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According to data reported by the World Health Organization 
through its COVID-19 homepage, as of April 20, 2020, 
2:00 am CEST, out of 2 319 066 confirmed cases over time, 
there have been 157 970 deaths, putting the Case Fatality Rate 
at ~6.8%.1 As the COVID-19 pandemic is rapidly spreading, 
and health delivery systems are being overwhelmed by the 
large numbers of patients needing acute care for breathing 
difficulty, it is imperative that safe and effective pharmaco-
therapeutic strategies are rapidly explored to improve sur-
vival.2,3 Since time is of the essence to reduce mortality in 

patients with COVID-19 respiratory complications, repur-
posing FDA-approved drugs that have a good safety profile 
for off-label and/or compassionate use should be a strategic 
priority.4

It is in this context that we propose a testable hypothesis 
for dysregulated bradykinin (BK) signaling in COVID-19 
respiratory complications. Through our hypothesis, we hope 
that researchers and clinicians would be able to identify can-
didate drugs for off-label and/or compassionate use in pa-
tients with unremitting respiratory distress from COVID-19.
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Abstract
As of April 20, 2020, over time, the COVID-19 pandemic has resulted in 157 970 
deaths out of 2 319 066 confirmed cases, at a Case Fatality Rate of ~6.8%. With 
the pandemic rapidly spreading, and health delivery systems being overwhelmed, it 
is imperative that safe and effective pharmacotherapeutic strategies are rapidly ex-
plored to improve survival. In this paper, we use established and emerging evidence 
to propose a testable hypothesis that, a vicious positive feedback loop of des-Arg(9)-
bradykinin- and bradykinin-mediated inflammation → injury → inflammation, likely 
precipitates life threatening respiratory complications in COVID-19. Through our 
hypothesis, we make the prediction that the FDA-approved molecule, icatibant, 
might be able to interrupt this feedback loop and, thereby, improve the clinical out-
comes. This hypothesis could lead to basic, translational, and clinical studies aimed 
at reducing COVID-19 morbidity and mortality.
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Based on our examination of basic and clinical studies, 
we hypothesize that dysregulated BK signaling is involved in 
COVID-19 respiratory complications for the following rea-
sons (also see Figure 1):

• The severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2), which causes COVID-19, is known to 
enter host cells in the respiratory system via the trans-
membrane protein, angiotensin converting enzyme 2 
(ACE2)5,6

• SARS-CoV infection depletes ACE27

• ACE2 depletion increases levels of des-Arg(9)-bradykinin 
(DABK), which is a bioactive metabolite of BK that is as-
sociated with lung injury and inflammation8-10

• A possible role for BK in COVID-19 respiratory distress is 
consistent with established evidence that, BK, histamine, 
and serotonin, have for long been known as key mediators 
of acute lung inflammation and respiratory distress11

Experimental evidence suggests that, most downstream 
effects of DABK are mediated through its binding to the BK-
B1-receptor (B1R). However, DABK not only binds strongly 
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to B1Rs, but also binds weakly to the BK-B2-receptor (B2R) 
in certain tissues, and exerts downstream effects that are 
blocked by the B2R blocker, icatibant.12,13

Therefore, the off-label use of the B2R blocker, icatibant, 
seems promising for patients with unremitting respiratory dis-
tress caused by COVID-19. Icatibant (Trade Name: FIRAZYR; 
Takeda, Tokyo, Japan) is a drug that has been approved by the 
United States Food and Drug Administration (FDA) and other 
regulatory bodies, for the treatment of angioedema episodes 
in patients (18 years and older) with hereditary angioedema 
(HAE).14 Icatibant is thought to work by binding to B2Rs and 
blocking the downstream activity of BK in a variety of cells, 
including those present in blood vessels and the airway.15 
Icatibant is effective in treating breathing difficulty in patients 
presenting with angioedema, including angioedema caused by 
angiotensin converting enzyme (ACE) inhibitors taken for hy-
pertension.16 It might be purely coincidental that COVID-19 
causes a “dry cough”17––a rare but characteristic side effect of 
ACE inhibitors, which is linked to BK.18

Icatibant has been shown to be safe and effective, with 
side effects and adverse reactions being rare when used in 
the context of angioedema.19 A human study on the off- 
label use of icatibant to treat allergic rhinitis showed 
that, the drug significantly reduced grass pollen antigen- 
induced hyperresponsiveness to histamine, which was linked 
to icatibant inhibiting interleukin-8 (IL-8) release.20 The fact 
that IL-8 is implicated in acute lung injury and respiratory 
distress, further supports the empirical use of icatibant in the 
treatment of unremitting respiratory distress in COVID-19.21

From a scientific standpoint, analyzing plasma levels of 
BK and DABK in patients with respiratory complications from 
COVID-19, might help support our hypothesis.22,23 It might 
also be useful to retroactively obtain data on patients who have 
been treated recently with icatibant for angioedema, while 
having COVID-19 as a comorbidity, to ascertain whether or 
not COVID-19 respiratory symptoms decreased after icatibant 

administration. In addition, it would be worth closely moni-
toring outcomes in patients with COVID-19 who take ACE 
inhibitors (for hypertension), dipeptidyl peptidase-4 (DPP4) 
inhibitors (for diabetes mellitus), or neprilysin inhibitors (for 
heart failure), since these drugs are known to interfere with 
BK breakdown and thus increase the BK bioavailability.24

It is possible that molecules other than icatibant, which 
act on BK signaling pathways, might also be able to re-
duce the respiratory distress in COVID-19. For example, 
blocking DABK's main target, B1R, might produce better 
outcomes.25 However, at this time, B1R blockers (eg, oral-
ly-active BI-113823) have only been tested in animals and 
in limited human trials.26-28 Nonetheless, B2R blockade has 
been shown to be effective in the context of airway hyper 
responsiveness and respiratory distress in animal models; 
and, DABK has been shown to act on the B2R in some tis-
sues.12,13,25 Inhibiting BK production with the FDA-approved 
drug, ecallantide, also seems promising, although it carries 
a risk of anaphylaxis in some patients.29 Increasing plasma 
levels of aminopeptidase-P (APP), an enzyme that degrades 
BK and DABK, could also be tested as a benign intervention 
aimed at accelerating BK and DABK degradation.30

We speculate that dysregulated BK signaling might even 
explain some of the perplexing observations on COVID-19. 
Emerging data suggest that in the United States of America, 
morbidity and mortality among African Americans has been 
disproportionately higher compared to other ethnic groups.31-33 
It is possible that African Americans are more affected due 
to their increased sensitivity to BK, a greater susceptibility 
to ACE-inhibitor-induced angioedema, and a polymorphism 
(XPNPEP2 C-2399A) linked to ACE-inhibitor-induced an-
gioedema in African American males.34-37 In addition, data 
suggest that respiratory complications are more often seen in 
males than females.38-41 Interestingly, APP activity has been 
reported to be higher in females irrespective of the XPNPEP2 
C-2399A polymorphism.37 Furthermore, vasopressors are 

F I G U R E  1  Hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications and the potential benefit of 
bradykinin receptor blockers. SARS coronavirus-2 (SARS-CoV-2), the virus that causes coronavirus disease 19 (COVID-19), is known to enter 
host cells in the respiratory system via the transmembrane protein, angiotensin converting enzyme 2 (ACE2)5,6 (Panel A). SARS-CoV infection 
depletes ACE2 at the plasma membrane of infected cells7 (Panel B). In the extracellular environment of both infected cells as well as neighboring 
bystander cells, ACE2 depletion increases the levels of des-Arg(9)-bradykinin (DABK), which is a bioactive metabolite of bradykinin (BK) that 
is associated with airway inflammation8 (Panels B, C). SARS-CoV infection severely affects host cell homeostasis,53 by triggering endoplasmic 
reticulum stress,54 mitochondrial death signaling,55 downregulation of ACE2,7 upregulation of pro-inflammatory genes,56 and nuclear death 
signals,57 which ultimately lead to cell death53 (Panels D, E). Cellular injury and inflammation induces BK-B1-receptor (B1R) upregulation and 
trafficking to the plasma membrane, which amplifies DABK-mediated inflammation and injury58,59 (Panel D). Tissue injury and inflammation 
also increases BK levels and BK-B2-receptor (B2R) stimulation59,60 (Panels D, E). Our testable hypothesis for dysregulated BK signaling in 
COVID-19 respiratory complications is that, ACE2 depletion in SARS-CoV-2-infected cells causes DABK accumulation in the extracellular 
environment of infected and neighboring bystander cells, which triggers a vicious positive feedback loop of inflammation and injury leading to 
even greater levels of DABK- and BK-mediated inflammation and injury (Panel E). DABK not only binds strongly to B1Rs, through which it 
exerts downstream effects, but also binds weakly to B2Rs in certain tissues, and exerts effects that are blocked by the B2R blocker, icatibant12,13 
(Panel E). Since there are currently no FDA-approved drugs that selectively block DABK signaling through B1Rs, we provide a testable 
prediction that, off-label use of FDA-approved icatibant, will at least partially interrupt the positive feedback loop of DABK- and BK-mediated 
inflammation → injury→inflammation, and improve clinical outcomes in patients with COVID-19 respiratory complications (Panels E-H). 
Bidirectional arrows suggest that, these processes are likely to aggravate each other and be part of smaller positive feedback loops
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required to stabilize some patients with COVID-19 critical ill-
ness17,38; and, it is well-known that BK elevation reduces blood 
pressure.42-44 A loss of smell and/or taste has been reported by 
some patients with COVID-1945-47; and, a loss of smell has been 
reported in patients with HAE and in persons who take ACE 
inhibitors.48,49 There are anecdotes of individuals experienc-
ing extreme thirst while having COVID-1950,51; and, elevated 
BK and ACE inhibitors are associated with increased thirst.52 
However, confounding factors might exist, and, therefore, these 
observations will need to be evaluated more objectively.

In summary, established and emerging evidence on 
SARS-CoV, ACE2, BK and DABK signaling, angioedema, 
and respiratory distress, has helped us develop a testable 
hypothesis, which may link dysregulated BK signaling to 
COVID-19 respiratory complications. There is a critical 
need to develop basic and clinical studies to test this hy-
pothesis, since there are approved drugs that might be ef-
fective in interrupting the vicious feedback loop that might 
exist between dysregulated BK signaling and tissue injury.
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