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Abstract: Invasive carcinoma of no special type (IC-NST) is known to be one of the most prevalent
kinds of breast cancer, hence the growing research interest in studying automated systems that
can detect the presence of breast tumors and appropriately classify them into subtypes. Machine
learning (ML) and, more specifically, deep learning (DL) techniques have been used to approach this
problem. However, such techniques usually require massive amounts of data to obtain competitive
results. This requirement makes their application in specific areas such as health problematic as
privacy concerns regarding the release of patients’ data publicly result in a limited number of publicly
available datasets for the research community. This paper proposes an approach that leverages
federated learning (FL) to securely train mathematical models over multiple clients with local IC-NST
images partitioned from the breast histopathology image (BHI) dataset to obtain a global model. First,
we used residual neural networks for automatic feature extraction. Then, we proposed a second
network consisting of Gabor kernels to extract another set of features from the IC-NST dataset. After
that, we performed a late fusion of the two sets of features and passed the output through a custom
classifier. Experiments were conducted for the federated learning (FL) and centralized learning (CL)
scenarios, and the results were compared. Competitive results were obtained, indicating the positive
prospects of adopting FL for IC-NST detection. Additionally, fusing the Gabor features with the
residual neural network features resulted in the best performance in terms of accuracy, F1 score,
and area under the receiver operation curve (AUC-ROC). The models show good generalization by
performing well on another domain dataset, the breast cancer histopathological (BreakHis) image
dataset. Our method also outperformed other methods from the literature.

Keywords: breast cancer; deep learning; federated learning; invasive carcinoma of no special type;
whole slide images; histopathological image analysis

1. Introduction

Breast cancers are among many diseases the research community is working hard to
detect with the aid of automated systems [1–4]. While tumors can be benign or malignant,
the former is not considered cancerous as their cells are more regular, develop more slowly,
and are not invasive of tissues around them. Malignant tumors, on the other hand, are
cancerous tumors. The term “breast cancer” is used to refer to malignant tumors originating
from the lobules or ducts of the breast or, in rare cases, the stromal tissue (the connective
fatty and fibrous breast tissues), which are then further propagated to other parts of the
body by the lymphatic system [5]. They are caused by genetic abnormalities where about 5%
to 10% of the cases are due to inheritance from parents. About 90% of the hereditary cases
are a result of mutations in the breast cancer genes BRCA1 and BRCA2 [6–9]. Breast cancer
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makes up 30% of all new cancer cases diagnosed in women. The American Cancer Society
estimates 287,850 new invasive cancer cases in women in 2022, and 43,250 individuals will
die of the disease. Additionally, an estimate of 2710 men is expected to be diagnosed with
invasive breast cancer in 2022. Out of this number, about 530 are likely to die from it [10].

Invasive carcinoma of no special type (IC-NST), previously referred to as invasive
ductal carcinoma (IDC) or breast cancer not otherwise specified (NOS) [11], is known to be
a very prevalent kind of breast cancer, making up about 80% of all breast cancers according
to the American Cancer Society.

The procedure for diagnosing breast cancer involves a combination of different tests,
including physically examining the breast, mammograms, and biopsy. Other examinations
with ultrasound and breast magnetic resonance imaging (MRI) may also be considered [12].
The study carried out by Collins et al. indicated that core needle biopsy provides high rates
for diagnosing IC-NST in over 90% of the cases, and it is a primary technique for evaluating
histopathological features among pathologists [13]. The process, however, involves manual
feature engineering by expert pathologists who must carefully observe and examine the
glass slide of biopsy specimens. Capturing these specimens into images makes them
available for use in computer-aided detection/diagnosis [14]. Approaches such as machine
learning (ML) and, more specifically, deep learning (DL), have been explored in recent
years due to their successes in aiding in the prognosis and diagnosis of other medical
conditions [15–22]. These techniques provide mathematical models for automating the
detection process. However, to effectively take good advantage of the ability of DL models
to eliminate manual feature engineering, the methods tend to require large amounts of data.
The regulations governing the release of patient data are, however, stringent, resulting in a
small amount of publicly available data.

To address this privacy concern and encourage collaborative learning, we employ
federated learning in this study. This paper contributes the following to help in the
automated detection of IC-NST:

• We proposed a multimodal network by introducing two input modalities obtained
separately by extracting histopathology image features with GaborNet and pre-
trained ResNet.

• We formulated the problem of automatically diagnosing IC-NST as a federated learn-
ing challenge to leverage its privacy preservation capability.

• We conducted experiments to evaluate our approach and compared the results against
some techniques in the literature in terms of accuracy, F1-score, and balance accu-
racy metrics.

• We also assessed how well our models generalized by evaluating them on another
domain dataset from a different repository.

• Visualizations of the layers of both ResNet and GarborNet were provided to give more
insight into the models and enhance their explainability.

We organized the subsequent sections in the following manner. Section 2 presents
literature related to IC-NST and motivation for the study. In Section 3, we present our
methodology. We implemented our approach, presented our experimental results, and
compared them with other methods proposed in the literature in Section 4. Finally, we
concluded in Section 5 and presented some future research directions.

2. Related Works

IC-NST detection has been a very important topic for researchers applying ML and
DL in addressing breast cancer issues. Romano and Hernandez [23] performed a study on
IC-NST in which they trained an enhanced convolutional neural network (CNN) model and
analyzed the results of their model with a patch-based IC-NST classification problem. Their
study achieved an F-score and balanced accuracy of 85.28% and 85.41%, respectively. Bran-
cati et al. [24] explored some techniques to automatically analyze hematoxylin and eosin
(HE)-stained histopathological images of breast cancer and lymphoma. They also proposed
their approach for two use cases: the detection of IC-NST in breast histopathological images
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and the classification of lymphoma subtypes. They reported having improvements of 5.06%
in the F-score and 1.09% in the accuracy measure over previous methods. Liu et al. [25]
proposed a new index of the energy to Shannon entropy ratio (ESER), which they used
for classifying the tissues. They utilized principal component analysis (PCA) together
with an ML technique to autonomously classify THz signals from IC-NST samples and
had AUCs greater than 0.89, 92.85% precision, 89.66% sensitivity, and 96.67% specificity.
Chapala et al. [26] proposed the use of the ResNet50 framework to automatically detect
IC-NST from breast histopathology images (BHI). Their model achieved an accuracy of
91%. Celik et al. [27] conducted a study involving the automatic detection of IC-NST using
a deep transfer learning technique. They used some pre-trained models of DL, including
ResNet50 and DenseNet161, on BHI for their study. They obtained an F-score of 92.38%
and a balanced accuracy value of 91.57% on the DenseNet161 model. They also obtained
an F-score of 94.11% and a balanced accuracy value of 90.96% on the ResNet-50 model.
Chand et al. [28] performed a more inclusive study on the various methods used over the
recent years for IC-NST detection.

Transfer learning (TL) is a popular technique used to improve the performance of
models for which there are inadequate training samples. They are also very convenient
for reducing the training time by basing on the pre-trained weight of earlier layers in the
network to fine-tune new models. Popular TL architectures are trained with the ImageNet
dataset. For a medical use case such as the task of IC-NST detection, ImageNet-based
transfer learning methods become out of the domain. Hence, Laith et al. [29] proposed
a novel TL technique for medical imaging tasks with limited labeled datasets. They take
advantage of the unlabeled medical data available to train models that learn domain-
specific features, and the learned weights are used to fine-tune models for which there are
limited datasets. The authors also proposed a new deep convolutional neural network
(DCNN) to exploit recent advances in the area. To evaluate their proposed TL and DCNN
models, they performed separate experiments involving automated skin cancer and breast
carcinoma classification. Among the many promising results achieved by their method,
their model obtained an increment from an 86.0% F1-score when trained without any form
of TL to 96.25% with TL, as well as an even higher F1-score of 99.25% with the double-TL
technique on a two-class (normal and diabetic foot ulcer) skin classification task. In a
similar paper, the authors [30] proposed a hybrid DCNN to classify HE-stained breast
biopsy images into four targets (invasive carcinoma, in situ carcinoma, benign tumor, and
normal tissue). They empirically showed that domain-based TL does well at optimizing
the performance of the models. Augmenting the training instances reduced overfitting by
providing more instance variations for the model to explore for generalization.

Despite the promising results of all the methods proposed in the literature involving
DL and TL techniques, privacy concerns regarding health data add more limitations to the
availability of publicly accessible data. Institutions are usually obliged to run models on
their localized datasets to keep their patients’ data private. Motivated by the successful
use of FL by Google to achieve a high performing model for predicting words on their
Gboard [31,32], some recent works in computerized medical image analysis [19] have
adopted FL to help protect patients’ privacy. This work also uses FL to bridge the IC-NST
data availability gap and to encourage collaboration between different institutions without
sharing their patients’ data.

3. Proposed Approach

Data scarcity affects the generalization of deep learning models as there are not
enough instance variations to represent the distribution under study adequately. This is a
big challenge; hence, institutions resort to collaborating by donating their data to a common
repository [33] for centralized learning (CL). While this helps in addressing the challenge of
availability of big data to improve model generalization, it also introduces the challenge of
data privacy [34]. This is a significant concern in health, adding to the already existing data
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limiting factors such as the lack of experts to annotate and digitize traditionally acquired
data.

We proposed federated learning-based IC-NST detection in which the clients utilize
pre-trained residual models and the Gabor network to extract features from their private IC-
NST datasets. The architectural diagram of the proposed model is represented in Figure 1.
It consists of the global FL model on the sever (A), the client model architectures residing
on each client node (B), and the private datasets for each client, also residing on the client
node. More details on our approach are provided in the following sub-sections.

Figure 1. Architecture of the proposed approach with GaborNet and ResNet models on a feder-
ated setting.

3.1. Federated Learning (FL)

FL eliminates the need for one common data bank for access by the participating
institutions. Their data remain with them while they contribute training parameters to help
improve each other’s local models. We present our proposed FL approach in Algorithm 1.
Using federated averaging [31], the parameters of each local client model are averaged on a
central server. These averaged parameters are then used to update the participating clients
for a number of rounds. For each round of server update, each of the clients trains its local
model for several epochs. Given N number of clients, each client has its own local IC-NST
patch dataset, Xi and, labels, Yi, where i specifies the client. The set of all the client data
are {X1, . . . , XN} with labels, {Y1, . . . , YN}. A global model M is agreed upon by all the
clients, and a clone mi is made by each of the clients and initialized with the parameters of
M. The entire local model list is thus {mi, ..., mN} parameterized with wi = W, where wi is
the local parameters whiles W represents the global parameters.

The server aggregation phase is carried out after each round of local training. The local
parameters {wi, . . . , wN} are transmitted to the server for aggregation using the federated
averaging (FedAvg) algorithm to compute the average of all the local parameters, which
becomes the new global parameter, W, as shown in Equation (1) below:

minimize
w

F(w) :=
1
N

N

∑
i=1

Fi(w), (1)

where Fi(w) represents the risk function for client i. The risk function is further presented
in Equation (2) below:
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Fi(w) = E(xi ,yi)∼Di

[
L(mw(xi), yi)

]
, (2)

where Di represents the distribution of each client data, L represents the loss function, mw
represents the local model, and mw(xi) represents the model prediction for a data instance
xi. Approximating the risk with an empirical function, we have Equation (3):

Fi(w) ≈ 1
ni

ni

∑
i=1

[
L(mw(xi), yi)

]
(3)

We used the cross entropy loss function for the optimization of our models. For
balanced classes, the loss is formulated as follows:

L(mw(xi), yi) = − log

(
exp(x[y])

∑j exp(x[j])

)
(4)

L(mw(xi), yi) = −x[yi] + log

∑
j

exp(x[j])

 (5)

Algorithm 1: Proposed FL-Based Approach.
Input: N clients; R: communication rounds; E: local epochs; gobal parameters: W; local

parameters: {wi, ..., wN} ; η: learning rate; b: size of batch; X: images; Y: labels;
Cclient data: {X1, . . . , XN}; client labels: {Y1, . . . , YN}; Local models: {mi, ..., mN};
Optimizers: {optim1(·), . . . , optimN(·)}

Output: Global model: MW
1 Initialize model parameters: {wi, ..., wN} ← W
2 for r = {1, . . . , R} do
3 for i = {1, . . . , N} do
4 for e = {1, . . . , E} do
5 Get training patches for client i, Xitrain

6 Apply augmentations
7 Examplestrain ← augData(Xitrain )
8 map1 ← ResNet(Examplestrain)
9 map2 ← GaborNet(Examplestrain)

10 mapfused ← fusion(map1, map2)
11 pred = classifier(mapfused, Ytraini )
12 Compute prediction loss
13 Lpred(mapfused, Ytraini )

14 = weight[Ytraini ]

(
-x[Ytraini ] + log

(
∑j exp(x[j])

))
15 Update wi ← optimi(Lpred)

16 end
17 Get validation patches for client i, Xival

18 Validate and compute metrics
19 end
20 Server Aggregation
21 W ← FedAvg({wi, ..., wN})
22 Testing with global model
23 Get test patches Xtest
24 Deploy weights to client models
25 {wi, ..., wN} ← W
26 end
27 return MW
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3.2. FL Model Architecture

Taking advantage of TL for fine-tuning models trained on smaller datasets [35–38], this
study utilizes residual network models pre-trained with the ImageNet dataset for automatic
feature extraction from the histopathology patches to produce one feature modality. A
second feature modality is obtained using a Gabor network.

ResNet: ResNet18 and ResNet50 are two of the deep learning networks proposed by
He et al. [39], in which they showed that residual learning by referencing the layer’s input
enables the construction of deeper networks without increasing the error. Similar to the
original ResNet18 and 50 networks, our implementation consists of a convolutional layer
with 7× 7 filters, an output channel of 64, a stride of 2, and padding of 3× 3. Following
the convolution layer is a 3× 3 max-pooling with a stride of 2. Four sequential layers
consisting of blocks of convolution, batch normalization, and ReLU layers are then added.
The major difference between the ResNet18 and 50 networks is the number of blocks used
to compose each layer. While ResNet18 consists of 2 blocks per layer, ResNet50 contains 3,
4, 6, and 3 blocks, respectively, for each layer. Average pooling is added after the last layer
of both networks. We modified the linear layer in the fully connected block to output a
feature size of 448.

GaborNet: Gabor filters are linear band pass filters that analyze frequencies in localized
regions for directions defined by the kernel [40,41]. Given a kernel size

(
p, q
)
, phase offset,

ψ, spatial aspect ration, γ, and standard deviation, σ, a complex Gabor kernel is obtained
using the function g(·) in Equation (6). The real and imaginary components are Equations
(7) and (8), respectively.

g(·) = exp

(
− p′2 + γ2q′2

2σ2

)
exp

i

(
2π

p′

λ
+ ψ

) (6)

g(·) = exp

(
− p′2 + γ2q′2

2σ2

)
cos

(
2π

p′

λ
+ ψ

)
(7)

g(·) = exp

(
− p′2 + γ2q′2

2σ2

)
sin

(
2π

p′

λ
+ ψ

)
(8)

Here, p′ = p cos θ + q sin θ and q′ = −p sin θ + q cos θ. A total of 96 kernels were de-
fined by varying the function parameters to produce different frequencies at different
directions. We used the kernels along with 2D convolution to extract features from the
images. Another convolutional layer with a 3× 3 kernel size and an output size of 384 are
added. We also added a linear layer consisting of 64 output size.

Classifier: The features obtained from the ResNet (map1) and the features extracted
with the GaborNet (map2) are fused [19,42] and fed into a classifier for prediction. The
classifier consists of a linear layer with a 256 output size, a ReLU activation layer, a batch
normalization layer, a dropout of 0.5, and a final linear layer with an output of 2 for the
two classes.

3.3. Centralized Learning (CL)

Since the major practice over these past years is to have the training data centralized
in one device or server, we considered CL our benchmark technique for comparison with
the proposed FL approach. The CL technique involves running the same deep learning
networks described in Section 3.2 for the FL approach in a non-distributed fashion. Hence,
the datasets are kept at one location, and the various model variations are evaluated on
them. Those models specific to the CL are named CL+ResNet18, CL+ResNet18+Gabor,
CL+ResNet50 and CL+ResNet50+Gabor. CL in the naming refers to the centralized learning
mode, while ResNet18, ResNet50, and GaborNet refer to the feature extraction techniques.
The “+” symbol implies the combination of different techniques.
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3.4. Datasets

Deep learning relies heavily on datasets to automatically extract features that uniquely
characterize the various target classes. We used two histopathological datasets from
different repositories for our study. These datasets are described in the following sub-
sections.

3.4.1. Breast Histopathology Image (BHI) Dataset

We utilized the Breast Histopathology Image (BHI) dataset [41,43,44] for training.
The original dataset contains whole slide images (WSI) taken at 40×magnifying factor. In
total, 277,524 patches of size 50× 50 were obtained from the whole slide images, of which
198,738 patches are for IC-NST-negative and 78,786 are for IC-NST-positive cases, as shown
in Figure 2. Samples of the two classes in the BHI dataset are shown in Figure 3a.

Considering a subject from the BHI dataset, for instance, the corresponding patches
are aligned to enable us to visualize the entire tissue without a mask of the malignant tumor
region as shown in Figure 4a. The region indicated by the deep red mask is the cancerous
region, shown in Figure 4b. The tissue slice with the binary positive and negative target
patches are also shown in Figure 4c. The pre-processing included augmenting the training
and validation patch instances by randomly flipping the images horizontally and vertically
and then applying a z-score normalization.

Figure 2. Patches available in the BHI dataset.

(a)

(b)

Figure 3. Histopathology image samples in the (a) BHI and (b) BreakHis datasets.
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(a) (b) (c)

Figure 4. (a) Breast tissue slice for an IC-NST subject. (b) The red colored mask shows the cancerous
region. (c) Binary target per tissue slice for the IC-NST subject.

We identified 279 unique patients in the BHI dataset; hence, we obtained an identically
independent distribution (IID) by allocating 93 patients randomly to each client. All the
patches of the patients assigned to the clients were used to train their private models.

3.4.2. Breast Cancer Histopathological (BreakHis) Image Dataset

Samples obtained through surgical (open) biopsy (SOB) were prepared into histopatho-
logical images to create the Breast Cancer Histopathological Image dataset by staining with
hematoxylin and eosin (HE) [45–47]. The microscopic breast tumor images were taken at
four different magnifying factors: 40×, 100×, 200×, and 400×. A total of 9109 images were
present, of which 2480 belonged to the benign class, whiles 5429 belonged to the malignant
class. The images were 3-channel RGB images of size 700× 460. Based on the appearance
of the cells, the images can be categorized into the benign (adenosis, fibroadenoma, phyl-
lodes, and tubular adenoma) class and the four invasive cancer subtypes (ductal carcinoma,
lobular carcinoma, mucinous carcinoma, and papillary carcinoma). Samples in this dataset
are graphically presented in Figure 3b.

In order to handle the difference in the sizes between the BHI and BreakHis datasets,
we cropped 50× 50 patches from the center of all the images considered for evaluation
from the BreakHis dataset. Cropping from the center retains information about the context
without losing the target class.

3.4.3. Handling Imbalance Data Label for Loss Computation

There is an imbalance in the number of instances in the target classes. Imbalanced
classes tend to learn the class with larger training instances more effectively than the class
with the smaller instances, thereby affecting the overall model performance. To overcome
this issue, we computed the weights, given each class, j in {1, . . . , J}, for each client as
follows:

µi,j =
|Xi|

J × |Yi,j|
(9)

where |Xi| is the number of instances for client i, and |Yi,j| is the total number of instances
in class j for client i. The loss function in Equation (5) is modified to factor in the weight of
each class as follows:

L(mw(xi), yi) = µi,j

−x[yi] + log

∑
j

exp(x[j])


 (10)

4. Experiments
4.1. Experiment

Different sets of experiments were performed on both the CL and FL setups. Specifi-
cally, we ran experiments using only ResNet18 and ResNet50 for feature extractions and
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also combined the GaborNet for each of the cases. We performed training, validation, and
testing using the BHI dataset. Exploring the dataset, 279 unique patients were identified,
and hence we allocated 93 patients to each of the clients. This ensured that the patches
owned by each of the clients belong to a patient assigned to them. Thus, every patch
located on each client node was private to that client. The patches at each client node
were then split into train, dev and test sets of 70%, 15% and 15% respectively. The train
and dev sets, shown in Table 1, were kept private to each client. The test sets at each
client node are combined to produce one set for evaluating the global model. Whiles each
client validated their respective models on their dev-set, the combined test-set was used in
evaluating the global model. The data augmentation techniques used for both the training
and development sets at the client level included random horizontal and vertical flips
and z-score normalization. During training, local parameters were sent to the server for
averaging after every 2 epochs for a total of 30 rounds. Due to the imbalanced nature of the
dataset, we computed the class weights for each client according to Equation (9) using the
weighted cross-entropy loss function as our criterion. The stochastic gradient descent (SGD)
with varying learning rates was used. We scheduled the learning rate using Equation (11):

lrnext = lr1 × 0.085e+1, (11)

where the initial learning rate was lr1 = 1.0, and e ∈ N+. A batch size of 512 was used for
all the experiments.

We provide a visualization of the features extracted by the Global FL+ResNet50+Gabor
model in Figure 5. In Figure 5a, we show a sample of an original malignant image and
its corresponding gray image. We also show the magnitude and Gabor phase obtained
after applying a filter with a wavelength of 10 at an orientation of 90 degrees to the
image. In Figure 5b, we show a grid of different filters (filter bank) used to extract different
orientations of frequency-based features from the sample image. The extracted features
are shown in Figure 5c. Next, Figure 5d,e show the features extracted by the first and
second layers of the model. Finally, we visualized the model using Grad-CAM to provide
insight on the model’s localization for its predictions [48]. We used PyTorch and an NVIDIA
GeForce RTX 2080 Ti accelerator with a memory of 11 Gb for the experiments.

Table 1. Private train and development splits for clients on the BHI dataset (patch-wise).

Client 1 Client 2 Client 3

Train set 63,988 65,963 65,079

Dev set 11,966 13,252 12,561

4.2. Metrics, Results, and Discussion

For each experiment, we calculated the true positive predictions (TP) , the false positive
predictions (FP), the true negative predictions (TN), and the false negative predictions (FN).
These were further used to compute commonly used metrics for medical data classification
tasks [24,27,49,50] and the performance shown in Tables 2 and 3. Columns C1, C2, and C3
in the tables refer to client 1, client 2, and client 3, respectively. G refers to the global model
(obtained by the FL) or the centralized model.

Specificity is a measure of the proportion of negatives the model classified correctly.
Specificity is computed with

Speci f icity =
TN

TN + FP
. (12)

From the result, the best specificity performance was attained by the federated model using
ResNet18 and GaborNet features. We noticed that the results obtained by the FL models
outperformed the CL models with respect to the specificity metrics. Additionally, fusing
the features from the GaborNet and the ResNets tended to further improve the specificity.
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Recall gives the proportion of positives correctly classified by the model and is obtained
with the equation

Recall =
TP

TP + FN
× 100. (13)

From Table 2, the best recall performance of 82.15% was attained when we performed
centralized learning with both ResNet18 and GaborNet features. Likewise, the subsequent
best recall of 79.90% was obtained by training the CL model with both ResNet50 and
GaborNet feature extractors.

Precision reflects the accuracy of the positive predictions. It is obtained by dividing
the TP by the total positives, as shown in Equation (14).

Precision =
TP

TP + FP
(14)

The best precision, 80.05%, was obtained by using both ResNet18 features and the GaborNet
features on FL. Using ResNet50 and GaborNet features on FL resulted in the next best
result of 79.60%.

(a) (b) (c)

(d) (e) (f)

Figure 5. Visualizations: (a) Original histopathology image, gray-scale image and the Gabor magni-
tude and phase for wavelength λ = 10 and orientation θ = 90. (b) Sample Gabor filter bank with
different λ and θ values. (c) Features extracted with the filter bank. (d) Features learned by the
first CNN layer of ResNet50. (e) Features learned by the second CNN layer of ResNet50. (f) Using
Grad-CAM to visualize some images.
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Table 2. Patch-wise result comparison on the test datasets with the CL and the FL global models.

Metric
Precision (%) Recall (%) Specificity (%)

C1 C2 C3 G C1 C2 C3 G C1 C2 C3 G

CL+ResNet18 - - - 78.46 - - - 77.37 - - - 90.40

FL+ResNet18 71.50 78.55 82.72 79.15 77.62 73.02 59.15 73.75 86.72 91.94 94.42 91.22

CL+ResNet18+Gabor - - - 75.92 - - - 82.15 - - - 88.23

FL+ResNet18+Gabor 72.66 77.42 83.14 80.05 75.53 68.77 64.96 73.85 87.16 90.94 84.05 91.68

CL+ResNet50 - - - 79.18 - - - 75.13 - - - 91.07

FL+ResNet50 63.81 76.42 79.66 78.59 79.91 68.50 74.10 77.35 77.75 90.45 91.45 90.48

CL+ResNet50+Gabor - - - 76.02 - - - 79.90 - - - 88.61

FL+ResNet50+Gabor 71.36 73.09 82.32 79.60 78.69 70.98 65.46 76.42 85.27 88.95 93.65 91.15

Table 3. Patch-wise comparison of our proposed models with studies from the literature on the
BHI dataset.

Metric
Accuracy (%) F1-Score (%) BA Score (%)

C1 C2 C3 G C1 C2 C3 G C1 C2 C3 G

CL+ResNet18 - - - 86.35 - - - 86.32 - - - 83.89

FL+ResNet18 83.00 83.66 83.44 85.78 83.09 83.01 82.57 85.64 81.82 78.64 76.78 82.48

CL+ResNet18+Gabor - - - 86.33 - - - 86.47 - - - 85.19

FL+ResNet18+Gabor 83.54 84.04 84.99 86.13 83.62 83.76 84.43 85.97 81.34 79.85 79.50 82.77

CL+ResNet50 - - - 86.12 - - - 86.01 - - - 83.10

FL+ResNet50 80.57 84.18 86.05 86.40 81.20 83.36 85.91 86.36 82.28 80.92 82.78 83.92

CL+ResNet50+Gabor - - - 85.90 - - - 86.00 - - - 84.26

FL+ResNet50+Gabor 84.02 82.84 84.88 86.57 84.28 84.47 84.35 86.49 83.27 79.59 79.55 83.78

Accuracy measures the percentage of correctly classified cases, including both the
positive and negative classes. The computation is shown in the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100. (15)

From Table 3, the accuracy obtained by training ResNet18 in a centralized fashion with
and without the Gabor features are at par with each other with a difference of only 0.02%.
Combining GaborNet and ResNet18 feature extractors in a FL fashion produced an im-
provement of 0.35% over using only ResNet18 for FL. For ResNet50, the centralized model
without the Gabor features performed better than its Gabor feature combination.

The F1 score calculates the harmonic mean of the precision and sensitivity as formu-
lated in Equation (16).

F1 = 2× precision× sensitivity
precision + sensitivity

(16)

The best F1 score (86.49%) was obtained by the FL model trained on both ResNet50 and
GaborNet feature combination. This result was closely followed by the CL model trained
on features from both ResNet18 and GaborNet, with a difference of 0.02. The GaborNet
improved the result in these two cases.

Balance accuracy is another important evaluation metric used to measure the effective-
ness of binary classifiers, especially when the classes are imbalanced. It is the average of
the recall and specificity, as shown in Equation (17).
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Balance Accuracy =
Recall + Speci f icity

2
(17)

CL with both ResNet18 and the GaborNet features achieved the highest balanced accuracy
result, followed by CL with both ResNet50 and GaborNet features. The results indicate
an improvement in the balance accuracy when the GaborNet features were fused with the
ResNet features in both cases.

The receiver-operating curve (ROC) is a plot of recall against 1− speci f icity. Area
under the curve (AUC) is the most widely used metric for measuring the overall perfor-
mance of methods as it shows the chances that a randomly selected positive instance is
more highly ranked than a randomly chosen negative one. Figure 6 shows the ROC curve
and the corresponding area under the receiver-operating curve (AUC-ROC) results for each
of the clients and the final global model for FL+ResNet50+GaborNet (the model with the
best accuracy).

Confusion matrix helps visualize the number of actual and predicted instances of a
dataset. Figure 7 shows the Confusion matrices of the FL+ResNet50+Gabor model on
the BHI dataset for the global FL model, Figure 7a, and for the local models of each client,
Figure 7b–d. From the figures, all the local models performed well, given the imbalanced
BHI dataset having more negative patch instances compared to the number of positive
patch instances. The generalization of the local models were reflected in the performance
of the global model.

4.3. Evaluation on the BreakHis Dataset

To assess how well the trained models have generalized, we evaluated the performance
of our approach on another domain data. The BreakHis dataset introduced in Section 3.4.2
was used to perform additional evaluations. All the 2480 images in both the subtypes and
magnifying factor categories were combined for the benign class to form the negative (no
IC-NST) instances. The malignant images were shuffled, and 3020 samples were randomly
selected for the positive (IC-NST) instances. The results are reported in Table 4. From the
table, the highest accuracy of 86.57% was obtained on the BHI dataset with our proposed
FL+ResNet50+Gabor model. The corresponding accuracy with the same model for the
BreakHis dataset is 86.32%, indicating only a 0.26% difference in the accuracy metric.
However, the BreakHis dataset’s accuracy outperformed that of the BHI dataset on the
CL+ResNet50+Gabor model. All the BHI results for specificity outperformed those of the
BreakHis dataset, indicating that more negative targets were correctly detected from the
BHI dataset. Conversely, all the recall results of the BreakHis dataset outperformed those
of the BHI dataset, indicating the correct detection of more positive targets in the BreakHis
dataset. These can be better visualized with the confusion matrices in Figure 8.

Table 4. Patch-wise result comparison on the test datasets with the CL and the FL global models.

Datasets
BHI BreakHis

Acc Bac F1 Pre Rec Spe Acc Bac F1 Pre Rec Spe

CL+ResNet18 86.35 83.89 86.32 78.46 77.37 90.40 85.71 85.61 86.94 87.23 86.65 84.55

FL+ResNet18 85.78 82.48 85.64 79.15 73.75 91.22 84.14 84.15 85.34 86.63 84.11 84.19

CL+ResNet18+Gabor 86.33 85.19 86.47 75.92 82.15 88.23 85.47 85.42 87.00 87.40 85.93 85.00

FL+ResNet18+Gabor 86.13 82.77 85.97 80.05 73.85 91.68 86.02 86.01 87.12 88.14 86.13 85.89

CL+ResNet50 86.12 83.10 86.01 79.18 75.13 91.07 85.63 85.67 86.71 88.13 85.33 86.01

FL+ResNet50 86.40 83.92 86.36 78.59 77.35 90.48 84.91 84.90 86.08 87.22 84.97 84.84

CL+ResNet50+Gabor 85.90 84.26 86.00 76.02 79.90 88.61 86.31 86.36 87.32 89.00 85.86 86.85

FL+ResNet50+Gabor 86.57 83.78 86.49 79.60 76.42 91.15 86.32 86.31 87.40 88.44 86.39 86.52
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(a) (b)

(c) (d)

Figure 6. Receiver-operating curves for the (a) global model and the (b) client 1, (c) client 2, and
(d) client 3 local models with the combined BHI test dataset and FL+ResNet50+GaborNet.

(a) (b)

(c) (d)

Figure 7. Confusion matrix for the (a) global model and the (b) client 1, (c) client 2, and (d) client 3
local models with the combined BHI test dataset and FL+ResNet50+GaborNet.
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(a) (b)

Figure 8. Confusion matrix for BreakHis dataset on (a) CL+ResNet50+Gabor and
(b) FL+ResNet50+Gabor models.

4.4. Comparison with Works in Literature

The BHI dataset is the most popular public IC-NST dataset; thus, we used it to
compare with the results of other models in the literature. Table 5 shows the comparison
in terms of accuracy, F1 score, and the balance accuracy measure. From the table, our
FL+ResNet50+GaborNet model outperformed the existing approaches in terms of accuracy
and F1 scores. The model proposed by Reza et al. [51] performed best in terms of balanced
accuracy, with a value of 85.48%, surpassing our proposed ResNet18 + GaborNet with
only a small margin of 0.29%. All our proposed models combining the ResNets with the
GaborNet performed higher on the F1-score than the previous methods in the table.

Table 5. Patch-wise comparison of our proposed models with studies from the literature on the
BHI dataset.

Paper Model Published Year Accuracy (%) F1 (%) BA (%)

Cruz-Roa et al. [41] CNN 2014 71.80 84.23

Janowczyk et al. [44] AlexNet + Resize 2016 76.48 84.68

Reza et al. [51] SMOTE 2018 85.78 85.48

Romano et al. [23] CNN 2019 85.41 85.28

Kumar et al. [52] CNN 2021 83.00

Proposed (CL) ResNet18+GaborNet 2022 86.33 86.47 85.19

Proposed (FL) ResNet18+GaborNet 2022 86.13 85.97 82.77

Proposed (CL) ResNet50+GaborNet 2022 85.90 86.00 84.26

Proposed (FL) ResNet50+GaborNet 2022 86.57 86.49 79.55

5. Conclusions and Future Works

Invasive carcinoma of no special type is a deadly cancer that can be identified and
classified by the microscopic similarity between cancer cells to normal tissue. Hence, a
number of researchers have proposed methods using histopathological images to detect
these kinds of cancers. Deep learning is one common technique for building such models;
however, they require huge amounts of data, which is not always available in the medical
field due to privacy concerns of patients.

In this research, we proposed an approach that leverages federated learning with
pre-trained residual neural networks to securely train with local client data without sharing
their training examples. We also introduced the Gabor network to extract features from the
datasets and fused the feature map with the features extracted by the residual networks. A
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custom classifier network was used to obtain the predictions. We used popular evaluation
metrics in the health domain to assess the performance of our approach on the BHI and
BreakHis datasets. Analyzing the recall, specificity, and confusion matrices for both the
BHI and BreakHis dataset indicated good generalization and the ability of the model to
detect data imbalance and correctly classify the instances. Promising results were obtained
without losing model quality, indicating the feasibility of federated learning for several
possible applications, such as collaborative training in sensitive and privacy preservation
scenarios, and interobserver variability assessment, among many others.

In future work, we intend to train each client on datasets obtained from different
repositories, thereby introducing the limitations that come with such non-identically and
independently distributed data sources. We will analyze it and propose approaches to limit
the effects on the generalizability of the global model. We will also explore domain-based
transfer learning techniques and recent advances for improving model performance on
federated learning.
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IC-NST Invasive carcinoma of no special type
IDC Invasive ductal carcinoma
NOS Breast cancer not otherwise specified
BRCA1/2 Breast cancer gene 1/2
CAD Computer-aided diagnosis/detection
ML Machine learning
DL Deep learning
TL Transfer learning
CL Centralized learning
FL Federated learning
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C1, C2, C3 Client 1, 2 and 3
CNN Convolutional neural network
ResNet Residual network
GaborNet Gabor network
ReLu Rectified linear unit
SGD Stochastic gradient descent
LR Learning rate
BHI Breast histopathology image
BreakHis Breast cancer histopathological
SOB Surgical (open) biopsy
HE Hematoxylin and eosin
Acc Accuracy
Bac Balance accuracy
F1 F1-score
Pre Precision
Rec Recall
Spe Specificity
TP True positives
TN True negatives
FP False positives
FN False negatives
ROC Receiver-operating curve
AUC-ROC Area under the receiver-operating curve
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