the
“model-based” element—the covariance matrix ΣΣΣk—for each cluster k, k = 1, . . . , G. In other words,
their Λ̃ΛΛi plays the role of our ΣΣΣk +ΛΛΛi. This is a crucial difference: we understand that in MCLUST and
MCLUST-ME models, ΣΣΣk’s are used to capture different shapes, orientations, and scales of the different
clusters. Also, although it is reasonable to assume that the error covariances of the measurements (ΛΛΛi
in MCLUST-ME) are known or can be estimated, it is much more difficult to know ΣΣΣk +ΛΛΛi (i.e., Λ̃ΛΛi), as
we do not where the centers of the clusters are before running the clustering algorithm.

The authors of that paper discussed two heuristic algorithms for fitting G clusters into
observations: hError and kError. Under their model, they need to estimate the µk’s for all the
clusters and the deterministic (or hard) group memberships for each observation. Both algorithms are
distance-based, and not based on an EM algorithm. The hError algorithm is a hierarchical clustering
algorithm: it iteratively merges two current clusters with the smallest distances. The error covariances
Λ̃i were incorporated into the distance formula. For each current cluster k, let Sk be the collection of
observations. The center of cluster k is estimated by a weighted average of the observations:

µ̂µµk = ( ∑
i∈Sk

Λ̃ΛΛ−1
i )−1 ∑

i∈Sk

Λ̃ΛΛ−1
i yiyiyi (25)

with covariance matrix
ΨΨΨk = Var(µ̂µµk) = ( ∑

i∈Sk

Λ̃ΛΛ−1
i )−1. (26)

The distance between any two clusters k and l is defined by

dkl = (µ̂µµk − µ̂µµl)
T(ΨΨΨk +ΨΨΨl)

−1(µ̂µµk − µ̂µµl) (27)

The kError algorithm is an extension of the k-means method. It iterates between two steps: (1)
Computing the centers of the clusters using (25). (2) Assigning each point to the closest cluster based
on the distance formula

dik = (yyyi − µ̂µµk)
TΛ̃ΛΛ−1

i (yyyi − µ̂µµk). (28)
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We implemented the simpler kError algorithm as described above and applied it the real-data example.
We summarized our findings in Section 3.3.

The authors of [19] proposed another extension to the k-means method that incorporates errors
on individual observations. Under their model, each cluster is characterized by a “profile” ααα =

(α1, . . . , αm), where m is the dimension of the data. Each observation, gggi = (gi1, . . . , gim), from this
cluster is modeled as

gij = βiαj + γi + εij, j = 1, . . . , m, (29)

where εij ∼ N(0, σij) with known error variances σij. The distance from an observation gggi to a cluster
with profile ααα is defined as

min
βi ,γi

m

∑
j=1

[
gij − (βiαj + γi)

σij

]2

, (30)

essentially the weighted sum of squared errors from a weighted least-squares regression of gggi on the
profile ααα. The motivation of this distance measure is that it captures both the euclidean distance and the
correlation between an observation and a profile. Their version of k-means algorithm, CORE, proceeds
by iteratively estimating the profile ααα for each cluster and then assigning each observation gggi to the
closest cluster according to (30). We note that their distance measure is less useful for low-dimensional
data, as a regression line needs to be fitted between each observation and the cluster profile. If we
force the slope βi to be 0, then we see that their method will be similar to the kError method in [18].

3. Results

In our simulations and real-data example, version 5.0.1 of MCLUST was used.

3.1. Simulation 1: Clustering Performance

We simulated data from bivariate normal mixture distribution with different parameter settings,
and applied both MCLUST-ME and MCLUST to partition the data into two clusters. The purpose of
this simulation is twofold: first, to investigate the degree of improvement in clustering performance
by incorporating known error distributions, and second, to study how error structure affects
clustering result.

3.1.1. Data Generation

The data were generated from a two-component bivariate normal mixture distribution, where
each point is either error-free or associated with some known, constant error covariance. The data
generation process is as follows.

(1) Generate {hi}n
i=1 i.i.d. from Bernoulli(η). For each i, hi will serve as indicator for error, and on

average, a proportion η of data points will be associated with error.
(2) Generate {zi}n

i=1 i.i.d. from Bernoulli(τ). Parameter τ will be the mixing proportion.
(3) For i = 1, ..., n, generate yyyi from

zi N2(µµµ1, ΣΣΣ1 + hiΛΛΛ) + (1− zi)N2(µµµ2, ΣΣΣ2 + hiΛΛΛ).

Values of the above parameters are as follows; µµµ1 = (0, 0)T , µµµ2 = (8, 0)T , ΣΣΣ1 = 64I2, ΣΣΣ2 = 16I2,
n = 300, τ1 = τ2 = 0.5, and ΛΛΛ = 36I2. As the values of zi provide us with the true memberships of
each observation, we are able to use them to evaluate externally the performance of clustering methods
in consideration.
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3.1.2. Simulation Procedure

The simulation proceeds as follows.

(1) Choose a value for η from {0.1, 0.3, 0.5, 0.7, 0.9}.
(2) Randomly select a random seed.
(3) Generate a random sample following Section 3.1.1.
(4) Run MCLUST and MCLUST-ME, fixing G = 2. Initiate with true memberships.
(5) Repeat (2)–(4) for 100 different seeds.
(6) Repeat (1)–(5) for each value of η.

The membership for each observation as well as MLEs upon convergence will be recorded.

3.1.3. The Adjusted Rand Index

In this simulation study, as the true memberships of the observations are available, we can
externally evaluate the performance of both clustering methods by calculating the Rand index [20].
Given n observations and two partitions R and Q of the data, we can use a contingency table (Table 2)
to demonstrate their agreement.

Table 2. 2× 2 contingency table for comparing partitions R and Q.

Partition Q

R
Pair in

same group
Pair in

different groups

Pair in Same Group a b
Pair in Different Groups c d

The Rand index (RI) is defined as

RI =
a + d

a + b + c + d
.

There are some pitfalls of the Rand index: for two random partitions, the expected value of RI is not
equal to zero, and the value of RI tends to one as the number of partitions increases [21]. To overcome
these problems, Hubert and Arabie [22] proposed the adjusted Rand index (ARI), which has an
expectation of zero. The ARI is defined as

ARI =
RI− Expected(RI)
1− Expected(RI)

=
(n

2)(a + d)− [(a + b)(a + c) + (c + d)(b + d)]

(n
2)

2 − [(a + b)(a + c) + (c + d)(b + d)]
.

ARI takes values between −1 and 1, with an ARI of 1 indicating perfect agreement between two
partitions (i.e., RI = 1), and an ARI of 0 indicating independence between partitions (i.e., RI =

Expected(RI)).
Permutation tests can be used to test whether the observed ARI is significantly greater than

zero [23]. Although keeping the numbers of partitions and partition sizes the same as the original data,
a large number of pairs of partitions are generated at random and ARI is computed for each generated
pair. A randomization p-value can then be calculated based on the distribution of generated ARI’s.
Similarly, permutation p-values can be obtained for testing whether paired ARI values originating
from two clustering methods are equal or not.

3.1.4. Simulation 1 Results

Decision boundary We first visualize the clustering results from both methods, as well as the
theoretical decision boundaries stated in Section 2.6. Figure 1 shows groupings of the same data
generated with η = 0.5 and with random seed 7.
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For MCLUST-ME, we identify two distinct decision boundaries: The dotted curve separates points
measured with errors (solid) into two groups, whereas the dashed curve separates points without errors
(empty). For MCLUST, one boundary separates all points, regardless of their associated errors. This
confirms our findings in Section 2.6.

For this particular simulation, we make two interesting discoveries. First, the two MCLUST-ME
boundaries are relatively far apart. Second, none of the three boundaries intersect with each other.
As mentioned in Section 2.6.1, the shape and position of these boundaries completely depend upon
corresponding values of MLEs, which, in turn, are end results of a procedure of iterative nature (the
EM algorithm). We have additional plots similar to Figure 1 for other values of η and other random
seeds in [12].

−20 −10 0 10 20

−
20

−
10

0
10

20

MCLUST−ME

−20 −10 0 10 20

−
20

−
10

0
10

20

MCLUST

Figure 1. Clustering result of the sample generated with random seed = 7 and η = 0.5. Both plots: empty
points represent observations with no measurement errors; solid points represent those generated with
error covariance ΛΛΛ. Clusters are identified by different shapes. Left: clustering result produced by
MCLUST-ME. Dashed line represents classification boundary for error-free observations; dotted line
represents boundary for those with error covariance matrix ΛΛΛ; solid line represents boundary produced
by MCLUST. Right: clustering result produced by MCLUST. Solid line is the same as in the left plot.

Classification uncertainty In Figure 2, we visualize the classification uncertainty of each point
produced by both methods. Observe that for MCLUST, highly uncertain points are found close to
the decision boundary, regardless of error. For MCLUST-ME, points with measurement errors (solid)
near the outer boundary (dotted) in the overlapping region tend to have high clustering uncertainties.
Likewise, error-free points (empty) near the inner boundary (dashed) tend to have high uncertainties.
This is consistent with our statement in Section 2.6.2.
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Figure 2. Clustering uncertainty of the sample generated with random seed = 7 and η = 0.5. Data
points of larger size have a higher clustering uncertainty. All other graph attributes are the same as
Figure 1.

Accuracy We first evaluate the performance of MCLUST and MCLUST-ME individually using
ARI (between true group labels and predicted labels) as their performance measure. Figure 3 shows
that for both methods, clustering accuracy tends to decrease as error proportion η increases. This is
intuitively reasonable, because points associated with errors are more easily misclassified due to their
high variability, and a larger proportion of such points means a lower overall accuracy.

Figure 3. Adjusted Rand indices for MCLUST-ME and MCLUST. Five different proportions of
erroneous observations (η) were considered. Magenta: MCLUST-ME; Dark Cyan: MCLUST.
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Next, we compare the performances of MCLUST and MCLUST-ME by examining pairwise
differences in ARI. Figure 4 shows that on average, MCLUST-ME has a slight advantage in accuracy,
and it appears that this advantage is greatest when η = 0.5, and becomes smaller as η gets closer to
either zero or one. In the latter situation, error covariances will tend to become constant (all equal to
36III2 as η → 1, or 000 as η → 0) across all points, meaning that MCLUST-ME will behave more and more
like MCLUST, hence diminishing MCLUST-ME’s advantage in accuracy.

Figure 4. Pairwise difference in adjusted Rand indices between MCLUST-ME and MCLUST. Five
different proportions of erroneous observations were considered.

Using a permutation test to test the hypotheses H0 : ARIMCLUST−ME = ARIMCLUST v.s. H1 :
ARIMCLUST−ME > ARIMCLUST , the p-values for the five cases are shown in Table 3. With the exception
of η = 0.1, MCLUST-ME produced a significantly higher ARI than MCLUST.

Table 3. Permutation p-values for comparing MCLUST and MCLUST-ME ARI’s.

η 0.1 0.3 0.5 0.7 0.9

p-value 0.256 0 0 0 0.002

Taking a closer look at the pairwise comparison when η = 0.5, Figure 5 shows that when
MCLUST’s accuracy is low, MCLUST-ME outperforms MCLUST most of the time, and when
MCLUST’s accuracy is relatively high, the two methods are less distinguishable on average.
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Figure 5. Pairwise difference in accuracy relative to MCLUST accuracy. X-axis: MCLUST ARI; Y-axis:
Pairwise difference between MCLUST-ME and MCLUST ARI values.

3.2. Simulation 2: Clustering Uncertainties and Magnitudes of Error Covariances

In this simulation, our focus is on investigating how clustering uncertainties differ between
MCLUST-ME and MCLUST: in particular, we want to see how the magnitudes of error covariances
affect the uncertainty estimates. For this purpose, we will let the magnitudes of error covariances vary
in a wide range.

3.2.1. Data Generation

The data were generated from a two-component bivariate normal mixture distribution with errors
whose magnitudes are uniformly distributed. The data generation process is as follows.

(1) Generate {Si}n
i=1 i.i.d. from Uniform(0, S), where Si denotes the magnitude of error covariance

for observation i.
(2) Generate {zi}n

i=1 i.i.d. from Bernoulli(τ). Parameter τ will be the mixing proportion.
(3) For i = 1, ..., n, generate yyyi from

zi N2(µµµ1, ΣΣΣ1 + Si I2) + (1− zi)N2(µµµ2, ΣΣΣ2 + Si I2),

where I2 denotes the 2-dimensional identity matrix.

The parameter values are set as follows; µµµ1 = (−10, 0)T , µµµ2 = (10, 0)T , ΣΣΣ1 = ΣΣΣ2 = 100I2, n = 200,
τ1 = τ2 = 0.5, and S = 100. We chose these parameter values so that there will be quite many points
near the classification boundary: these points tend to have high classification uncertainties. We want to
see, under MCLUST-ME and under MCLUST, how the error magnitudes, Si, will affect the estimated
classification uncertainties (defined in (14)) of the points.

3.2.2. Simulation Procedure

The simulation proceeds as follows.
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(1) Generate a random sample following Section 3.2.1.
(2) Run MCLUST and MCLUST-ME, fixing G = 2. Initiate with true memberships.
(3) Record cluster membership probabilities and MLEs for model parameters upon convergence.

3.2.3. Simulation 2 Results

In Figure 6, we show the clustering results from MCLUST-ME and MCLUST (G = 2). On this
data set, the hard partitioning results do not differ much between the two methods: only two points
were classified differently by the two methods (highlighted by black circles).

Figure 6. Clustering results for Simulation 2. The clustering results are indicated by different colors
and symbols. Points with crosses are misclassified points. The two points that are classified differently
by MCLUST-ME and MCLUST are circled in black.

Our focus here is on comparing the classification uncertainties estimated under the two methods.
For MCLUST, the uncertainty measure for a point depends only on the point location and estimated
centers and covariance matrices of the two clusters. Under MCLUST-ME, the uncertainty measure
will also depend on the error covariance associated with the point. When two points are at the
same location, MCLUST-ME will give higher uncertainty estimate to the point with greater error
covariances (see Equation (12)), which is reasonable. In Figure 7, for each observation, we visualize
the change in estimated membership probability to cluster 1 between MCLUST and MCLUST-ME
with respect to the magnitude of its error covariance(Si): the closer the membership probability is to
0.5 the higher the classification uncertainty. The points with most changes in estimated membership
probabilities are highlighted in Figure 8. Relative to MCLUST, the MCLUST-ME model tends to adjust
the classification uncertainties upwards for points with high error covariances and downwards for
points with low error covariances. In other words, relative to the MCLUST-ME results, MCLUST
tends to overestimate clustering uncertainties for points with low error covariances and underestimate
clustering uncertainties for points with high error covariances. This is expected, as MCLUST treats
all points as measured with no errors and absorbs all individual measurement/estimation errors into
the variance estimates for the two clusters. As a crude approximation, one can think that MCLUST
effectively treats each point as having an error covariance matrix close to the average of all true error
covariances. However, the up or down changes in membership probabilities (and thus uncertainty
estimates) are not a simple function of Si, and we do not see a clear-cut boundary between the ups
and downs in Figure 7, as the estimates of membership probabilities are also affected by differences in
estimates of centers and covariance matrices of the two clusters.
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Figure 7. Change in estimated membership probability to cluster 1 from MCLUST to MCLUST-ME,
plotted against error magnitude. X-axis: magnitude of error covariance, Si; Y-axis: estimated
membership probabilities to cluster 1 by MCLUST (black dots) and by MCLUST-ME (arrowheads).
Changes in estimated membership probabilities from MCLUST to MCLUST-ME are highlighted by
arrows (no arrow indicates a change less than 0.01). Blue and red arrows indicate an increase and
decrease in estimated clustering uncertainty, respectively. With two clusters, the closer the estimated
membership probability to 0.5, the higher the classification uncertainty; the classification membership
changes when an arrow crosses the horizontal line at 0.5 (the dashed line).

Figure 8. Points with most changes in estimated membership probabilities to cluster 1 from MCLUST
to MCLUST-ME. The colored dots correspond to points with a change greater than 0.1 in estimated
membership probability to cluster 1. Blue and red colors indicate an increase and decrease in estimated
clustering uncertainty, respectively.
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3.3. A Real Data Example

3.3.1. Data Description

The data come from an unpublished study on the model plant Arabidopsis thaliana. Researchers
employed RNA-Seq to create a temporal profiling of Arabidopsis transcriptome over a 12h period,
with the aim of investigating plant innate immunity after elicitation of leaf tissue with flg22—a
22-amino-acid epitope of bacterial flagellin. A total of 33 A. thaliana Col-0 plants were grown in a
controlled environment. Fifteen were treated with flg22, 15 with water, and the other 3 were left
untreated. At each of five time points (10 min, 1 h, 3 h, 6 h, 12 h), three flg22-treated and three
water-treated plants were harvested and prepared for RNA-Seq analysis.

A negative binomial regression model was fitted to each row (i.e., each gene) of the RNA-Seq
count data. The regression model was parameterized such that the first five regression coefficients
correspond to log fold changes in mean relative expression level between flg22- and water-treated
groups at the five time points, which make up the temporal profile of each gene. The regression
coefficients were estimated by the MLEs using the R package NBPSeq [24]. Furthermore, based on
asymptotic normality of MLE, the covariance matrix of the log fold changes can be estimated by
inverting the observed information matrix. For the current study, we will use the estimated regression
coefficients and associated variance–covariance matrices for a subset of 1000 randomly selected genes
at two of the time points (1 h and 3 h) as input for the clustering analysis, as the gene expressions are
most active at these two time points.

3.3.2. Cluster Analysis

We applied MCLUST-ME and MCLUST to the data. Both methods have their highest BIC values
when G = 2, 3, or 4. We focus on the G = 2 results as it is simple and yet illuminates the key differences
between the two methods. In Figure 9, we show the clustering results from the two methods. In this
example, both clustering methods show one cluster near the center and another cluster wrapping
around it. This makes sense in the context of a gene expression study: the center cluster roughly
represent genes that are not differentially expressed (non-DE) at these two time points; the outer
cluster roughly represent genes that are differentially expressed (DE). In Figure 9, we see one signature
difference between the two clustering methods: MCLUST gives a smooth boundary, whereas in the
MCLUST-ME results, the two clusters are interspersed. This is expected from our theoretical analysis
earlier and consistent with Simulation 1 results.

Table 4 summarizes the number of points that are classified differently by the two methods. In
Figure 10, we show the standard errors (square roots of the diagonal entries of the error covariance) of
the log fold changes estimated at 1 h and 3 h, with points classified differently by the two methods
highlighted in colors. When we look at the points that are clustered differently by the two methods,
we noticed that they tend to be the points either with very low or very high error covariances (relative
to the average error covariance). This is expected as we understand that MCLUST absorbs all the
individual error covariances into the estimation of the covariances of the two clusters, and thus is
effectively using a middle-of-the-pack error covariance to treat each point. Therefore, we expect the
differences in clustering results tend to show up among points with either very high or very low error
covariances. This observation is also consistent with what we see in Simulation 2.
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Figure 9. Clustering analysis of the log fold changes of 1000 genes randomly selected from the
Arabidopsis data set. Two-group clustering of the data with MCLUST-ME and MCLUST, showing log
fold changes at 1 h and 3 h. Groups are distinguished by point shapes and colors, and identified as
non-DE group (blue circles) and DE group (red squares). Observations classified differently by the two
methods are circled in black.

Table 4. Contingency table for group labels predicted by MCLUST-ME and MCLUST.

MCLUST-ME

MCLUST Non-DE DE

Non-DE 775 10
DE 30 185
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Figure 10. Standard errors of estimated log fold changes at 1 h and 3 h. Observations that are classified
differently by MCLUST-ME and MCLUST are highlighted in colors. Magenta: classified as “DE” by
MCLUST and as “non-DE” by MCLUST-ME; Cyan: classified as “non-DE” by MCLUST and as “DE”
by MCLUST-ME. (Note that the axes are on the log scale.)
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More interestingly, in this example, we see that the points (genes) that are classified into the “DE”
cluster by MCLUST, but into the “non-DE” cluster by MCLUST-ME, tend to have high error covariances.
In the MCLUST results, the clustering membership is completely determined by the magnitude of the
two regression coefficients, which represent log fold changes between two experimental conditions at
the two time points. In MCLUST-ME, membership calculation also considers the estimation uncertainty
of the log fold changes. For gene expression data, we know that the uncertainty in log fold change
estimation varies greatly (e.g., often depends on the mean expression levels). Although this example is
a real data set with no ground truth on each point’s actual group membership, it seems reasonable
that points with moderate log fold changes but high error variances should be classified into the
non-DE cluster, as MCLUST-ME has done in our example. At the minimum, the MCLUST-ME results
warn us that not all points with the same log fold changes are created equal, which is exactly the
point we want to highlight in this article. Actually, this example is the data set that motivated us
to consider incorporating uncertainty information into the clustering algorithm. In this example,
explicitly modeling the error covariances clearly shows a difference.

The error covariance matrices were estimated, and thus associated with their own estimation
errors. To get a sense of the uncertainty associated with estimating the error covariance matrices, we
simulated additional sets of error covariance estimates by parametric bootstrapping: simulating copies
of the RNA-seq data set based on parameters estimated from the real data set and estimating error
covariance matrices from the simulated data sets. In Figure 11, we compare the square roots of the
diagonal entries of two sets of simulated error covariance estimates (which correspond to the standard
errors of the log fold changes at the two time points). We then tried MCLUST-ME method on the
original data set with the two sets of simulated error covariance estimates: eight observations were
classified differently due to the differences in error covariance estimates (see Table 5 for a summary).
For a closer look, in Figure 12, we show the differences in the estimated membership probabilities (to
the non-DE cluster) between the two runs of MCLUST-ME with different simulated error covariance
estimates, and these differences were much less than the differences between the original MCLUST-ME
and MCLUST results. These results show that the uncertainty in covariance estimation does lead
to variation in the clustering results, but the variation is much less as compared to the differences
between whether or not to model the estimation errors. In this sense, the MCLUST-ME method is
robust to the uncertainty in the covariance estimation to a certain degree.
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Figure 11. Comparing two sets of simulated standard errors for the estimated log fold changes at 1 h
(left) and at 3 h (right). The standard errors correspond to the square roots of the diagonal entries of
the simulated error covariance estimates.
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Table 5. Contingency table for group labels predicted by MCLUST-ME with two sets of simulated error
covariance estimates

MCLUST-ME Run 1

MCLUST-ME Run 2 Non-DE DE

Non-DE 801 2
DE 6 191
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Figure 12. (a) Comparing membership probabilities to the “non-DE” cluster estimated by MCLUST-ME
and by MCLUST. (b) Comparing membership probabilities to the “non-DE” cluster estimated by
MCLUST-ME with two sets of simulated covariance estimates. The decision whether or not to
model the error covariances will result in drastic changes in the estimated membership probabilities.
In comparison, the uncertainties in covariance estimation cause much less changes in the estimated
membership probabilities.

3.3.3. Comparison to kError

In Section 2.7, we reviewed the clustering method by the authors of [18], which models the error
covariances of individual observations as in MCLUST-ME, but lacks the model-based components
(Nd(000, ΣΣΣk)) for modeling individual clusters. We implemented the kError algorithm according to the
description in [18] and applied it to the RNA-Seq data set that we analyzed in the previous subsection,
using the estimation error covariances as Λ̃ΛΛi and using the memberships predicted by MCLUST-ME as
initial values. The clustering results by kError are shown in Figure 13, which can be compared with
the MCLUST and MCLUST-ME results in Figure 9.
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Figure 13. Two-grop clustering results by kError. We applied the kError method to the same RNA-Seq
data set that was analyzed by MCLUST and MCLUST-ME. Compare with Figure 9.

For this data set, the two clusters estimated by MCLUST or MCLUST-ME have quite different
ΣΣΣk values: the covariance of the DE cluster is much greater in magnitude than that of the non-DE
cluster. The DE cluster is enclosed by the non-DE cluster. Such a structure between the two clusters is
difficult for kError method to capture. The way kError split the data sets into two clusters is similar
to an ordinary k-means method. Interestingly, the two clusters by kError are interspersed without a
clean-cut boundary and points with similar values but different covariances can belong to different
clusters: This feature is similar to MCLUST-ME.

4. Conclusions and Discussion

In this paper, we proposed an extension to model-based clustering approach that accounts for
known or estimated error covariances for data observed with uncertainty. The error covariances can
often be estimated for data consisting of summary statistics, such as the regression coefficients from a
regression analysis. We extended the EM algorithm implemented in MCLUST and implemented our
new method MCLUST-ME in R [25].

A distinctive feature of MCLUST-ME is that the classification boundary separating the clusters
is not always shared by all observations; instead, each distinct value of error covariance matrix
corresponds to a different boundary. Using both simulated and a real data example, we have shown
that under certain circumstances, explicitly accounting for estimation error distributions does lead
to improved clustering results or new insights, where the degree of improvement depends on the
distribution of error covariances.

It is not our intention to claim that MCLUST-ME is universally better than the original MCLUST.
We are actually more interested in understanding when it will give different results than MCLUST:
in other words, when it is beneficial to explicitly model the measurement error structures when
performing clustering analysis. When covariances of estimation errors are roughly constant or small
relative to the covariances of the clusters, MCLUST and MCLUST-ME yield highly similar results.
We will tend to see meaningful differences when there is significant overlap among clusters (i.e.,
the difficult cases) and when there is a large variation in the magnitude of error variance.
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There are a few natural extensions that can be implemented. For example, in this paper, we
focused on the case where the variance–covariance matrices of the clusters are unconstrained (what
MCLUST calls “VVV” type). One important feature of the original MCLUST method is that it allows
structured constraints on the cluster variance–covariance matrices. Such extension is possible for
MCLUST-ME. The main challenge for our current implementation of MCLUST-ME is computational.
With MCLUST-ME, each point has its own error covariance matrix, and therefore we no longer have
closed-form solutions for estimating the model parameters and have to rely on optimization routines.
These factors make MCLUST-ME slower than the MCLUST implementation, but for reasonably-sized
low-dimensional data sets, it is still manageable. The running time of the algorithm will depend
on the number of clusters (G) and the size and dimension of the observed data. For our real data
example, when we classify the 1000 two-dimensional data points into two clusters, it took 19 min. It
took 23 h to classify the same data sets into six clusters (on a laptop workstation with an Xeon X3430
processor). To this end, improving the computation routine or exploring approximation methods is a
future research topic.

The data and R code for reproducing the results in this paper is available online at https://github.
com/diystat/MCLUST-ME-Genes.
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