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Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) is a myelopoietic growth

factor that has pleiotropic effects not only in promoting the differentiation of immature

precursors into polymorphonuclear neutrophils (PMNs), monocytes/macrophages (MØs)

and dendritic cells (DCs), but also in controlling the function of fully mature myeloid

cells. This broad spectrum of GM-CSF action may elicit paradoxical outcomes—both

immunostimulation and immunosuppression—in infection, inflammation, and cancer. The

complexity of GM-CSF action remains to be fully unraveled. Several aspects of GM-CSF

action could contribute to its diverse biological consequences. Firstly, GM-CSF as a

single cytokine affects development of most myeloid cells from progenitors to mature

immune cells. Secondly, GM-CSF activates JAK2/STAT5 and also activate multiple

signaling modules and transcriptional factors that direct different biological processes.

Thirdly, GM-CSF can be produced by different cell types including tumor cells in response

to different environmental cues; thus, GM-CSF quantity can vary greatly under different

pathophysiological settings. Finally, GM-CSF signaling is also fine-tuned by other less

defined feedback mechanisms. In this review, we will discuss the role of GM-CSF

in orchestrating the differentiation, survival, and proliferation during the generation of

multiple lineages of myeloid cells (PMNs, MØs, and DCs). We will also discuss the role

of GM-CSF in regulating the function of DCs and the functional polarization of MØs.

We highlight how the dose of GM-CSF and corresponding signal strength acts as a

rheostat to fine-tune cell fate, and thus the way GM-CSF may best be targeted for

immuno-intervention in infection, inflammation and cancer.

Keywords: GM-CSF, macrophages, dendritic cells, differentiation, function

INTRODUCTION

The Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) is a small glycoprotein that is
able to stimulate generation of polymorphonuclear neutrophils (PMNs) as well as mononuclear
monocytes, macrophages (MØs) and dendritic cells (DC) (1–3). When added to mouse bone
marrow precursors in vitro, GM-CSF acts in two phases: an early differentiating phase of PMNs
and CD11b+ mononuclear cells from progenitors, and a late phase of MØs and monocyte-derived
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DCs (moDC) from CD11b+ mononuclear cells. For several
decades it has been known that the outcome of such cultures is
greatly influenced by a number of factors, including cell density,
the presence of stromal cells, co-stimulatory signals, the serum
quality and the concentration of GM-CSF (1). Despite this, the
molecular mechanisms underpinning the heterogeneity of the
myeloid cells produced in these GM-CSF induced cultures are
still ill defined. For example, while cytokines such as IL-4, IL-
13, TNF-α, TLR ligands or even GM-CSF concentration could
alter dramatically the ratio of generated myeloid cells (1, 4–6),
the nature of this bias under different conditions has not been
fully resolved at a molecular level. It has also not been fully
resolved whether differentiation fate under these conditions is the
result of either plasticity betweenMØ andmoDC, or the selective
expansion of a committed precursor under favorable conditions
of culture. While GM-CSF is extensively used in supporting
myelopoesis in vitro, the role of GM-CSF in vivo remains obscure.
GM-CSF deficiency has little impact on myeloid cells except for
the impairment of alveolar MØs in vivo (7–10). Nevertheless, in
transgenic mice harboring high levels of GM-CSF (GM-CSF-Tg),
myelopoiesis is substantially increased (11, 12).

While the importance of GM-CSF for myelopoiesis in vivo
remains a matter of debate, there is cogent evidence that GM-
CSF is an important mediator in inflammatory conditions such
as during infection and tumor immunity (13–16). These studies
suggest a role for GM-CSF in regulating biological functions of
fully mature cells. Studies on GM-CSF have mainly focused on
its pro-inflammatory role. Nevertheless, GM-CSF has also been
linked to immuno-suppression, particularly in tumor setting.
Thus, exposure of myeloid cells to GM-CSF can lead to sharp
opposite extremes, and these contrasting effects of GM-CSF on
myeloid cells remains hitherto unexplained.

The GM-CSF receptor (GM-CSFR) is composed of a ligand-
specific alpha chain and a beta chain common with IL-3 and
IL-5. Despite sharing this signaling beta chain, IL-3 or IL-5
engagement leads to distinct signaling events and myeloid cell
outcomes (17). For example, IL-3 is mostly associated with
differentiation of mast cells/basophils, while IL-5 is associated
with differentiation of eosinophils (17). GM-CSFR is found on
most myeloid cells including their precursors. Upon engagement,
GM-CSFR elicits JAK2 phosphorylation, which triggers multiple
intracellular signaling pathways, including STAT5, PI3K, and
MAPK (15, 18). Of note, GM-CSF can selectively turn on
signaling modules in a dose-dependent fashion, and can
therefore differentially impact cell survival, proliferation, and
differentiation at different doses (15, 18–20). GM-CSF has been
shown to activate and/or upregulate many transcriptional factors
such as the STAT proteins, PU.1 and interferon regulatory
factors (IRFs) (18). Such factors have been implicated in the
differentiation and function fate determination of myeloid
cells, but it is not clear how induction and function of these
transcription factors are linked to GM-CSF signaling strength.

Apart from GM-CSF abundance, GM-CSF signaling
strength can be influenced by multiple factors, including post-
translational modification. For example, glycosylated GM-CSF
has less immunogenicity and greater in vivo pharmacokinetic
availability than its non-glycosylated form Gribben et al. (21).

Nevertheless, glycosylation of GM-CSF is not required for its
biologic activity in vitro (22). In contrast, the GM-CSF receptor
α subunit requires N-glycosylation for binding and signaling
(23, 24). Thus, it has been speculated that glycosylation of the
α subunit may modulate cellular responsiveness to GM-CSF
(24). In addition, GM-CSF receptor signaling can also be
regulated by the suppressors of cytokine signaling proteins
(SOCS family members). However, the consequences of SOCS
signaling in controlling GM-CSFR signaling strength and
therefore myeloid cell differentiation and/or function have been
little explored.

In this review, we will highlight the dynamic changes in
GM-CSF quantity in different pathological situations and dose-
dependent differences in the biological response to GM-CSF,
ranging from immunostimulating to immunosuppressive. We
dissect the differential impact of GM-CSF on the main types
of myeloid cells. As the upstream events of GM-CSF signaling
and the inflammatory biological outcomes have been reviewed
elsewhere (17, 20), we will highlight the potential role for negative
feedback regulators on GM-CSF signal strength and downstream
transcriptional factors that influence myeloid differentiation
trajectory and function (Figure 1). Furthermore, we will discuss
the contribution of PI3K and downstream NFκB pathways
upon GM-CSF engagement in controlling not only myeloid cell
survival (19) but also macrophage polarization via the differential
involvement of Akt1 and Akt2 subunits (25). Finally, we also
discuss the role of GM-CSF in regulating end-cell function,
particularly functional polarization of MØs. In the process, we
aim to shed some light on the paradoxical role of GM-CSF in
immune regulation and facilitate the agonistic and antagonistic
targeting of GM-CSF as an immuno-intervention in infection,
inflammation, and cancer. As this review covers mouse and
human studies, we have indicated the species when human GM-
CSF is discussed.

DYNAMIC PRODUCTION OF GM-CSF:
HOW MUCH IS PRODUCED IN VIVO?

The amount of GM-CSF is likely to be a key factor in determining
its biological activity (19, 26). Thus, we will briefly describe
the main sources of GM-CSF. A diverse set of hematopoietic
and non-hematopoietic cells have been shown to secrete GM-
CSF. They include T cells (27–30), human natural killer cells
(31), mast cells (32), monocytes/MØs (33), human endothelial
cells (34), and human fibroblasts (35). The relative contribution
of each individual subset to the overall GM-CSF produced
under steady-state or inflammatory conditions has not been
determined. In the lung, production of GM-CSF by endothelial
cells in the steady state was instrumental in the differentiation of
alveolarMØs from fetal monocytes (10, 36). Under inflammatory
conditions, such as collagen induced arthritis and experimental
autoimmune encephalomyelitis (EAE), the production of GM-
CSF by T cells has been reported to promote disease progression
(28–30), although there is contention about the role of GM-
CSF in EAE pathology (37). On the other hand, GM-CSF
derived from radio-resistant wild-type cells in GM-CSF−/− bone
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FIGURE 1 | Schematic illustrating how GM-CSF dose selects the signal modules to be activated. Low dose GM-CSF signaling triggers Ser phosphorylation of the

GM-CSFR beta chain, PI3K/Akt activation and subsequent BCL-2 enhanced survival. High dose signaling triggers Tyr phosphorylation of the GM-CSFR beta chain

resulting in JAK/STAT5 activation, leading to upregulation of transcription factors PU.1 and IRF4, and downregulation of IRF8 to impact differentially on myeloid cell

differentiation and function. JAK2/STAT5 activation by GM-CSF could also induce transcription of SOCS proteins to negatively regulate signaling to form a signaling

regulatory loop. PI3K activation can also contribute to MØ polarization via preferential activation of Akt1 and Akt2.

marrow reconstituted irradiation chimera was sufficient to confer
resistance to infection with Mycobacterium tuberculosis (38).
GM-CSF is often used in the range of 10–20 ng/ml for in vitro
myeloid cell differentiation (2–4, 39). It raises the question—
what levels of GM-CSF can be reached in vivo? In physiological
situations, concentrations of around 20 pg/mL of GM-CSF could
be detected in human serum (40). Under pathological conditions,
human GM-CSF was found to be significantly elevated in the
serum and tissues in inflammatory diseases such as rheumatoid
arthritis and colitis (41–43). GM-CSF increase was also observed
in mice following LPS administration (44) and during bacterial
infection (45). Notably, GM-CSF quantity can reach and persist
at >10 ng per lung of mice infected with M. tuberculosis (38).
When human GM-CSF was used for myeloid recovery after

chemotherapy and bone marrow transplantation, patients were
given with >32 µg/kg body per day for 14 days (46).

SOLID TUMOR DERIVED GM-CSF:
COMMON FEATURE?

It has long been appreciated that tumor cells can produce
a variety of cytokines and chemokines (47). The Broad
Institute cancer cell line encyclopedia database (https://portals.
broadinstitute.org/ccle) shows that a broad spectrum of solid
tumor cell lines express human GM-CSF mRNA. For example,
tumor cells from the kidney, pancreas and gastrointestinal
tract displayed prominent GM-CSF transcription. Concordantly,
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an early study showed that about a third of the 75 human
tumor lines tested secreted GM-CSF; this comprised a large
proportion of lines from renal, prostate and colon cancers and
a modest proportion of breast, cervical, ovarian and melanoma
cancers (47). Indeed, 105 W-RCC renal cancer cells produced a
remarkable 39 ng/mL after 16 h in culture (47). A mouse renal
tumor line RenCa also produced about 0.5 ng GM-CSF/106

cells/24 h (48). In another study, a panel of mouse pancreatic
ductal adenocarcinoma (PDA) tumor cell lines all produced GM-
CSF (60–500 pg/mL) while benign pancreatic ductal cells did not
(49). These results indicate that GM-CSF production by human
and mouse tumor cells may not be uncommon.

ROLE OF GM-CSF IN TUMOR,
AUTOIMMUNITY/INFLAMMATION AND
INFECTION: STIMULATING OR
SUPPRESSIVE?

Several reviews have described that GM-CSF has a profound
immune regulatory role in health and disease (13–17).
Here we briefly discuss the role of GM-CSF in tumor,
autoimmunity/inflammation, and infection, with the aim
to contrast the opposite roles of GM-CSF in immune regulation.

GM-CSF Promotes and Suppresses Tumor
Immunity
The use of murine tumor cells genetically modified to secrete
cytokines has established GM-CSF as a strong immune adjuvant
for vaccination to promote anti-tumor immunity (50). In a
vaccination setting, Zarei et al. showed that tumor derived GM-
CSFwas sufficient to recruit DCs to the vaccination site inmurine
tumor models, thereby promoting a strong anti-tumor response
and protecting from further tumor challenge (48). Hence, clinical
trials using human GM-CSF as an immune adjuvant in cancer
patients have been conducted with some promising outcomes
(51–53). However, the use of human GM-CSF at high doses
may lead to advert events such as immunosuppression (54). In
mouse models, tumor derived GM-CSF has also been shown to
promote the development of myeloid derived suppressor cells
(49). Consequently, neutralization of GM-CSF has also been
shown to reduce suppressive cells and limit tumor growth (49).
Furthermore, tumor derivedGM-CSF can also act in an autocrine
manner to sustain tumor growth (55). Thus, GM-CSF secretion
within the cancerous tissue may have very contrasting effects on
either promoting anti-tumor immunity, suppressing anti-tumor
immunity or promoting tumor growth directly. It is likely that
the temporal and spatial abundance of GM-CSF, together with
the machinery controlling GM-CSF signal strength including
receptor expression and regulatory circuitry would dictate the
cellular and biological outcome of tumor derived GM-CSF.

GM-CSF Promotes and Suppresses
Autoimmunity
Evidence that GM-CSF is pro-inflammatory in several
autoimmune diseases comes from various studies: (1) treatment
with human GM-CSF to correct neutropenia results in flare-ups

of rheumatoid arthritis (56, 57); (2) human GM-CSF was present
in lesions of rheumatoid arthritis (41); and the cerebrospinal fluid
of MS patients (58); (3) GM-CSF deficiency confers resistance
to experimental collagen induced arthritis (59) and EAE (60)
in mouse models. In line with the above studies, anti-GM-CSF
mAb treatment was found to be effective at ameliorating the
ensuing disease in mouse models, partly by reducing myeloid
cell infiltration (61, 62). In clinical trials, anti-human GM-
CSF mAb namilumab and MOR103 demonstrated evidence
of efficacy in active rheumatoid arthritis (63, 64). Similarly,
human trials of anti-GM-CSF receptor α mAb Mavrilimumab
on rheumatoid arthritis had also been shown to reduce disease
activity (65, 66).

However, GM-CSF is not always detrimental in autoimmune
settings and has also been shown to be beneficial via
the suppression of undesired immune responses (67). The
supporting evidence includes: (1) treatment with human GM-
CSF ameliorates Crohn’s disease (68); (2) GM-CSF prevents
diabetes development in NOD mice by promoting immature
tolerogenic DCs and controlling the number of regulatory T cells
(69); (3) GM-CSF deficiency in mouse results in the development
of lupus-like disorder (70) while combined deficiency of GM-
CSF and IL-3 results in the development of autoimmune diabetes
(71). The cellular and molecular basis for these beneficial effects
of GM-CSF is not clear. As discussed in a recent review (67),
there are at least two potential mechanisms for GM-CSF to
suppress autoimmunity. Firstly, GM-CSF can induce DCs and
macrophages to activate antigen-specific Tregs and suppresses
experimental autoimmune disease in autoimmune thyroiditis
(72). GM-CSF-autoantigen conjugates had been found to be
particularly effective to expand Tregs in an EAE model (73).
GM-CSF can even directly expand in vitro induced Tregs to
suppress disease development in a cell transfer model of type
1 diabetes (74). Secondly, GM-CSF can induce the production
of monocytes with suppressive functions that dampen disease
induction and severity in an IRF1 dependent fashion (75).
Beyond autoimmunity, MØs can also be detrimental or beneficial
to graft tolerance in organ transplantation (76). In such a
context, it is interesting to note that GM-CSF mediates graft-vs.
-host disease but not graft-vs. -leukemia responses, suggesting
an intervention opportunity targeting GM-CSF in allogenic
hematopoietic cell transplantation (77).

GM-CSF Promotes Immunity and Mediates
Immunopathology During Infection
Studies in mice deficient in GM-CSF and GM-CSFR have
highlighted the critical role for GM-CSF and its receptor in
maintaining alveolar MØs in the lung (7, 10, 36, 78). Many
studies have established that GM-CSF has a non-redundant role
in promoting anti-pathogen immunity. Deficiency in GM-CSF
reduced emergency myelopoiesis and reduced Listeria and M.
tuberculosis protection in mice (79, 80). Concordantly, GM-
CSF treatment enhanced protective immunity against infection
with M. tuberculosis and Salmonella typhimurium (81, 82). GM-
CSF also promoted resistance against various parasite infections
including blood-stage malaria (83), trypanosomiasis (84), and
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leishmaniasis (85). Interestingly, the combined blockade of GM-
CSF and IL-3 prevented the development of cerebral malaria
(86). Notably, infection in human and mouse models can also
lead to immunosuppression (87–91). Unfortunately, although
these studies indicated an association with the generation of
immunosuppressive myeloid cells, full understanding on how
GM-CSF shapes immunosuppression remains elusive.

DOSE-DEPENDENT DIFFERENTIATION OF
PMNS AND MØs?

The exposure of bone marrow progenitors to GM-CSF leads
to the production of two functionally distinct myeloid cells:
PMNs and MØs. What determines the deviation to PMN vs.
MØ pathway? In early studies using in vitro agarose cultures,
high GM-CSF concentrations favored PMNs differentiation,
whereas low concentrations favored MØ differentiation (26,
92); this effect was termed “differentiation downgrading.”
Interestingly, a recent article has provided a mathematical
interpretation for this observation, enabling the reproduction
of the concentration dependent pattern of GM-CSF induced
differentiation based on induction of key transcriptional factors
controlling lineage commitment (93). However, when GM-
CSF signaling strength that is represented by both GM-CSF
quantity and receptor density is high over time, monopoiesis
is favored over granulopoiesis (93). In line with this predictive
model, our recent data showed that high dose GM-CSF favored
monopoiesis over granulopoiesis in vitro (5). Similarly, GM-
CSF transgenic mice had preferential expansion of MØs in
multiple organs (5, 11, 12). Consistent with the findings above,
van Nieuwenhuijze et al. described increased MØs compared
to PMNs in transgenic mice expressing high level of GM-
CSF (12). Conceivably, GM-CSF signal strength is not only
reflected by the ratio GM-CSFR:GM-CSF but also by intracellular
mechanism controlling GM-CSF signaling. We contend that all
these factors ultimately play a critical role in determiningmyeloid
cell differentiation.

DIFFERENTIAL REQUIREMENT OF
GM-CSF FOR SURVIVAL OF MØs AND
PMNS?

Human PMNs rapidly lose viability in culture (94). Human
GM-CSF but not G-CSF, IL-6, and IL-8 prevented apoptosis
of PMNs, prolonging in vitro survival (94). Of note, despite
sharing the βc receptor with GM-CSF, IL-3 did not improve
cell survival, likely due to low expression of IL-3 receptor
on mature PMNs (94, 95). We observed that the addition of
small quantities of GM-CSF in vitro (80 pg/mL) can lead to
substantially increased survival of murine blood PMNs (5).
Interestingly, a detailed analysis of the signaling pathway induced
by such low levels of GM-CSF have shown that it was sufficient to
activate Ser585 of the GM-CSFR, thereby promoting downstream
signaling events, in particular the PI3K-Akt pathway, that led
to increased cell survival (19, 96). As pro-survival members
of the BCL-2 family including BCL-2, BCL-xL, A1, MCL-1,

and BCL-w have a key role in maintaining the viability of
most immune cells (97), the precise contribution of individual
molecules to PMN survival, specifically GM-CSF enhanced
PMN survival, is unclear. Human GM-CSF has been shown to
increase expression of BCL-2 but not BCL-xL in one study (96)
while it increased BCL-xL transcription in another study (98).
Functionally, antagonism of BCL-2 or BCL-xL has had some
effects on mouse and human neutrophil count in vivo (99, 100).
Similarly, A1, identified as a GM-CSF induced molecule (101),
showed a pro-survival role for PMN in some studies (5, 102) but
not in the most definitive study where all the functional A1 genes
were ablated (103). In addition, human GM-CSF could promote
granulocyte survival by maintaining MCL-1 stability (104). It is
somewhat puzzling that human GM-CSF can also induce the
expression of the pro-apoptotic BCL-2 family member Bim in
human and mouse PMNs via a PI3K dependent fashion (105).
Compared to PMNs, monocytes/MØs had better spontaneous
survival in culture, and survival enhancement by GM-CSF was
less remarkable than the effect observed on PMNs (5). The
loss of either MCL-1 or A1 has a limited effect on murine
monocyte/ MØ survival (103, 106). Overall, GM-CSF has a
prominent role in promoting survival of myeloid cells. However,
the molecular events responsible for the differential survival
properties observed for PMNs and monocytes/MØs, with or
without GM-CSF remain ill explained. Furthermore, there is little
known about the role of GM-CSF in regulating multiple non-
BCL-2 regulated cell death pathways including death-receptor
regulated apoptosis, necroptosis and autophagy.

DIFFERENTIAL IMPACT OF GM-CSF ON
DIFFERENTIATION OF MØs AND MODCS:
PLASTICITY OR SELECTIVE EXPANSION?

GM-CSF is routinely used to generate large numbers of
dendritic cells from mouse bone marrow or human monocyte
cultures (2, 3, 107). Yet recently, CD11c+ mononuclear cells
generated in the former culture were found to contain two main
populations: CD11c+MHCIIintCD11bhi CD115hiFlt3− MØs and
a MHCIIhiCD11bint cell fraction enriched for Ftl3+ DCs (4).
MØs and DCs within CD11c+ mononuclear cells not only differ
in their gene signature but also function (4). MØs have a high
capacity for producing proinflammatory cytokines while DCs
have a high capacity for presenting antigens (4). In addition,
recent evidence highlighted that the inflammasome activity of
such cultures was due to MØs, not DCs (108).

Ontogeny analyses elegantly showed that macrophage-
dendritic precursors, common monocyte progenitors, common
dendritic cell progenitors, and Ly6Chigh monocytes can
all become MØs or DCs, with different expansion and
differentiation rates (4). Of note, Flt3+CD11c− MHCII+

PU.1hi cells within the Ly6C+ monocyte subset have been
identified as precursors of GM-CSF dependent moDCs (109).
Notwithstanding, there are still many unanswered questions
regarding the conditions determining the differentiation fate of
MØs and DCs.
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GM-CSF Signaling Strength
GM-CSF signal strength is the net result of GM-CSF quantity,
GM-CSFR expression level and positive/negative regulatory
circuitry controlling GM-CSF signaling. Most in vitro
studies use a range of 5–20 ng/mL GM-CSF to drive DC
differentiation, with variation in cell density and culture
duration. It had been shown that low dose of GM-CSF promotes
the development of immature DCs featuring tolerogenic
function (110). Using the recent definition of MØs and DCs
within CD11c+ cells generated in GM-CSF culture (4), we and
others noticed that an intermediate dose of GM-CSF favored
moDC differentiation while higher doses of GM-CSF favored
macrophage differentiation (5, 111). As alluded to earlier,
the GM-CSFR could work as a binary switch: low doses of
GM-CSF led to Ser phosphorylation, whereas high doses led
to Tyr phosphorylation and STAT5 activation (19). However, it
remains unclear on how this binary switch contributes to DC
and MØ differentiation.

In addition to the interpretation of the abundance of the
ligand, the GM-CSF induced signaling cascade can be regulated
by negative regulators of cytokine signaling. One such example
is the degradation of GM-CSFR through SOCS1 mediated by
ubiquitination (112). Yet, the consequences of SOCS1-mediated
GM-CSFR downregulation has not been examined in the context
of DC differentiation. In response to GM-CSF, myeloid cells
are induced to express another member of the SOCS family,
CISH (113–115). CISH knockdown by shRNA was shown to
impede GM-CSF-induced DC development and DC function
(115). However, as authors demonstrated that CISH knockdown
suppressed precursor cell proliferation, it is still unclear if CISH
knockdown can directly impact on the differentiation of MØs
and DCs.

Taken together, we speculate that GM-CSF induced signaling
strength dictates cellular outcome, with moderate GM-CSF
signaling strength enabling DC differentiation while strong GM-
CSF signaling strength favors MØ differentiation.

Promotion of DC Differentiation by IL-4 and
Other Stimuli: Fate Plasticity?
Even at the monocyte stage when cell proliferation is very
limited (4), human and mouse GM-CSF, particularly with IL-
4, can differentiate human and mouse monocytes into DCs
(4, 107, 109). It raises the question of whether IL-4 alters the
differentiation fate for cells destined to become MØs in its
absence, implying a certain degree of fate plasticity within that
compartment. Consistent with the idea of a certain degree of
plasticity, IL-4, through the activation of the transcription factor
STAT6, has recently been shown to induce demethylation of
genes favoring DC differentiation and enforced STAT6 activation
in the absence of IL-4 also favors DC differentiation (116).
Interestingly, the transcription factor PU.1 has been shown to
be required for the induction of STAT6-mediated transcription
(117) and to promote DC generation from monocytes while
inhibiting MØ production (109). Thus, PU.1 and STAT6 could
abet terminal DC development. However, individual STAT
proteins seldom act in isolation such that functional balance

between multiple STAT proteins is important to determine cell
differentiation (118). Interestingly, the effects of IL-4 on GM-
CSF induced DC differentiation was shown to be dependent
on the dose of both IL-4 and GM-CSF (119), suggesting that
differentiation trajectories are dependent on the signal strength of
both cytokines. Of note, IL-4 not only altered the differentiation
trajectory under GM-CSF but also increased APC function of
generated dendritic cells (120). IL-4 induced the expression of
IRF4 that was not only critically required for DC differentiation,
but also for their antigen cross-presentation capacity and the
expression of costimulatory molecules (120).

An IL-4 related Th2 cytokine IL-13 has also been shown to
enhance GM-CSF stimulated DC differentiation from mouse
bone marrow cells (119) and human monocytes (121, 122),
although the potency and action of IL-4 and IL-13 may differ.
Furthermore, TNF-α and LPS added at a late stage of bone
marrow cell culture with GM-CSF have also been shown to
promote DC differentiation/maturation (2, 3). At least for TNF,
multiple STAT proteins including STAT6 can be activated upon
stimulation. Overall, there is considerable plasticity for GM-
CSF induced differentiation of mononuclear cells, subject to the
conditions that activate signaling modules favoring either DC or
MØ differentiation.

Importance of GM-CSF for in vivo moDC
Differentiation
Despite the strong potency of GM-CSF to induce DC
differentiation in vitro, GM-CSF and its receptor are redundant
for the differentiation of moDCs in vivo, at least during
acute infection and inflammation (9, 123, 124). It could be
that infection and inflammation induce high levels of many
cytokines including M-CSF and TNF-α that could influence
moDC differentiation and therefore mask the role of GM-CSF.
In situations where GM-CSF concentration increase is more
selective (e.g., GM-CSF overexpression or engraftment of a GM-
CSF-producing tumor) (109, 125), GM-CSF seems to have a
positive role in inducing moDC differentiation. In an EAE
model with Th17 transfer, GM-CSFR−/− moDC infiltrates in
CNS tissue were significantly reduced in a competitive scenario
(126). Our view is that GM-CSF is sufficient but not essential
for production of moDCs in vivo. Its importance on moDCs
in vivo may instead be more critical for their effector function
(see below).

Impact of GM-CSF on Non-moDCs
Many decades of work have established that the dendritic cell
network is heterogenous and consists of many subsets with
different phenotypic and functional features (127–129). DCs,
excluding moDCs, have recently been categorized into three
groups: cDC1s (for both CD8+ and CD103+ DCs), cDC2s
(for CD11b+ and CD172α+), and pDCs (130). Despite the
differentiation of these cells being largely independent of GM-
CSF, GM-CSF has pleiotropic impacts on all these DC subsets.
In Flt3L-supplemented cultures of bone marrow cells, inclusion
of low dose GM-CSF (0.3 ng/mL) increased the production of
cDC1s, cDC2s, and pDCs, while neutralization of endogenous
GM-CSF reduced all DC generation (131). Similar findings have
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also been derived in vivo, particularly in mice with combined
loss of GM-CSF and Flt3L (132). Enhancement of overall DC
differentiation by GM-CSF is likely due to the positive effect
of GM-CSF on progenitor commitment to myeloid lineages
and expansion of such progenitors. However, at high doses
of GM-CSF, development of cDC1s and pDCs under Flt3L
stimulation was severely hampered (133, 134). At least for pDCs,
it was shown that strong GM-CSF signaling leads to strong
STAT5 activation and suppression of IRF8 transcription, which
is critical for pDC differentiation (134). cDC1s include both
lymphoid CD8+ DCs and tissue CD103+CD207+ migratory
DCs (130). Even though CD8+ DCs were reduced in GM-CSF
transgenic mice, the number of CD103+ DCs was increased
in GM-CSF transgenic mice (135), indicating subtle differences
in the two types of cDC1s differentiated at different locations.
Apart from the impacts on differentiation and DC cell survival
discussed above, GM-CSF has also been shown to increase
the cross-presentation properties of cDC1s both in vitro and
in vivo (131, 136). Functional enhancement of cDC1s by GM-
CSF is also associated with an increase in CD103 expression
(131, 136). However, expression of CD103 per se is not
sufficient for acquisition of cross-presentation capacity as TGF-
β increased CD103 expression but not cross-presentation of
cDC1s (131). Together, GM-CSF has a broad impact not only
on the processes driving DC differentiation but also affects
DC effector function at the mature state. Once again, the
nature and the extent of these GM-CSF induced changes may
be greatly affected by the relative abundance of GM-CSF, the
state of maturity and the microenvironment encountered by
the cells.

PRIMING END CELL FUNCTION BY
GM-CSF: MORE THAN A NUMBERS
GAME?

Despite GM-CSF seeming to be redundant in the development
of moDCs in vivo (9, 123, 124), GM-CSF is still required for
function of monocytes/MØs in the induction and progression
of EAE (123, 124). Here we will discuss the different aspects of
impact on MØ function by GM-CSF with the caveats of certain
degrees of ambiguity surrounding the definition of monocytes,
moDCs andMØs in vivo, and the difficulty delineating the impact
of GM-CSF on cell survival and function per se in some studies.

Production of Cytokines and Chemokines:
Priming Effect by GM-CSF
Both GM-CSF and M-CSF can generate MØs in bone
marrow cultures. However, after LPS stimulation, the two
factors elicit different functions. Human GM-CSF facilitates
the differentiation of CD14+ monocytes into IL-23 producing
M1 like MØs while M-CSF promotes differentiation of M2
like MØs (137). In murine systems, GM-CSF differentiated
bone marrow derived MØs (GM-BMMØs) also produce more
IL-12, IL-23, TNF-α, and IL-6 than M-CSF differentiated
MØs (BMMØs) (138). Moreover, GM-BMMØs preferentially

activated NFκB while BMMØs preferentially activated the IRF3-
STAT1 axis (138, 139). From the cytokine pattern elicited,
it was proposed that GM-BMMØs is “M1-like” (IL-12hi, IL-
23hi, IL-10lo) while BMMØs is “M2-like” (IL-12lo, IL-23lo,
IL-10hi) (138). An adoptive transfer study supported this
proposal in that GM-BMMØs but not BMMØs induced a
Th1 response via IL-12 production and transferred resistance
to parasite infection (140). In EAE, GM-CSF responsiveness
in CCR2+Ly6Chi monocytes/moDCs was critical for disease
pathogenesis, whereas GM-CSF responsiveness in cDCs or
PMNs was deemed unimportant (123, 124). Moreover, GM-
CSF responsiveness in CCR2+ cells was required for IL-
1β production (124), likely from MØs but not DCs (108).
Overall, these studies highlight the importance of GM-CSF
in priming MØs for production of proinflammatory cytokines
under TLR and NLR stimulation and provides an explanation
for the adjuvant effect of GM-CSF in cancer, inflammation,
and infection, even when numbers of myeloid cells are
not affected.

Antigen-Presenting Cell (APC) Function
and Costimulation
An early study showed that GM-CSF enhanced APC function
by increasing IL-1β production and MHC expression (141).
We and others had demonstrated that GM-CSF was required
for acquisition of cross-presentation capacity by cDC1s (131,
136). Bone marrow precursors cultured with GM-CSF generated
CD11c+ cells with modest levels of CD86 and MHC II,
particularly in low density cultures, whereas late addition of IL-
4 dramatically increased expression of CD86 and MHC II (6).
Of note, in vivo treatment with human GM-CSF needed co-
administration of IL-4 to enhance APC function (142). These
observations suggest that GM-CSF by itself has a limited capacity
to up-regulate costimulatory molecules. Consequently, CD11c+

cells derived from GM-CSF cultures alone have a weak capacity
to induce T cell proliferation compared with those derived from
IL-4 supplemented cultures (6). To complicate the issue, moDCs
could also suppress the APC function of cDCs (125). Overall,
although GM-CSF promotes APC survival and differentiation
fate, it may have limited direct effect on APC function.

Effector Function
In the steady state, a deficiency in GM-CSF or its receptor
GM-CSFR led to defective terminal differentiation of alveolar
MØs, resulting in impaired surfactant catabolism and pulmonary
alveolar proteinosis in both human and mice (8, 143). GM-
CSF activated PU.1 to drive this differentiation pathway (144);
local delivery of GM-CSF restored PU.1 and corrected the
disease (144–146). In GM-CSF transgenic mice, MØs showed
increased phagocytic activity and increased production of oxygen
degradation products (11, 147). In vitro, GM-CSF primed GM-
BMMØs for TLR-stimulated increased nitric oxide and lipid
mediator LTB4 production but a reduction in PGE2 (148). In
the absence of GM-CSF, MØs had reduced capacity for up-taking
apoptotic cells (70).
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PRIMING END CELL FUNCTION BY
GM-CSF: WHAT DETERMINES M1 MØ OR
M2 MØ DEVIATION?

Although GM-CSF has been viewed predominantly as a pro-
inflammatory cytokine and promotes differentiation of M1-like
MØs that produce proinflammatory cytokines (137, 138, 149),
GM-CSF has also been associated with development of M2-
like MØs (47, 49). What then determined the M1-like MØ
vs. M2-like MØ fate under GM-CSF stimulation? Evidence
from tumor settings indicated that GM-CSF abundance was a
key factor in determining cell fate. Production of high levels
of GM-CSF by tumor cells led to increased M2 like MØ
accumulation within the cancerous tissues, thereby inhibiting
T cell response in mouse models of melanoma and pancreatic
cancer (47, 49). Conversely, GM-CSF blockade reduced the
development of M2 like MØs (49). It remains unclear how
GM-CSF drives M2 like MØ differentiation. A study showed that
GM-CSF could activate JAK2/STAT5 which in turn suppressed
IRF8 transcription (150). Functionally, IRF8 could suppress
M2 like MØ differentiation since IRF8 deficiency promoted
M2-like MØs differentiation in tumors, while overexpression
of IRF8 reduced M2-like MØ accumulation (150). Other
transcription factors influenced by GM-CSF signaling in M2-
like MØ activity include C/EBPbeta (151) and RORC1 (152).
Interestingly, IL-3, a cytokine sharing the signaling receptor
with GM-CSF, also promoted prostaglandin E2-producing M2
like MØs in vitro (153).

Apart from difference in cytokine production,mouseM2MØs
express high levels of characteristic markers such as Arginase
1 (Arg1), Chitinase-like 3 (Chil3, YM1), and transglutaminase
2 (Tgm2) (149, 154). These molecules had been demonstrated
to mediate immunosuppression, tumor metastasis and tumor
growth (155, 156). While excess GM-CSF has been associated
with development of M2 like MØs (47, 49), IL-4 is also
known for its potent role in shaping M2 MØ differentiation
and confers many functional characteristics of M2 MØs (149).
However, when IL-4 was dosed in combination with GM-
CSF, M2 MØs could also differentiate into fully functional
APCs (47). The coordinate action of GM-CSF and IL-4 in
promoting myeloid cell fate decisions remains puzzling. We
reasoned that GM-CSF and IL-4 likely instruct distinct signaling
modules leading to M2 MØ differentiation. As alluded to above,
GM-CSF activated STAT5 which in turn suppressed IRF8, the
transcription factor suppressing M2 MØ differentiation (150).
On the other hand, IL-4 promoted M2 MØ differentiation via
STAT6 activation and IRF4 induction in M-CSF differentiated
MØs (157, 158). To complicate the issue, GM-CSF can also
induce IRF4 expression in MØs (159). IRF4 also played an
important role in deciding DC vs. MØ fate, as a recent study
showed that IRF4 deficiency favored MØ differentiation over
DC differentiation of monocytes in the presence of IL-4 and
GM-CSF (120). Overall, the signaling events emanated from
GM-CSF and IL-4, leading to the differentiation of functionally
distinctive DCs, M1-like MØs and M2-like MØs, have not been
fully defined. In addition to IL-4, another Th2 cytokine IL-13

has been shown to suppress the production of proinflammatory
cytokines (160, 161). It seems that both IL-4 and IL-13 acted
in a similar fashion via STAT6 activation to modulate MØ
function (162).

GM-CSF can activate PI3K and NFκB pathways promoting
myeloid cell survival (19) and contributing to lung inflammation
(163). However, activation of PI3K pathway can also polarize
MØs (25, 75, 164). Of note, the downstream signaling
molecules associated with PI3K activity, Akt1, and Akt2,
have been shown to have contrasting effects in controlling
MØ polarization; while the latter promotes M2 MØs,
Akt1 was shown to induce M1 MØ polarization (25). An
unanswered question is whether and how GM-CSF, and in
particular its signaling strength, promotes differential activation
of Akt1 vs. Akt2.

Finally, GM-CSF can also mediate immunosuppression
indirectly via promoting Treg induction (165). GM-CSF induces
the expression of milk fat globule EGF8 (MFG-E8) that
promotes uptake of apoptotic cells by MØs, inducing their
production of TGFβ and thereby controlling Treg development
(165). Interestingly, TLR stimulation or uptake of necrotic
cells was shown to downregulate MFG-E8 expression and to
reduce the impact of GM-CSF on MFG-E8 expression, thus
preserving the pro-inflammatory action of GM-CSF in tumor
immunity (165), suggesting a pathway countering GM-CSF
mediated immunosuppression.

Beyond tumors, the influence of GM-CSF on M2 like MØs
extends to several inflammatory situations such as autoimmunity
(67), infection (166), and transplantation (167). In general,
research into the impact of GM-CSF has so far mainly focused
on its property to expand myeloid cells. It still remains unclear
how GM-CSF steers macrophage function to M1 MØs vs. M2
MØs.WhileM2MØsmay be detrimental in the context of tumor
immunity, theymay also be beneficial in damping autoimmunity,
transplant rejection and infection-associated immunopathology
and therefore it is of importance to be better define GM-CSF
and its signaling components as this may avail therapeutic targets
during M2 MØs development and function.

CONCLUDING REMARKS

GM-CSF is produced by many cells and its receptor is
broadly expressed by hematopoietic cells. Engagement of GM-
CSFR activates multiple signal pathways in a dose dependent

manner to impact on multiple cellular processes including

survival, proliferation, differentiation and function of multiple

myeloid cells. Due to its promiscuous properties, GM-CSF

roles in controlling pro-inflammatory or anti-inflammatory

processes in healthy or diseased individuals are often complex

and paradoxical. We opine that GM-CSF signaling strength
likely determines biological outcome (Figure 2). At the cellular
level, it drives differentiation of different cell subsets by
activating different signaling modules. At the functional level,
it programs antigen presentation capacity, proinflammatory
function and suppressive function. Ultimately, these cellular
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FIGURE 2 | Schematic illustrating how GM-CSF signaling strength affects mononuclear myeloid cell differentiation and function. Under different GM-CSF signaling

strength, different types of mononuclear myeloid cells with different functional properties are differentiated. Low GM-CSF signaling strength favors development of

immature DCs, intermediated signaling strength favors development of MHCIIhiCD86hi mature DCs, high signaling strength favors development of proinflammatory M1

MØs, ultra-high signaling strength favors development of suppressive M2 MØs. According to these properties, these cells could have particular impacts on immunity

to autoantigens, tumors, and infection.

changes will impact immunity and immunopathology in different
disease settings.

In the tumor setting, relatively low to moderate doses of
GM-CSF favored the immune adjuvant activity, while high
doses of endogenous tumor-derived or exogenous GM-CSF
could expand M2 like suppressor cells (54). GM-CSF also
directly or indirectly expanded Tregs (67). For the latter,
blocking GM-CSF could improve anti-tumor immunity (49).
As GM-CSF mediated graft-vs.-host disease but not graft-vs.-
leukemia response (77), blocking GM-CSF and receptor signaling
could be also beneficial. Beyond ligand abundance, downstream
signaling responsible for different cell fates should also be
explored as intervention targets. Individual IRF members and
Akt subunits have differential impacts on DCs, M1, and M2
MØs. SOCS family members naturally act as negative regulators
as a brake on cytokine signaling. Their action can be potentially
targeted to modify monocytic cell differentiation and function.
Furthermore, directly targeting suppressive function of M2
MØs may also be considered. Both Arginase 1 and Chil3 are

critical for arginine metabolism while arginine availability is
key to an optimal T cell immune response (168). Arginase
1 inhibitor L-Norvaline and iNOS2 inhibitor L-NMMA had
been found to enhance T cell proliferation (125, 169). It
would be interesting to test whether selective targeting of these
effector molecules of M2 MØs could enhance the beneficial
anti-tumor effect of GM-CSF. In addition, IL-4 and IL-
13 can dramatically change the differentiation trajectory of
immune cells and their function. Therefore, their potential
should also be considered when immune intervention strategies
are explored.

In the autoimmune setting, anti-human GM-CSF mAb (63,
64) and anti-human GM-CSF receptor α mAb (65, 66) have
also been shown to ameliorate rheumatoid arthritis in clinical
trials, reinforcing the work of several decades that GM-CSF
is a key proinflammatory cytokine. Yet, it remains unknown
whether the tolerogenic roles of GM-CSF including expansion
of Tregs (74) and induction of suppressive MØs (75) could also
be harnessed. In addition, immunosuppression also occurs in
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chronic infections in which high levels of GM-CSF can persist
(38). Perhaps, antagonism of GM-CSF in such settings could also
be beneficial.

In summary, GM-CSF has pleiotropic effects on myeloid
cell differentiation and function. The complexity of GM-
CSF action provides a challenge but also an opportunity
for tailored immune intervention. To fully capitalize on
the agonistic and antagonistic effects of GM-CSF as in
cancer, inflammation and infection, the differential impact
of GM-CSF signaling strength on different target cells
should be considered.
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