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Abstract

Acquiring real-world evidence is crucial to support health policy, but observational studies

are prone to serious biases. An approach was recently proposed to overcome confounding

and immortal-time biases within the emulated trial framework. This tutorial provides a

step-by-step description of the design and analysis of emulated trials, as well as R and

Stata code, to facilitate its use in practice. The steps consist in: (i) specifying the target trial

and inclusion criteria; (ii) cloning patients; (iii) defining censoring and survival times; (iv) es-

timating the weights to account for informative censoring introduced by design; and (v)

analysing these data. These steps are illustrated with observational data to assess the ben-

efit of surgery among 70–89-year-old patients diagnosed with early-stage lung cancer.

Because of the severe unbalance of the patient characteristics between treatment arms

(surgery yes/no), a naı̈ve Kaplan-Meier survival analysis of the initial cohort severely over-

estimated the benefit of surgery on 1-year survival (22% difference), as did a survival analy-

sis of the cloned dataset when informative censoring was ignored (17% difference). By con-

trast, the estimated weights adequately removed the covariate imbalance. The weighted

analysis still showed evidence of a benefit, though smaller (11% difference), of surgery

among older lung cancer patients on 1-year survival. Complementing the CERBOT tool,

this tutorial explains how to proceed to conduct emulated trials using observational data in

the presence of immortal-time bias. The strength of this approach is its transparency and

its principles that are easily understandable by non-specialists.
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Introduction

Randomised controlled trials (RCTs) are the gold-standard

to evaluate the efficacy of an intervention. However, the

external validity of RCTs is often limited. In particular, the

trial population rarely reflects the diversity of patients in

practice. Older patients, or patients with comorbidities,

are often not eligible for RCTs,1 leading to a lack of rando-

mised evidence in these populations. For instance in

England, the median age at non-small cell lung cancer

(NSCLC) diagnosis is 73.5 years,2 but in randomised trials

more than half of included patients were diagnosed at an

age less than 60:3 a pattern that is common to many can-

cers in an ageing population.4

In the absence of available RCTs (or in complement), ob-

servational data represent a valuable source of information to

estimate real-world causal effects. However, the nature of

such data poses several challenges. A first challenge is the

presence of confounding due to the absence of randomisation.

For instance, when using routinely collected data to estimate

the effect of a treatment, the patients’ characteristics are likely

to differ between treatment groups since clinicians adapt

treatment prescriptions according to these characteristics. If

these unbalanced measured characteristics are also prognostic

variables for the outcome of interest, not accounting for them

leads to confounding bias. A second challenge, often over-

looked in practice, is the issue of immortal-time bias: non-

pharmacological treatments, such as surgery, are unlikely to

be received on the day of diagnosis and treatment is more

likely to be received among patients with longer survival.5

Immortal-time bias usually arises when the start of follow-up

and treatment initiation do not coincide. For instance in ob-

servational data, surgery is observed only for patients who

have survived up to the date of planned surgery. This artifi-

cially contributes to an inflated beneficial effect of surgery if

control and treatment groups were defined at time zero while

using the surgery status observed later in time.6,7

When these two caveats are ignored, the estimated

treatment effect is usually biased. Traditionally, both issues

have been addressed using multivariable regression models

in which treatment is modelled as a time-updated covariate

to estimate conditional effects.8 A more recent suggestion

to control for these biases has been proposed by

Hernàn9,10 within the framework of emulated trials, for

the estimation of marginal effects. This method consists of

mimicking a target trial by using a formal process for

selecting patients and defining the exposure, outcome and

causal estimand. To address measured confounding at

baseline and immortal-time bias, Hernàn9,10 proposed a

strategy of analysis based on participant cloning. Two ex-

act copies (clones) of each patient’s record are created: one

clone is allocated to the intervention arm of the emulated

trial, the other clone is allocated to the control arm. As

such, the study arms are identical at baseline. Then, a clone

is censored when the treatment actually received is no lon-

ger compatible with the treatment strategy of the arm they

entered. This induces informative censoring (i.e. selection

bias over time), as described by Hernàn,10 since treatment

received typically depends on individual characteristics.

This informative censoring can be addressed using inverse-

probability-of-censoring weights in the analysis, in which

uncensored observations are up-weighted to represent cen-

sored observations with similar characteristics and thus to

allow unbiased estimation of the causal effect of interest.11

Details on the implementation of this approach are

scarce in the literature, limiting its use in practice. To date,

the two papers introducing the concept of trial emulation

have been cited over 160 times, but to our knowledge, only

two articles reported the use of the cloning approach.12,13

Key Messages

• In observational data, when the start of follow-up and treatment initiation do not coincide, confounding and immor-

tal-time biases are a concern for the estimation of causal treatment effects.

• These biases can be controlled using a cloning technique, proposed within the framework of emulated trials.

• Informative censoring triggered by cloning patients must be accounted for using inverse-probability-of-censoring

weighting.

• We offer a step-by-step tutorial detailing how to use the method in practice, alongside an application evaluating the

causal effect of surgery among elderly lung cancer patients.
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This tutorial provides a step-by-step description of the de-

sign, methodology and statistical analysis of emulated tri-

als when immortal-time bias is a concern. This is

illustrated using population-based cancer registrations,

used to investigate the benefits of surgical treatment for

older NSCLC patients. We provide the corresponding R

and Stata code along with a toy dataset, for an easier im-

plementation of the method.

Motivating example

NSCLC is the most common type of lung cancer and is the

leading cause of cancer death in the UK. When diagnosed

at an early stage, surgery is the first-line treatment with cu-

rative intent.14 In England, evidence suggests that elderly

patients experience reduced access to surgery.2 RCT evi-

dence of the benefits of the surgery in older patients is

scarce in the literature. Older patients have a higher preva-

lence of comorbidities and frailty and poorer health status

than younger patients, thus confounding the effect of sur-

gery on survival in observational data.

We aim to estimate the causal effect of surgery received

within 6 months of diagnosis on 1-year survival and 1-year

restricted mean survival time (RMST).15 To answer this

question, we used data on cancer patients recorded in the

National Cancer Registry in England and linked to second-

ary care administrative records.

In this example, the risk of immortal-time bias is an is-

sue since study entry (diagnosis) and treatment initiation

(surgery) occur at different times. Indeed, median delay to

surgery is 29 days (from 0 to 176 days) and 6.7% (n¼ 156

patients) of patients, for whom clinical intention to surgery

is unknown, died within 6 months after diagnosis

(Figure 1). This motivates our use of Hernàn’s emulated

trial strategy with cloning.10

Methods

The framework of emulated trials allows the conduct of

transparent studies using observational data, which helps

the assessment of how reliable the results are. In particular,

it ensures that the research question is aligned with the aim

of the study, and makes it clear how the study was

designed and analysed, with the identification of the pri-

mary outcome and exposure of interest, which will con-

tribute to a more reproducible research using observational

data. The general principle is to mimic a target trial, which

is the randomised trial we would ideally conduct to address

the causal research question. Several steps are required to

emulate a trial using this methodology: (i) specification of

the target trial and inclusion criteria; (ii) cloning; (iii) defi-

nition of survival time and vital status for each clone

according to its arm; (iv) estimation of the censoring

weights; and (v) estimation of the causal contrast. Step (i)

is the design stage of the emulated trial, steps (ii)–(iv) are

the practical implementation of this design, step (v) is the

statistical analysis.

Step i: specification of the target trial and

inclusion criteria

This step involves a detailed specification of the design (e.g.

parallel arm trial, cross-over), aim (e.g. effectiveness, safety),

eligibility and exclusion criteria, treatment strategies (clear

description of the intervention and comparator), assignment

and implementation (e.g. recruitment method, timing for

treatment initiation), outcome and follow-up time, vital sta-

tus at end of follow-up, adjustment variables, causal con-

trast (e.g. difference in means, risk ratio) and estimand (e.g.

per protocol, intention-to-treat) of the target trial and its

real-world counterpart. See Table S1 (available as

Supplementary data at IJE online) for a description of each

component in our illustrative example. A precise definition

of the elements of the target trial makes the design of the ob-

servational study more straightforward and suitable for the

estimation of the causal estimands. The CERBOT tool

(Comparative Effectiveness Research Based on

Observational data to emulate a Target trial) is a useful tool

to guide researchers in this process.16 We also recommend

the use of the CONSORT style flow diagram to report on

>> effect of treatment from when received 

>> effect of treatment from diagnosis (real life) 

Treatment Death or end of follow-up
Pa�ent A, B, C, D, E

T0: Diagnosis

Immortal �me

Treatment Death or end of follow-upT0: Diagnosis

Un-exposed Exposed

Time-updated Cox model

Censored alive
Clone 1

T0: Diagnosis

Control arm

Emulated trial

Treatment Death or end of follow-up
Clone 2

T0: Diagnosis

Treatment arm

Data

Figure 1 Graphic description of immortal-time bias and possible correc-

tions.

Patients A, B, C, D, E with survival patterns and treatment status as de-

fined in Figure 2.
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patient selection.17 Most items are standard to clinical trials

but, when there is a delay between the start of follow-up

and treatment initiation, the definitions of the treatment im-

plementation and causal contrast are more complex. A grace

period—during which treatment initiation can happen—

must be defined. The grace period length is chosen to reflect

clinical practice, e.g. when patients are allowed time to com-

plete clinical tests before treatment initiation, or when there

are hospital delays before surgery. The grace period is

needed to avoid ill-defined interventions that are problem-

atic for causal inference.10 This is particularly important

when the timing of the intervention is likely to affect the

outcome. Two causal contrasts are common in clinical tri-

als: intention-to-treat (ITT) and per protocol (PP) estimates.

They correspond to the distinction between effectiveness

and efficacy, respectively. Using observational data, no in-

formation is available on the planned treatment, therefore

the targeted causal contrast is the per protocol effect.

Table S1 presents the definition of the target and emu-

lated trials for our illustrative example. We included

patients with a stage I or II NSCLC diagnosis, aged

70–89 years at diagnosis, a good performance status (levels

0–2) and a Charlson’s comorbidity index lower than 2.

Assessment of eligibility was performed at diagnosis. The

primary outcome of interest was all-cause death within a

year following diagnosis. The per-protocol effect of surgery

within 6 months of diagnosis on survival was quantified by

the differences between the study arms in: (i) 1-year survival

probabilities; and (ii) restricted mean survival times (survival

time difference over a 1-year window).15,18 Further informa-

tion on data and participants are provided in Supplementary

File S1, available as Supplementary data at IJE online.

Step ii: cloning

Cloning patients allows us to assign patients to both arms

for the duration for which treatment allocation is un-

known. At baseline, in our illustration, we assumed that all

patients were equally likely to be offered surgery or not. As

such, all patients entered both arms of the trial, indepen-

dently of their subsequent surgery status. Thus, we created

two clones of each patient with one clone allocated to each

study arm, hence doubling the size of our dataset. The

study arms are therefore identical with respect to demo-

graphics and clinical characteristics at the time of diagno-

sis. This removes confounding bias, at baseline only.

Step iii (a): defining censoring and time to

censoring

In each arm, patient follow-up times are censored when

their treatment is no longer compatible with the treatment

strategy for the arm, that is, when there is a deviation from

the planned protocol. In our example, this means that: (i)

patients who received surgery within 6 months were cen-

sored at their time of surgery in the no surgery (control)

arm; and (ii) patients who did not receive surgery within 6

months were censored at 6 months in the treated arm (in-

cluding patients who received major surgery beyond 6

months). This artificial censoring—introduced by design—

could occur at any time between diagnosis and 6 months in

the no surgery arm, but only at 6 months in the surgery

arm. Figure 2 illustrates all possible censoring mechanisms

in this emulated trial setting, with 13 types of patient

records that could be seen in the cancer registry data.

Censoring indicators and the time to censoring contribute

to the weight model in step iv.

Step iii (b): defining outcome and survival time

For each patient, their event (if any) only contributes to the

arm in which the patient is still uncensored at the time of

event, i.e. the arm the patient is compliant with. The sur-

vival time of patients who die within the grace period with-

out having received surgery (patient K, Figure 2) and the

survival time pre-treatment (patients A, B, C, D, E,

Figure 2) or the full length of the grace period (patients F,

G, H, I, J, Figure 2), contribute to both arms, thus control-

ling for immortal-time bias. These outcomes and survival

times contribute to the analysis model in step v. Model-

based standard errors are underestimated because of an ar-

tificial increase in the number of events. Non-parametric

bootstrap should be used instead, for steps ii to v.

Step iv: accounting for informative censoring due

to artificial censoring

Although cloning (step ii) allows us to account for con-

founding at baseline, the artificial censoring introduced

(step iii) is usually informative. If the decision to perform

surgery was completely random or made based on patients’

characteristics that were not associated with the outcome,

the artificial censoring done in step iii would be ignorable,

and would not bias the results. However, in most observa-

tional studies, treatment decision is based on characteris-

tics also associated with the outcome, i.e. the confounders.

In our example, the decision to perform surgery is associ-

ated with age, performance status and comorbidity index,

which are also associated with survival. In such situations,

the artificial censoring introduces selection bias.10 Indeed,

in the illustration, censored patients in the control arm (i.e.

receiving surgery in the grace period) are different from

patients who remained in the risk set for that arm.
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The proposed approach to address this problem is to

use inverse-probability-of-censoring weighting (IPCW).11,19

The purpose of the weights is to up-weight patients

remaining in the risk set so that they represent censored

patients, and as such, maintain the comparability of the

study arms throughout the grace period. In the absence of

time-varying variables, a standard approach to estimate

the weights is to predict the individual probabilities of

remaining uncensored at each time of event, using a Cox

regression model. This requires working with a dataset

Arm 
Analysis model* Weight model** 

δ T*** δw T*** 

A Treated 1 Ta 0 Tas

Control 0 Tas 1 Tas

B Treated 0 365 0 Tbs

Control 0 Tbs 1 Tbs

C 
Treated 1 Tc 0 Tcs

Control 0 Tcs 1 Tcs

D Treated 0 Td 0 Tds

Control 0 Tds 1 Tds

E Treated 0 Te 0 Tes

Control 0 Tes 1 Tes

F 
Treated 0 182 1 182 
Control 1 Tf 0 182 

G Treated 0 182 1 182 
Control 0 365 0 182 

H Treated 0 182 1 182 
Control 0 Th 0 182 

I 
Treated 0 182 1 182 
Control 0 365 0 182 

J 
Treated 0 182 1 182 
Control 1 Tj 0 182 

K 
Treated 1 Tk 0 Tk

Control 1 Tk 0 Tk

L 
Treated 0 Tl 0 Tl

Control 0 Tl 0 Tl

M 
Treated 0 182 1 182 
Control 0 Tm 0 182 

Pa�ents’ life lines

Figure 2 Definition of the outcome and survival time for each patient in each arm, for both the weight and the analysis models.

Patients A–E have records of surgery within the grace period and contribute to the weight models until their time of surgery, with censoring indicators

equal to 1 in the control arm as they deviate from the protocol, and equal to 0 in the treated arm as they cannot deviate from the protocol after their

record of surgery. For the analysis model in the control arm, these patients are censored at their time of surgery. Patients F–J comply with the control

arm’s definition, and as such contribute the full grace period length (180 days, 6 months) to the weight models, with censoring indicators equal to 0

in the control arm as they do not deviate from the protocol, and equal to 1 in the treated arm as they deviate from the protocol. For the analysis model

in the treated arm, these patients are censored at 6 months (180 days). Patients K and L contribute to both arms (analysis and weight models) equally

as they do not deviate from any of the protocols since their survival times are censored or correspond to the event of interest before we could have

assessed their receipt of surgery. Patient M complies with the control arm’s definition and as such contributed the full grace period length (6 months)

to the weight models, with event indicators equal to 0 in the control arm as they do not deviate from the protocol, and equal to 1 in the treated arm as

they deviate from the protocol. For the analysis model in the treated arm, this patient is censored at 6 months. *Event of interest: death (d ¼ 1);

**event of interest: deviation from protocol (dw ¼ 1); ***time in days used as follow-up time in the analysis or weight model; TX: time to death or

time to censoring for patient X; TXS: time to surgery for patient X.
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split at each time of event. The model includes variables

predictive of the censoring mechanism, selected a priori

based on clinical knowledge, and is arm-specific to capture

potential interactions between covariates and treatment.

The weights are the inverse of these probabilities. Since

several computing steps are involved, we provide both R

and Stata codes, along with a toy dataset R_data.R,

data.csv, and results (Supplementary File S2, available as

Supplementary data at IJE online).

When using IPCW to correct for informative censoring,

the following assumptions are required to obtain an unbi-

ased estimate of the causal effect of surgery:

a. no unmeasured confounders: all covariates associated

with both the treatment assignment and deviation from

the protocol are measured;

b. correct model specification: the Cox models used to de-

rive the weights are correctly specified (e.g. functional

forms for continuous variables, interactions included as

necessary, proportional hazards assumption met);

c. positivity: the probability of deviating from the proto-

col is non-zero at all follow-up times of the grace period

and for each patient;

d. consistency: the observed survival outcome under a

treatment strategy is identical to what would have been

observed had we assigned patients to this treatment

strategy (the potential outcome).

In addition, before conducting the primary analysis, we

need to ensure the weights can remove imbalance between

arms. This can be done using standardized differences de-

fined for each main prognosis factor as the weighted mean

(or proportion) difference between groups divided by the

weighted pooled standard deviation. A variable with a

standardised difference below 10% is usually considered

balanced. Remaining imbalances on one variable or more

might suggest a mis-specification of the weight model. In

such instance, adding interactions in the weight model and

higher order terms for continuous variables might improve

the balancing ability of the weights. If the imbalance is rel-

atively small, these variables might be adjusted for in the

weighted analysis model for double robustness.20

In our example, for the weight models we adjusted for

the effects of all covariates presented in Table S1 in a mul-

tivariable Cox model for the control group and in a multi-

variable logistic regression model for the surgery group,

given that there is only one time at which patients can devi-

ate from the protocol (6 months). Therefore, the corre-

sponding times-to-event were the times of surgery in the no

surgery arm if surgery happened in the grace period (time-

varying weights), and 6 months in the surgery arm if sur-

gery did not happen in the grace period (time-fixed

weights) (Figure 2). All available prognostic factors were

included in the models. We predicted the individual proba-

bilities to experience an event, at each time of event. The

weights are the inverse of such probabilities. An example

of the calculation of such weights is provided for three

patients of the no surgery arm in Table 1. Patient G

remains in the risk set of the control arm, and their weights

are updated at all times other patients are censored (receiv-

ing surgery, such as K) in that arm.

Step v: primary analysis

Once weights are estimated and adequately remove imbal-

ance, a weighted analysis model must be used to estimate

the per-protocol effect, accounting for informative censor-

ing. An issue is the variance estimation for the treatment

effect, accounting for both the uncertainty in weight esti-

mation and the inflation of the sample size. One solution is

to use the non-parametric bootstrap on steps (ii)-(v) to ob-

tain valid 95% confidence intervals.

In our example, survival curves were estimated in each

arm using a weighted non-parametric Kaplan-Meier esti-

mator.19 The 95% confidence intervals for the difference

in 1-year survival and difference in RMSTs were obtained

using non-parametric bootstrap with 1000 replicates. We

do not recommend using a simple Cox proportional haz-

ards model to analyse the data. Indeed, the proportional

hazard assumption is violated, given the design of the emu-

lated trial with the cloning step and the similarities be-

tween arms in the grace period. Most importantly, hazard

ratios are not recommended for causal inference.21

Alternatively, more flexible multivariable time-dependent

models can be considered.22

All analyses were conducted in both Stata version 15

and R version 3.5, for reproducibility.

Other multivariable approaches can account for both con-

founding and immortal-time biases, such as regression

Table 1. Toy example for the computation of weights in the

control arm (patients A, G and K from Figure 2)

Patient ID Arm T-start T-stop Surgery T-surgery d dw Weight

K Control 0 40 0 1 0 1.00

A Control 0 40 1 61 0 0 1.00

A Control 40 61 1 61 0 1 1.00

G Control 0 40 0 0 0 1.23

G Control 40 61 0 0 0 1.35

G Control 61 182 0 0 0 1.52

Data are split at each time of event (i.e. surgery and death). T-start and T-

stop represent the beginning and end of the time intervals between two events

(in the cohort); Surgery is the surgery status indicator; T-surgery is the time of

surgery; d and dw are the event status for the analysis and weight models, re-

spectively. 40: time of death of patient K; 61: time of treatment of patient A;

182: end of grace period (�6 months).
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models with time-updated treatment indicator and delayed

entry models.8 We contrast the results of the emulated trial to

the results obtained using a multivariable Cox model with

time-updated treatment. For comparability with the emulated

trial approach, we predicted survival probabilities for the

whole cohort as if they all had been treated at time zero and

as if they had not. The difference between these two probabil-

ities gives a marginal estimate of the treatment effect.

Results

Patient characteristics

Selection criteria led to the inclusion of 2309 patients

(Supplementary Figure S1, available as Supplementary

data at IJE online) We excluded 71 patients with a surgery

recorded prior to their diagnosis. Supplementary Table S2,

available as Supplementary data at IJE online, presents the

characteristics of the patients by group defined by the ob-

served exposure status, before cloning; 1241 patients re-

ceived surgery within 6 months, 144 of whom died within

a year (11.6%, representing 123.2 per 1000 person-years),

with a median survival time of 185 days [interquartile

range (IQR): 97–283 days]. Among 1068 patients who did

not receive surgery, 362 (33.9%, representing 402.5 per

1000-person-years) died within a year, with a median sur-

vival time of 205 days (IQR: 122–283 days).

As shown in Table S2, all variables except sex were un-

balanced between treatment groups as standardized differ-

ences were larger than 10%, suggesting confounding at

baseline. Patients without a record of surgery tended to be

older and a larger proportion of them were diagnosed as

emergency, at stage II, with higher CCI and lower perfor-

mance status than patients who received surgery.

Primary analysis

We benchmarked the results of the emulated trial with a

naı̈ve approach using a Kaplan-Meier estimation of the 1-

year survival by surgery status on the original (non-cloned)

dataset, and an unweighted Kaplan-Meier estimation on

the cloned dataset. We also compared the results with

those obtained from a multivariable Cox model with a

time-updated treatment indicator.

Naı̈ve approach

When confounding and immortal-time biases are ignored,

the Kaplan-Meier estimates of 1-year survival were 88.4%

[95% confidence interval (CI): 86.0–90.6%] and 66.0%

(95% CI: 62.1–69.7%) for treated and untreated patients,

respectively. This corresponds to a difference of 22.4%

(95% CI: 18.1–26.9%) in 1-year survival and of 33 days

(95% CI: 14–48) in RMST (Table 2). Interestingly, the sur-

vival differences between groups were evident from diag-

nosis, which reflects the impact of pre-treatment deaths

(Figure 3).

Multivariable Cox model with time-updated treat-

ment indicator

Confounding and immortal-time biases are accounted for

with this type of analysis. The models are adjusted for all

measured potential confounders. The 1-year survival

estimates for treated and untreated patients were 84.7%

(95% CI: 82.2–87.1%) and 73.8% (95% CI: 71.3–76.6%)

respectively. The difference between these survival proba-

bilities is the causal effect of surgery from the time it is per-

formed on 1-year survival from diagnosis.

Un-weighted analyses after cloning

All 2309 patients were cloned so that each clone entered

the surgery and no surgery arms. Thus, at baseline, the

characteristics of both arms of the emulated trial were per-

fectly balanced. However, there were imbalances between

arms at 6 months (Supplementary Figure S2, available as

Supplementary data at IJE online). This is because treat-

ment assignment is affected by variables also associated

with the outcome (mortality).

One year after diagnosis, the survival difference was

17.3% (95% CI: 14.6–20.1%) between patients in the

surgery arm (84.5%, 95% CI: 83.0–86.3%) vs. the no

surgery arm (67.2%, 95% CI: 64.4–69.7%, Table 2).

Unlike in the naı̈ve analysis, early deaths contributed to

both arms, reducing the survival gap soon after diagnosis

(Figure 3). However in this analysis informative censoring

was ignored.

Figure 3 Contrasting one-year survival curves from different estimation

methods.
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Weighted analyses after cloning

The weights showed a good ability to remove covariate im-

balance at 6 months: weighted standardized differences are

all within 10% (Supplementary Figure S2, available as

Supplementary data at IJE online).

The weighted difference in 1-year survival decreased to

11.4% (95% CI: 7.9–15.3%), still showing evidence of a

benefit of surgery in older NSCLC patients. Surgery within

6 months of diagnosis explains a gain of 13 days (95% CI:

8–20 days) of life expectancy, in the first year. This is the

causal effect of surgery as done in practice (including wait-

ing times) on 1-year survival from diagnosis.

Discussion

In this tutorial, we described the different steps required to

emulate a target trial using observational data. When the

start of follow-up and the time of treatment initiation do

not coincide i.e. when the exposure (or treatment) status is

not defined at the inclusion within the study, immortal-

time bias is a concern if the study groups are defined based

on the observed treatment allocation. Indeed, treatment re-

ceipt at a given time t is conditional on having survived up

to time t, and consequently, treatment receipt is more

likely to be observed among patients with longer survival.

We illustrated how cloning patients at the start of follow-

up, carefully defining the survival time and vital status for

each clone, and choosing the length of the grace period, as

proposed by Hernàn et al.,9,10 can address both confound-

ing and immortal-time biases. However, by cloning and

censoring the patients to account for confounding at base-

line and immortal-time bias, we introduce an informative

censoring, which does not exist in the original dataset.

This artificial censoring can be adjusted for by inverse-

probability weights in the statistical analysis, which is the

main complexity of this approach. It is important

to note that this informative censoring is not the same

as censoring due to loss to follow-up or administrative

censoring. It is instead a consequence of the methodology

used and reflects confounding over time. Nevertheless,

if censoring due to loss of follow-up occurs in the data

at hand, it is possible to estimate a second set of

weights that will be multiplied to the weights we describe

in this paper.

The analytical strategy we present in this paper has

been proposed in 2016,9,10 but there is currently no tuto-

rial explaining how to proceed to conduct such studies,

which might explain why its use is still scarce in practice.

By providing a step-by-step procedure, along with Stata

and R code, and example data, we help researchers

Table 2. 1-year survival estimates and restricted mean survival time at 1 year, with 95% confidence intervals

One-year survival (%) 95% CIa RMST (days) 95% CIa

Original cohort

Kaplan-Meier

Treated

Yes 88.4 86.0 90.6 340 320 343

No 66.0 62.1 69.7 307 290 312

Differencesb 22.4 18.1 26.9 33 14 48

Time-updated Cox model

Treated

Yes 84.7 82.2 87.1 337 332 342

No 73.8 71.3 76.6 318 313 323

Differencesd 10.9 6.6 14.7 19 12 26

Emulated cohort

Kaplan-Meier

Surgery arm 84.5 83.0 86.3 333 329 336

No surgery arm 67.2 64.4 69.7 312 307 318

Differencesc 17.3 14.6 20.1 21 17 25

Weighted Kaplan-Meier

Surgery arm 82.6 80.4 84.8 331 327 335

No surgery arm 71.2 67.9 74.5 318 312 325

Differencesd 11.4 7.9 15.3 13 8 20

RMST, Restricted Mean Survival Time, measured at 1 year.
aThe 95% CI were calculated using 1000 bootstrap replicates.
bThese differences are prone to both confounding and immortal-time biases.
cThese differences are prone to informative censoring.
dThese differences account for all types of biases, under the assumptions detailed in method.
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implement this type of design to remove immortal-time

bias. Our illustrative example reinforces the impact of this

bias and the importance of properly accounting for it.

Alternative statistical techniques, such as Cox regres-

sion with a time-updated treatment or delayed entry mod-

els, can handle confounding and immortal-time biases.

These two methods focus on the same target estimand, but

the delayed entry method makes fewer assumption about

interactions between the treatment and the covariates.

However, both lead to the estimation of the treatment effect

once treated and does not capture the effect of the time lag

between diagnosis and treatment receipt. On the contrary, in

an emulated trial, the waiting time to treatment is considered

as part of the intervention, as it happens in practice. This es-

timate is therefore more relevant for real-world evidence.

In our lung cancer data, although differences in 1-year

survival are similar when estimated via an emulated trial

or a Cox regression with time-updated treatment, survival

is lower for both groups in the emulated trial results. This

can be explained by: (i) early death contributing to both

arms in the emulated trial; (ii) possible interactions be-

tween treatment and covariates not included in the Cox re-

gression with time-updated treatment; and (iii) different

target estimands.

Simulation studies are needed to empirically compare

the performance of these different approaches in a wide

range of scenarios. Karim et al.23 compared emulated se-

quential trials with marginal structural models in the pres-

ence of time-updated confounders, but they did not look at

methods to handle immortal-time bias.

A major non-statistical advantage of the proposed ap-

proach is that its general principle is easily understandable

by researchers and clinicians working in clinical trials.

Although the inverse-probability-weighting is a complex

concept, many clinicians and epidemiologists are familiar

with the closely related propensity-score weighting ap-

proach. In addition, the similarity of the structure of the

design steps with the design of RCTs makes this approach

more appealing to clinicians. Moreover, the framework of

emulated trials is transparent, emphasizing the importance

of defining precisely the research question, inclusion crite-

ria, causal contrast of interests, exposures etc., which is

common practice in clinical trials but less commonly

reported in epidemiological research. The CERBOT tool

has been developed to help researchers in this process and

provides recommendations for the statistical analysis.16 In

the analysis phase, the use of censoring weights allows the

assessment of balance over time between the study arms,

thus ensuring internal validity. Reporting can also be more

transparent with the use of the CONSORT checklist for

randomized trials, including the CONSORT flow chart for

patient selection.17

In our illustration, we showed evidence of a benefit of

surgical treatment among elderly lung cancer patients, as

already suggested in the literature.24 Controlling for the

biases introduced by confounding and immortal time, we

showed a reduction of the effect size. However, for real

policy impact, this simplified illustration would need to ad-

dress a few additional challenges. First, we performed a

complete-case analysis, which limits the generalizability of

our findings. We excluded 10.8% and 13.5% of patients

with missing information on stage at diagnosis or perfor-

mance status, respectively (Supplementary Figure S1). We

did not account for missing data in our illustrative exam-

ple, in order to focus on the issue inherent to trial emula-

tion only. However, complete-case analysis is rarely

appropriate for the estimation of marginal effects. In prac-

tice, if one can assume a missing at random mechanism for

the missing data, multiple imputation is proposed as an ef-

ficient way to address partially observed covariates when

using inverse-probability weighting.25 However, multiple

imputation combined with bootstrap, which is required

when patients are cloned, can be challenging and very

computationally intensive. Alternatively, a weighted ap-

proach for missing data can be used with two sets of

weights that are estimated and multiplied together (miss-

ingness weights and censoring weights), as proposed in

other time-varying settings.11 Although unbiased under a

missing at random mechanism, this approach is usually in-

efficient for moderate sample sizes, and therefore we de-

cided not to implement it in our example. Second, we

estimated censoring weights using Cox proportional haz-

ards regression models, which allowed us to estimate

weights achieving balance over time, but more flexible

modelling approaches (such as flexible hazard-based re-

gression models) could be considered.22 Third, we consid-

ered simple Kaplan-Meier estimation of the survival curve

up to 1 year after diagnosis. The analyses could have been

done using multivariable flexible models of time-to-event

data. It is important to note that hazards are likely not to

be proportional due to the design and cloning. Hence a

Cox model proportional hazards model would not be ap-

propriate for analysing the data. More importantly, the

hazard ratio (HR) cannot have a causal interpretation, as it

is an average of conditional time-specific effects from a co-

hort changing over time.21

In this tutorial, we recommend the use of the non-

parametric bootstrap to obtain confidence intervals.

However, this can be computationally intensive for large

datasets. If one wants to estimate model-based standard

errors, a current limitation is the presence of an artificial

inflation of the number of events due to patients dying dur-

ing the grace period and before being exposed (before re-

ceiving surgery in our example, 6.7% of patients, 156
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deaths). Further methodological investigation is needed to

develop an appropriate variance estimator in this context.

Finally, it is important to emphasize the importance of

assessing the plausibility of the assumptions made, before

causally interpreting the results. The positivity assumption

usually holds if the inclusion criteria are defined appropri-

ately. In our example, we restricted our study to older

NSCLC patients who were still potentially eligible for sur-

gery given their individual characteristics, so we believe all

the included patients had a non-null probability to either

receive surgery or not. The consistency assumption

requires the treatment to be well defined to be valid.

Surgical procedures for NSCLC are usually well standard-

ized. Finally, by design, the exchangeability assumption

holds at baseline since the two arms are identical due to

cloning. However, over time the informative censoring

introduces confounding, which can be addressed using cen-

soring weights only if all the confounders are measured:

this is difficult to assess in practice. In our example, several

unmeasured factors such as social support and postopera-

tive care may have confounded the relationship between

surgery and survival. Nevertheless, the proposed approach

allowed us to control for measured confounders and

immortal-time bias, and our results are consistent with the

literature.

In conclusion, this tutorial presents the step-by-step

details of the design and analysis of an emulated target trial

from observational data when immortal-time bias is an ad-

ditional issue. Through an example whose aim was to esti-

mate the causal effect of early surgery for older NSCLC

patients, we illustrated how the framework for trial emula-

tion contributes to the improvement of the reproducibility

and transparency of epidemiological studies using non-

randomized data.

Supplementary data

Supplementary data are available at IJE online.
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10. Hernàn MA, Sauer BC, Hernandez-Diaz S, Platt R, Shrier I.

Specifying a target trial prevents immortal time bias and other

self-inflicted injuries in observational analyses. J Clin Epidemiol

2016;79:70–75.
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