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Abstract 
Background: Preeclampsia (PE) is a syndromic disorder that affects 2% to 8% of pregnancies and is diagnosed principally 
when hypertension appears in the second-d half of pregnancy. WHO estimates the incidence of PE to be seven times higher in 
developing countries than in developed countries. Severe preeclampsia/eclampsia is one of the most important causes of maternal 
mortality, associated with 50,000 to 100,000 annual deaths globally as well as serious fetal and neonatal morbidity and mortality, 
especially in developing countries. Even though evidence from family-based studies suggest PE has a heritable component, its 
etiology, and specific genetic contributions remain unclear. Many studies examining the genetic factors contributing to PE have 
been conducted, most of them are focused on single nucleotide polymorphisms (SNPs). Given that PE has a very important 
inflammatory component, is mandatory to examine cytokine-SNPs for elucidating all mechanisms involved in this pathology. In 
this review, we describe the most important cytokine-polymorphisms associated with the onset and development of PE. We aim 
to provide current and relevant evidence in this regard.

Methods: We searched English databases such as PubMed and the National Center for Biotechnology Information. The 
publication time of the papers was set from the establishment of the databases to February 2022. All studies about Th1/Th2/
Th17 cytokines polymorphisms were included in our study.

Results: SNPs in IFN-γ, TNF-α, IL-4, IL-6, IL-10, IL-17A, and IL-22 are associated with the development, early-onset and 
severity of PE, being the Th1/Th2/Th17 responses affected by the presence of these SNPs.

Conclusions: The changes in Th1/Th2/Th17 response modify processes such as placentation, control of inflammation, and vascular 
function. Nonetheless, association studies have shown different results depending on sample size, diagnostic, and population.

Abbreviations: ACE = angiotensin I converting enzyme gene, AGT = angiotensinogen gene, AGTR1 = angiotensin II receptor 
type 1gene, AGTR2 = angiotensin II receptor type 2 gene, B cells = B lymphocytes, CRP = C-reactive protein, DC = dendritic 
cells, DNA = deoxyribonucleic acid, F2 = coagulation factor II, F5 = coagulation factor V gene, sFIt-1 = soluble fms-like tyrosine 
kinase, GWAS = genome-wide association studies, HLA = human leukocyte antigen, HUVEC = human umbilical vein endothelial 
cell, IFN-γ = interferon-gamma, IgE = immunoglobulin E, IL-1 = interleukin 1, IL-2 = interleukin 2, IL-4 = interleukin 4, IL-6 = 
interleukin 6, IL-8 = interleukin 8, IL-10 = interleukin 10, IL-17 = interleukin 17, IL-17A = interleukin 17A, IL-22 = interleukin 22, 
ILCs = innate lymphoid cells, IUGR = intrauterine growth restriction, LTi = lymphoid tissue inducer, MALDI = matrix-assisted laser 
desorption/ionization, MHC = major histocompatibility complex, MHC-I = major histocompatibility complex class 1, MHC-II = 
major histocompatibility complex class 2, mRNA = messenger ribonucleic acid, MTHFR = methylenetetrahydrofolate reductase 
gene, NFAT = nuclear factor of activated T cells, NK = natural killer cells, NKT = natural killer T, NO = nitric oxide, NOS3 = nitric 
oxide synthase 3 gene, PCR = polymerase chain reaction, PE = Preeclampsia, PlGF = placental growth factor, PTGS2/COX-
2 = cyclooxygenase-2, RFLP = restriction fragment length polymorphism, RNA = ribonucleic acid, SNP = single nucleotide 
polymorphism, SOCS = suppressor of cytokine signaling, TGF-β1 = transforming growth factor beta receptor 1, Th1 = T helper 
1, Th2 = T helper 2, Th17 = T helper 17, Th22 = T helper 22, Th3 = T helper 3, F2 = thrombin gene, TLRs = toll-like receptors, 
TNF = tumor necrosis factor gene, TNF-α = tumor necrosis factor-alpha, Treg = regulatory T cells, UNG = Uracil-DNA glycosylase, 
VEGF = vascular endothelial growth factor, VNTR = variable number tandem repeat, WHO = World Health Organizations.
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1. Introduction
Preeclampsia (PE) is a syndromic disorder that affects 2% to 
8% of pregnancies and is diagnosed when hypertension appears 
in the second half of pregnancy.[1] World Health Organization 
(WHO) estimates the incidence of PE to be seven times higher 
in developing countries (2.8% of live births) than in developed 
(0.4%).[2] Severe PE/eclampsia is one of the most important 
causes of maternal mortality, associated with 50,000 to 100,000 
annual deaths globally,[3] as well as serious fetal and neonatal 
morbidity and mortality, especially in developing countries. This 
syndrome produces new-onset hypertension (>140/90 mm Hg) 
in the second half of pregnancy[4–6] companied with either pro-
teinuria (>300 mg/24 h), or multiorgan maternal dysfunction, 
especially kidney and liver failure, neurological complications, 
thrombocytopenia, or hemolysis.[7]

It is believed that PE results from defective spiral artery 
remodeling, which leads to an imbalance between anti and 
pro-angiogenic factors, favoring an anti-angiogenic environ-
ment, giving as a result, widespread endothelial dysfunction and 
organic failure.[8]

Serum samples have shown significantly increased soluble 
fms-like tyrosine kinase (sFlt-1) and decreased vascular endo-
thelial growth factor (VEGF) and placental growth factor 
(PlGF) concentrations in PE, compared to normotensive con-
trols. In vitro studies showed that serum from PE inhibited tube 
formation in human umbilical vein endothelial cell (HUVEC) 
lines compared to that from controls, and administration of 
adenovirus expressing sFlt-1 to pregnant rats caused hyperten-
sion, albuminuria, and glomerular endotheliosis, similar to that 
observed in PE.[8]

1.1. The genetic component of PE

The complexity of PE suggests that some women are predis-
posed to suffering from PE. In this regard, there is evidence sup-
porting that PE has an outsized familial risk, with a heritability 
factor of approximately 50% to 55%,[9,10] of which 30% to 
35% is attributed to maternal genotype, 20% fetal, 13% to a 
couple, and the rest to other effects.[5,11,12] Family history of PE 
significantly increases woman’s risk of PE (24% and 163%).[13] 
Besides, it has been proved that the familial form of PE is asso-
ciated with a more severe phenotype.[14]

Predisposition to PE is multifactorial and probably poly-
genic. Candidate genes involved in different biological processes 
including inflammation, coagulation, vascular resistance, cell 
signaling pathways, and metabolic processes have been associ-
ated with PE due to their putative roles in its pathophysiology. 
Most of the early candidate gene studies have been focused on 
just nine genes: angiotensinogen (AGT), angiotensin I convert-
ing enzyme (ACE), angiotensin II receptor type 1 (AGTR1), 
angiotensin II receptor type 2 (AGTR2), coagulation factor II, 
thrombin (F2), coagulation factor V (F5), methylenetetrahydro-
folate reductase (MTHFR), nitric oxide synthase 3 (NOS3) and 
tumor necrosis factor (TNF), which are involved in endothelial 
function and hemodynamics, immune response, lipid metabo-
lism and oxidative stress, and thrombophilia.[15,16] Attention 
has been also focused on increased sFlt-1 and decreased VEGF 
and PlGF were single nucleotide polymorphism (SNP) analyses 
have also shown association with PE. In this regard, genome-
wide association studies (GWAS) have been performed in large 
cohorts of unrelated cases and controls to identify novel genetic 
loci through large-scale SNP analyses where the prevalence of 
specific SNPs is linked to phenotypes or disease.[17] According 
to Brody et al.[18], SNPs are variants in the genome occurring 
naturally in the human population, being the most frequent type 
of variation in the human genome, occurring once every sev-
eral hundred base pairs throughout the genome.[19] Each indi-
vidual inherits one allele copy from each parent (the individual 
genotype at an SNP site is AA, BB, or AB).[18] SNPs are defined 

as genomic locus where two or more alternative bases occur 
with appreciable frequency (0.1%).[19] SNPs in genes can impact 
on messenger ribonucleic acid (mRNA) splicing, nucleo-cyto-
plasmic export, stability, and translation. When they are pres-
ent within a coding sequence, lead to an amino acid change 
(referred to as a non-synonymous SNP or mutation), thus they 
can modify the protein’s activity.[20,21] If the mutation is synony-
mous (does not change the nature of the amino acid), then trans-
lation rates or mRNA half-life may be affected. If the mutation 
causes a premature stop codon, this can lead to the production 
of a truncated protein product or a near-null phenotype due to 
nonsense mediated decay.[20–22] For this, SNPs can be used as 
genetic markers to follow the inheritance patterns of chromo-
somal regions through generations and can be used in the study 
of genetic factors associated with human diseases.[23]

Different technologies have been used to detect SNPs such 
as restriction fragment length polymorphism (RFLPs), poly-
merase chain reaction (PCR) and genome shotgun sequencing, 
but they can be classically divided in technologies targeted SNP 
discovery (Denaturing gradient gel electrophoresis, chemical 
cleavage of mismatch, ribonuclease cleavage of mismatched 
deoxyribonucleic acid (DNA), single stranded conformation 
polymorphism, cleavage fragment length polymorphism analy-
sis, MutS protein-binding assay, mismatch repair detection, T4 
endonuclease VII cleavage of heteroduplex DNA, heteroduplex 
analysis, denaturing high performance liquid chromatography, 
uracil-DNA glycosylase (UNG)-mediated sequencing, ribonu-
cleic acid (RNA) mediated finger printing with matrix-assisted 
laser desorption/ionization (MALDI) MS detection, sequencing 
by hybridization, direct DNA sequencing) and technologies 
for genotyping known SNPs (hybridization, primer extension, 
ligation, invasive cleavage, reaction formats, homogeneous 
reactions, reactions on solid support, detection mechanisms, 
luminescence detection, fluorescence detection, time- resolved 
fluorescence detection, fluorescence resonance energy trans-
fer, fluorescence polarization, mass spectrometry, electrical 
detection).[24]

Specifically, in PE, genetic predisposition is thought to be a 
significant etiological representative and SNPs in various genes 
were found to be associated with the risk of PE. In this regard, 
emerging evidence proposes that excessive maternal inflamma-
tory response with cytokine-mediated endothelial damage may 
play a role in PE’s pathogenesis.[25,26]

1.2. Immunology of PE

Even though the main cause of the abnormal placentation 
remains unclear, genetic, environmental, and immunological 
factors have been associated.[27] In this regard, it is believed that 
both, innate and adaptive immune processes are involved in the 
pathogenesis of PE, proposing that Th1 immunity is responsible 
for poor placentation and exacerbated inflammatory response 
and endothelial dysfunction seen in PE.[28,29] This is relevant 
since T helper 1 (Th1) and T helper 2 (Th2) cytokine balance is 
important to maintain the success of normal pregnancy.[30,31] In 
normal pregnancy, the production of Th1 cytokine is inhibited, 
and their overexpression predisposes to PE development.[32]

Moreover, fetal trophoblast acts as an alloantigen produc-
ing a systemic inflammatory response in the mother, but this is 
controlled and mild.[33–35] Inflammatory response onset during 
the first twelve weeks could be given by interactions occurring 
between the decidual immune cells and trophoblast cells, then 
in the second and third trimester, a secondary inflammatory 
response could be due to syncytiotrophoblast microparticles 
that are released into the mother´s vascular system and are 
detectable in maternal circulation.[36]

Thus, two stages of the PE are proposed: poor trophoblas-
tic invasion, given by altered production of immunoregulatory 
cytokines and angiogenic factors and a systemic, maternal-in-
flammatory response, primarily involving the endothelium, 
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which is stimulated by the liberation of necrotic/apoptotic syn-
cytiotrophoblast cells into the maternal circulation.[37] This sec-
ond stage of could be involved in poor fetal growth and can 
be linked with the development of intrauterine growth restric-
tion.[38] The pathophysiology of PE may involve several factors, 
including persistent placental hypoxia companied of the release 
of high amounts of syncytiotrophoblast microparticle. Besides, 
damage-associated molecular pattern molecules released during 
hypoxia and syncytiotrophoblast microparticle, which bind 
Toll-like receptors (TLRs), may activate monocytes, dendritic 
cells (DCs), natural killer (NK) cells, and neutrophils, enhanc-
ing persistent inflammatory conditions.[37] The development 
of hypertension in preeclamptic women from an immunolog-
ical point of view is also related with endothelial dysfunction 
induced by neutrophil activation and neutrophil extracellular 
trap formation. Moreover, preeclamptic women have higher lev-
els of nonclassic and intermediate monocytes and lower levels 
of positive lymphoid blood DC antigen 2 DCs.[39] In this regard, 
the inflammatory process may be due to the cytokines secreted 
by these cells and to changes in adaptive-immunesystem cells, 
which are also modulated in PE.

The changes in T cell subsets that may be seen in PE include 
low regulatory T cells (Treg) activity, a shift toward Th1 
responses, and the presence of T helper 17 (Th17) lymphocytes. 
B lymphocytes (B cells) can participate in the pathophysiology 
of PE by producing autoantibodies against adrenoreceptors 
and autoantibodies that bind the angiotensin-1 receptor.[40] It 
is believed that both, innate and adaptive immune processes 
are involved in the pathogenesis of PE, proposing that Th1 
immunity is responsible for poor placentation and exacer-
bated inflammatory response and endothelial dysfunction seen 
in PE.[28,41] This is relevant since Th1/Th2 cytokine balance is 
important to maintain the success of normal pregnancy.[30,31] In 
normal pregnancy, the production of Th1 cytokine is inhibited, 
and their overexpression predisposes to PE development.[32] 
There are also reports showing excessive innate immune activ-
ity and a change toward an inflammatory cytokine profile in 
PE.[28,41] For instance, preeclamptic patients show high levels 
of Th1 cytokines, tumor necrosis factor-alpha (TNF-α) and 
interferon-gamma cytokine (IFN-γ) and low interleukin 4 (IL-
4) production by phytohemagglutinin-stimulated peripheral 
blood mononuclear cells. Besides, their placentas show sup-
pression of interleukin 10 (IL-10) and transforming growth 
factor beta receptor 1 (TGF-β1) and altered interleukin 2 (IL-
2) IL-2/IL-10 and TNF-α/IL-10 ratios.[42] PE is also associated 
with increased numbers of Th17 cells that secrete interleukin 
17 (IL-17) and interleukin 22 (IL-22) and play critical roles in 
disease development.[43] Given that IL-22 shares 22% sequence 
identity with IL-10, and IL-22 is overexpressed in the pre-
eclamptic mother and neonate cord blood exposed to PE, it 
is thought that IL-22 may be an important inflammatory bio-
marker of PE.[44]

From a clinical perspective, proinflammatory cytokines, have 
been studied to find a panel of markers for diagnosing PE. In 
this regard, a systematic review showed that interleukin 6 (IL-6), 
interleukin 8 (IL-8), TNFα, and C-reactive protein (CRP) could 
be useful to identify pregnant women at risk of developing PE, 
particularly in the second and third trimesters.[45] Nevertheless, 
there is not a single inflammatory marker for routine clinical 
use to predict/ identify PE onset or progression.[45] Even though 
increased sFlt-1 and decreased VEGF and PlGF (and their SNPs) 
have been related with early onset of PE (Fig. 1), they are not 
used commonly as clinical markers. As a single cytokine is not 
reliable markers for early identification of PE, a combination of 
markers in conjunction with identification of clinical risk fac-
tors is mandatory.[46] Therefore, a broad examination of factors 
affecting inflammatory markers in PE could help to predict/
identify PE. Given that SNPs in genes can impact on mRNA 
splicing, nucleo-cytoplasmic export, stability, and translation, 
they must be studied. This review aims to compile the most 

recent information regarding SNPs in Th1, Th2 and Th17 cyto-
kines and their association with PE.

2. Methods
A systematic search was performed on PubMed, National 
Center for Biotechnology Information, Web of Sciences, Google 
scholar, Cochrane library and Embase from 2010 to July 2022 to 
articles matching the following criteria: “single-nucleotide poly-
morphisms,” “SNP,” “polymorphisms,” “IFN-γ,” “IFN gamma,” 
“TNF-alpha,” “TNF-α,” “IL-4,” “IL-6,” “IL-10,” “IL-17A,” “IL-
22,” and “PE,” and their combinations in lowercase letters. The 
Boolean operators “OR” and “AND” were used, and the strat-
egy was carried out both individually and jointly. The titles and 
abstracts were screened and acquired relevant full-text manu-
scripts for further analysis.

No ethics committee or institutional review board needed to 
revise the study.

2.1. Cytokine-polymorphisms associated with PE

For a long time, single-nucleotide polymorphisms (SNPs) in 
cytokine have been associated with certain inflammatory dis-
eases and obstetric complications.[47,48] Nevertheless, factors 
such as selection criteria, ethnic groups, and linkage disequilib-
rium patterns can lead to differences in results. Besides every 
pathophysiologic feature could have different clinical patterns. 
Several studies have investigated SNPs in inflammatory medi-
ator genes and risk of PE; however, the results between stud-
ies showed inconsistencies (Franchim et al[49]; Ghasemi et al[50]; 
Andraweera et al[51]; Li et al[52]; Goddard et al[53]). This could be 
possible due to variations in the ethnic groups and heterogeneity 
of PE included in different studies. Additionally, controversial 
results reported by different investigators may in part be because 
of selection criteria. Genotype frequencies of SNPs and linkage 
disequilibrium patterns can differ among ethnic groups, leading 
to different results.[54] Moreover, distinct clinical patterns may 
involve different pathological mechanisms.[55,56]

2.2. Th1 cytokines

2.2.1. IFN-γ. The interferon-gamma cytokine (IFN-γ) is encoded  
by the IFNG gene, also known as IFG and IFI. It is localized on 
chromosomal region 12q15[57] and encodes a soluble cytokine, 
a member of the type II interferon class. The protein is secreted 
by cells of the innate and adaptive immune responses. The 
main functions of IFN-γ are activation of macrophages for 
destroying phagocytosed microorganism, stimulation, and 
differentiation of naive LT CD4 + into subpopulation Th1 by 
inhibiting differentiation into Th2 phenotype, stimulation of the 
expression of major histocompatibility complex class 1 (MHC-
I) and class 2 (MHC-II), and finally, co-stimulate antigen-
presenting cells.[58,59] Moreover, IFN-γ has been associated 
with increased susceptibility to viral, bacterial, and parasitic 
infections, and it has been also related to leukemia and several 
autoimmune diseases.[60,61]

High levels of IFN-γ and other cytokines such as interleukin 1 
(IL-1), IL-2, IL-8, and tumor necrosis factor-alpha (TNF-α) are 
associated with pregnancy complications such as preterm labor 
and intrauterine growth retardation.[32,62] In this regard, IFN-γ 
as well as IL-2 and TNF-α, induce trophoblastic apoptosis, 
restrained trophoblast differentiation that produces an incom-
plete trophoblastic invasion of spiral arteries, and impaired pla-
cental implantation, leading to PE.[42,63] There is only a +874A/T 
SNP associated with PE, in which T/T genotype in that posi-
tion is related to high levels of IFN-γ production and has been 
associated with an increased risk of severe PE in the Brazilian 
population (Table 1).[48] On the other hand, the same SNP was 
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investigated in the Brazilian and Iranian populations, were no 
found association (Table 2).

2.2.2. TNF-alpha. The tumor necrosis factor-alpha cytokine 
(TNF-α) is encoded by the TNF gene, also known as DIF, 
TNFSF2, and TNLG1F. It is located in the human leukocyte 
antigen (HLA) class II region of the major histocompatibility 
complex (MHC) on chromosomal region 6p21.33.[84,85] TNF-α is 
multifunctional proinflammatory Th1 cytokine, mainly secreted 
by macrophages, recognized for its receptors TNFRSF1A/
TNFR1 and TNFRSF1B/TNFBR.[85] TNF-alpha is involved in 
the regulation of a variety of biological processes such as cell 
proliferation, differentiation, apoptosis, lipid metabolism, and 
coagulation.[86,87] Moreover, this cytokine has been implicated in 
a variety of diseases, including autoimmune diseases, Alzheimer, 
and cancer.[88,89]

During pregnancy, TNF-α has been involved with PE etiology. 
In this regard, increased plasma levels of TNF-α in trophoblastic 
cells of the placenta have been found in preeclamptic patients 
while IL-10 and IL-4 levels are decreased.[90–92] This cytokine 
imbalance leads to chronic peripheral and placental inflamma-
tion.[93] In addition, there is evidence pointing to some SNPs that 
act as transcriptional regulators of this cytokine in the promoter 
region (-308G/A, -238G/A) (Table 1),[94] such as the G/A poly-
morphism at position -308 that has been associated with an 
increased risk of PE.[64,65] Additionally, preeclamptic women are 
significantly more likely to carry the upregulating TNF-a -308 
A/G than normotensive women.[69,82] Besides, the allele frequency 
(AA) in -308 position is significantly higher among preeclamp-
tic Slovak, Finnish, Iranian and the Turkish population[65,67–69] 
and eclamptic Turkish women.[67] Interestingly, the AA allele fre-
quency has been found significantly higher among preeclamptic 
patients with intrauterine growth restriction (IUGR) compared 
to those without IUGR in Hungary population.[66]

Regarding G/A polymorphism at position -238, the allele G 
distribution is significantly higher in the PE group, moreover, 
is related to high levels of TNF-α production compared with 
the control group 136. Furthermore, the haplotype C/A, of two 
polymorphisms, -850C/T and -308G/A, have been associated 
with an increased risk of PE in the Finnish population.[68] On the 
other hand, the same SNPs were investigated in the Brazilian, 
American, Austrian, Scottish, Italian, Finnish, and Turkish pop-
ulations, where no found any association with the risk of PE 
(Table 2).

2.3. Th2 cytokines

2.3.1. IL-4. The interleukin 4 cytokine (IL-4) is translated by the 
 IL4 gene, also known as BSF1; IL-4; BCGF1; BSF-1; BCGF-1 and 
IL4 is localized on chromosomal region 5q31.1.[95] IL-4 protein 
encodes a pleiotropic cytokine Th2 produced by activated T 
cells. In this regard, IL-4 is considered an important cytokine 
for tissue repair, counteracting the effects of proinflammatory 
Th1 cytokines, however, it also promotes allergic airway 
inflammation.[96,97] Moreover, IL-4 regulates a variety of human 
host responses such as allergic, anti-parasitic, wound healing, 
and acute inflammation.[98–100] This protein has been reported to 
promote the resolution of neutrophil-mediated acute lung injury. 
In an allergic response, IL-4 plays a key role in the production 
of immunoglobulin E (Ig E).[101,102] IL-4 cytokine is implicated 
in a wide variety of disease as chronic asthma, gastric cancer, 
breast cancer, leukemia, oral carcinoma, bladder carcinoma, 
colonic cancer, chronic periodontitis, and inflammatory dilated 
cardiomyopathy.[103,104]

In pregnancy the Th2 cytokines, such as IL-4, play an import-
ant role in the regulation and control of inflammation, lead-
ing to the normal development of gestation. In this regard, the 

Figure 1. (A) VEGF, PIGF, and TGF-β are required to maintain endothelial function in placenta. During normal pregnancy, endothelial homeostasis is maintained 
by signaling of theses growth factors. (B) In PE, the secretion of sFlt1 and sEng (antiangiogenic regulators) inhibits VEGF, PIGF, and TGF-β signaling resulting in 
endothelial cell dysfunction. Besides, SNPs presence in VEGF and PIGF can also alter their function, and have been associated with PE.[156–167] FIt-1 = soluble 
fms-like tyrosine kinase, PE = preeclampsia, SNP = single nucleotide polymorphism, TGF-β1 = transforming growth factor beta receptor 1, PIGF = phosphati-
dylinositol glycan anchor biosynthesis class F, VEGF = vascular endothelial growth factor.
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Table 1 

Cytokine-SNPs associated with preeclampsia.

Authors 
Population 

studied 
Population 

size Methodology SNP Finding 

IFN-γ
  Pinheiro et al[48] Brazilian SPE: 116

Ctl: 107
NP: 58

PCR-SSP rs2430561 +874T/T genotype seems to plays a role in PE 
occurrence

TNF-α
  Tavakkol Afshari et al* Iranian PE: 153

Ctl: 150
PCR-RFLP rs1800629rs361525 Significant association between TNF-alpha G-308A and 

G-238A genotype and PE
  Mohajertehran et al[64] Iranian PE: 54

Ctl: 50
PCR-RFLP rs1800629 Significant association between SNP of promoter region 

of TNF-alpha G-308A with PE
  Mirahmadian et al[65] Iranian PE: 160

Ctl: 100
ASO-PCR rs1800629rs361525 Both, -308A and -238G allele were associated with risk 

of PE
  Molvarec et al[66] Hungarian PE: 140

Hellp: 69
Ctl: 144

PCR-RFLP rs1800629 SNP G-308A was associated with risk of complicated PE 
with severe IUGR

  Pazarbasi et al[67] Turkish E: 40
PE: 113
NP: 80

PCR-RFLP rs1800629rs1799724 Both SNPs were associated with the PE susceptibility

  Saarela et al[68] Finnish PE: 133
Ctl: 115

PCR-RFLP rs1799724rs1800629 Both SNPs showed a significant haplotype association 
with susceptibility to PE

  Harmon et al† American PE: 1598
Ctl: 918

Illumina Golden-
Gate Plataform

rs1800629 Association was for PE among European Americans

  Naderi, et al‡ Iranian PE: 153
Ctl: 140

PCR-RFLP rs361525 The AA genotype and the A allele may carry an 
increased risk for PE

  Puppala et al[10] Indian PE: 100
Ctl: 100

PCR-RFLP rs1800629 SNP -308G/A was associated with risk of PE

  Zubor et al[69] Slovak PE: 38
Ctl: 38

PCR-RFLP rs1800629 -308A allele was associated with risk of PE

IL-4
  Fraser et al[70] England PE: 117

Ctl: 146
PCR-RFLP rs2243250 -590T/T homozygous were associated in risk of PE

  Salimi et al[71] Iranian PE: 192
Ctl: 186

PCR rs79071878 VNTR polymorphism of IL-4 gene has significantly 
increased the risk of PE

IL-6
  Puppala et al[72] Indian PE: 100

Ctl: 100
PCR-RFLP rs1800795 SNP -174G/C was associated with risk of PE

IL-10
  Fan et al[30] Chinese PE: 142

Ctl: 260
PCR-RFLP rs1800872 CC genotype of -592A/C was observed to be associated 

with PE
  Liu et al[73] Chinese PE: 177

Ctl: 182
PCR-RFLP rs1800871 CC genotype of -819T/C was associated with risk of PE.

  Song and Zhong[74] Chinese PE: 177
Ctl: 182

PCR-RFLP rs1800872 -592A/C was associated with an increased risk of 
early-onset PE

  Sowmya et a[75] Indian PE: 120
Ctl: 120

ARMS-PCR rs1800872rs1800871 -819C allele and - 592A allele were associated with PE

  Sowmya et al§ Indian PE: 120
Ctl: 120

ARMS-PCR rs1800871 Significant association of C allele of IL-10 -819 promoter 
polymorphism with PE

  Vural et al[76] Turkish PE: 101
NP: 95

ASO-PCR rs1800896 AA genotype has 3.38-fold-increased risk of developing 
PE

  Mirahmadian et al[65] Iranian PE: 160
Ctl: 100

ASO-PCR rs1800871rs1800872 -819C/C and -592C/C were associated with risk of PE

  Kamali-Sarvestani 
et al[77]

Iranian PE: 134
Ctl: 164

ASO-PCR rs1800896 -1082G allele in PE may be considered as a genetic 
susceptibility to development of PE

  Daher et al[78] Brazilian PE: 151
Ctl: 189

PCR-SSP rs1800896 SNP of IL-10 -1082 is associated with PE

  Zhou et al‖ Chinese PE: 117
Ctl: 286

Multiplex PCR rs1800896 A-1082G allele frequency was significantly higher in PE

  Elhawary et al[79] Egyptian PE: 20
Ctl: 20

PCR-RFLP rs1800896 Significant difference between the frequency of genotype 
in GG, AA and A and G allele and development of PE

  Raguema et al¶ Tunisian PE: 345
Ctl: 300

RT-PCR rs1800871 -819T/T variant and the ATA haplotype represent genetic 
risk for PE

IL–17A
  Lang et al[80] Chinese PE: 120

Ctl: 120
NP: 150

PCR-RFLP rs2275913 Heterozygous (GA) and minorallele (A) were significantly 
more prevalent in PE women

(Continued)
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production of IL-4 is enhanced at the feto-maternal interface 
during pregnancy, this production has been observed depressed 
in pregnant that suffering from recurring spontaneous abor-
tions.[105] In rats, IL-4 has proved that decrease the inflammation 
and ultimately, improve hypertension in response to placental 
ischemia.[106] On the other hand, the -590C/T SNP in IL-4 has 
been associated with PE, in T/T genotype in that position has 
been associated with marked trend of PE in UK population.[70] 
Moreover, another SNP, the variable number tandem repeat 
(VNTR) RP2 allele has been associated with PE susceptibility 
in Iranian pregnant.[71]

2.3.2. IL-6. The interleukin 6 cytokine (IL-6) is translated by the 
 IL6 gene, also known as CDF; HGF; HSF; BSF2; IL-6; BSF-2; 
IFNB2; IFN-beta-2 and IL6 is localized on chromosomal region 
7p15.3.[107] IL-6 protein encodes a proinflammatory cytokine 
is primarily produced by activated cells at sites of acute and 
chronic inflammation. This cytokine is a soluble mediator with 
pleiotropic effects on inflammation and the maturation of B 
cells.[108] Additionally, has been observed to be an endogenous 
pyrogen capable of inducing fever in patients with autoimmune 
diseases or infections.[109,110] The IL-6 cytokine is implicated in 
a wide variety of inflammatory disease, for instance, juvenile 
rheumatoid arthritis, rheumatoid arthritis or susceptibility to 
diabetes mellitus.[111,112]

There are two faces of IL-6 on Th1/Th2 differentiation.[113] 
IL-6 promotes Th2 differentiation and at the same time inhibits 
Th1 polarization through two independent molecular mecha-
nisms: IL-6 activates transcription mediated by nuclear factor 
of activated T cells (NFAT) leading to production of IL-4 by 
naive CD4+ T cells and their differentiation into effector Th2 
cells. The inhibition of Th1 differentiation by IL-6 is IL-4- and 
NFAT-independent. IL-6 inhibits Th1 differentiation by upreg-
ulating suppressor of cytokine signaling (SOCS)-1 expression 
interfering with IFN-γ signaling and the development of Th1 
cells. Thus, by using two independent molecular mechanisms, 
IL-6 plays a dual role in Th1/Th2 differentiation.[113]

IL-6 is a cytokine highly expressed in the feminine tract 
reproductive and gestational tissues and has a differential effect 
during pregnancy how in the development the placenta and the 
requirements of immunological adaptation on the fetus toler-
ances, in this regard IL-6 plays an important function on the 
pathophysiology of infertility and gestational disorders.[114,115]

Preterm labor has been associated with elevated levels of 
maternal serum IL-6 cytokine, whereas it is observed that serum 
IL-6 levels increase with preeclamptic women and decreased 
production of IL-6 in placental tissue,[116,117] in this regard, 
IL-6 is not essential for the success of the pregnancy, however, 
it is important in modulation during the implantation of the 
embryo.[118]

Regarding SNPs, in IL-6, the -174G/C genotype has been 
associated with the risk of PE in the Indian population.[72] 

But these results differ from other investigations, where a lot 
of groups have evaluated this SNP in Brazilian, American, Sri 
Lanka, Saudi, Austrian, Scottish, Turkish, Finnish, Chinese and 
Mexican populations and them no found any association with 
the risk of PE (Table 2).

2.3.3. IL-10. The interleukin 10 cytokine (IL-10) is encoded by 
the IL10 gene, also known as CSIF, TGIF, GVHDS and IL10A. 
It is located on the chromosomal region 1q32.1.[119] The IL-10 
is produced primarily by monocytes and to a lesser extent by 
lymphocytes. It has two principal roles, immunoregulation and 
inflammation. Additionally, IL-10 produces downregulation of 
Th1 cytokines expression, MHC class II, and co-stimulatory 
molecules on macrophages.[120] It also helps with B cell survival, 
proliferation, and antibody production.[119] IL-10 cytokine has 
been implicated in a wide variety of disease as pancreatitis, 
diabetic nephropathy, asthma susceptibility, ischemic stroke, 
and coronary artery disease.[121,122]

In normal pregnancy, IL-10 has three major beneficial roles 
since this cytokine plays a key role in Th2 response: promoting 
successful placentation, controlling inflammation, and regulat-
ing vascular function.[123–125] In this regard, levels of serum IL-10 
are increased during a normal pregnancy and remain high until 
delivery. Besides, in normal human placental tissue, it has been 
observed higher levels of IL-10 during first and second trimes-
ters compared to the third trimester of pregnancy, which means 
that provides an important balance for inflammation at the 
fetal-maternal interface.[90,126]

Interestingly, some SNPs in the proximal (-1082A/G, -819T/C 
and -592A/C) and distal regions of the promoter region of the 
IL-10 gene[127] are transcriptional regulators (Table 1).[128] For 
instance, the A/G polymorphism at position -1082 is related 
to lower IL-10 production.[77,129,130] It has been associated with 
an increased risk of PE in Turkish, Brazilian, and Egyptian 
populations.[76,78,79]

The T/C polymorphism at position - 819 found an increased 
distribution of the normal allele in patients[75] and was associ-
ated with increased risk of PE in Chinese[73] population, and 
with early-onset PE in an Indian population[75] were specifically 
diplotypes of IL-10: -1082A with -819C; -1082G with -819C; 
-819C with -592C; -1082A with -592C; and -1082G with 
-592C were associated.

Several studies have shown that A/C polymorphism at 
position -592 is associated with low levels of IL-10 produc-
tion.[129,131,132] Its presence has been correlated with an elevated 
risk of developing PE in Iranian population[65] and the CC and 
AC + CC genotypes of IL-10 -592A/C are also associated with 
high risk when compared to the AA genotype in Chinese popu-
lation.[30] Besides, this SNP has been related to early-onset PE in 
Indian[75] and Chinese[74] populations.

On the other hand, these three SNPs in IL-10 have been 
widely studied in different populations as Iranian, Brazilian, 

Authors 
Population 

studied 
Population 

size Methodology SNP Finding 

IL-22
  Niu et al[81] Chinese PE: 107

Ctl: 1263
RT-PCR rs2227485 A significant difference under the recessive model of the 

T allele (TT/CC + CT genotype)

Ctl = control (normotensive pregnancy), E = Eclampsia, GH = gestational hypertension, NP = Non-pregnant women, PE = preeclampsia, SNP = single nucleotide polymorphism, SPE = Severe 
preeclampsia.
*Tavakkol Afshari Z, Rahimi HR, Ehteshamfar SM, et al. Tumor necrosis factor-alpha and nterleukin-1-beta polymorphisms in pre-eclampsia. Iranian J Immunol. 2016;13:309–16.
†Harmon QE, Engel SM, Wu MC, et al. Polymorphisms in inflammatory genes are associated with term small for gestational age and preeclampsia. Am J Reprod Immunol. 2014;71:472–84.
‡Naderi M, Yaghootkar H, Tara F, et al. Tumor necrosis factor-alpha polymorphism at position -238 in preeclampsia. Iran Red Crescent Med J. 2014;16:e11195.
§Sowmya S, Ramaiah A, Sunitha T, et al. Role of IL-10 -819(T/C) promoter polymorphism in preeclampsia. Inflammation. 2014;37:1022–7.
‖Zhou L, Cheng L, He Y, et al. Association of gene polymorphisms of FV, FII, MTHFR, SERPINE1, CTLA4, IL10, and TNFalpha with pre-eclampsia in Chinese women. Inflamm Res. 2016;65:717–24.
¶Raguema N, Gannoun MBA, Zitouni H, et al. Interleukin-10 rs1800871 (-819C/T) and ATA haplotype are associated with preeclampsia in a Tunisian population. Pregnancy Hypertens. 2018;11:105–10.

Table1

(Continued)
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Table 2 

Cytokine-SNPs not associated with preeclampsia.

Authors 
Population 

studied 
Population 

size Methodology SNP Finding 

IFN-γ
  Daher et al[78] Brazilian PE: 151

Ctl: 189
PCPCR-SSP rs2430561 No association in 874A/T SNP and PE was observed

  Kamali-Sarvestani 
et al[77]

Iranian PE: 134
Ctl: 164

ASO-PCR rs2430561 No association between 874A/T polymorphism and PE 
was observed

  de Lima et al[56] Brazilian PE: 92
E: 73

Ctl: 101

PCR-SSP rs2430561 SNP of 874A/T was not association with PE women

TNF-α
  Daher et al[78] Brazilian PE: 151

Ctl: 189
PCR-SSP rs1800629 SNP of -308G/A was no associated with PE

  Pinheiro et al[48] Brazilian SPE: 116
Ctl: 107
NP: 58

PCR-SSP rs1800629 SNP of -308G/A was no associated with PE

  Livingston et al* American SPE: 112
Ctl: 106

PCR-RFLP rs1800629 Neither genotypic frequency and mutant alleles were 
associated with severe PE

  Stonek et al[6] Austrian PE: 107
Ctl: 107

Multiplex PCR  rs1800629 SNP in G-308A was no associated with PE

  Haggerty et al[82] American PE: 150
Ctl: 661

TaqMan  rs1800629 -308 G/A was no associated with PE

  de Lima et al[56] Brazilian PE: 92
E: 73

Ctl: 101

PCR-SSP  rs1800629 SNP of -308G/A was no associated with PE

  Freeman et al‡ Scottish PE: 106
Ctl: 212

PCR-RFLP  rs1800629 No association between -308G/A and the risk of PE

  Previtera and 
Restaino[9]

Italian SPE: 20
Ctl: 10

Sanger sequencing  rs1800629 No association was observed in -308G/A

  Heiskanen et al‖ Finnish PE: 133
Ctl: 115

PCR-RFLP rs1799724 No association was observed in C-850T and risk of PE

  Vural et al[76] Turkish PE: 101
NP: 95

PCR-RFLP  rs1800629 No significant differences was found in genotype or 
allele frequencies in -308G/A

IL-6
  Pinheiro et al[48] Brazilian SPE: 116

Ctl: 107
NP: 58

PCR-SSP rs1800795 No association between -174G/C polymorphisms and PE 
was observed

  Andraweera et al[51] Sri Lanka PE: 175
Ctl: 171

SequenomMass 
ARRAY system

rs1800795 No significant differences was found in-174G/C and 
PE risk

  Freeman et al‡ Scottish PE: 106
Ctl: 212

PCR-RFLP rs1800795 No association between -174G/C and the risk of PE

  Vural et al[76] Turkish PE: 101
NP: 95

PCR-RFLP rs1800795 No significant differences was found in genotype or 
allele frequencies in -174G/C

  Saarela et al¶ Finnish PE: 133
Ctl: 115

PCR-RFLP rs1800795 No significant difference was found in -17G/C and PE 
risk

  Fanet al[30] Chinese PE: 142
Ctl: 260

PCR-RFLP rs1800795rs1800796rs1800797 No significant differences were found in genotype or 
allele frequencies in -174G/C, -597G/A and -572 G/C

  Harmon et al# American PE: 1598
Ctl: 918

Illumina GoldenGate 
Plataform

rs1800795 There was no association between IL-6 SNP and the 
risk of PE

  Daher et al[78] Brazilian PE: 151
Ctl: 189

PCR-SSP rs1800795 SNP of IL-6 -174G/C was no associated with PE

  Bayoumy et al** Saudi GH: 60
PE: 49

Ctl: 100

PCR Allele Discrim-
ination

rs1800795 No association was observed in-174G/C and risk of PE

  Stonek et al†† Austrian PE: 14
Ctl: 1367

ASO-PCR rs1800795 -174 G/C is not a genetic marker for risk of PE

  de Lima et al[56] Brazilian PE: 92
E: 73

Ctl: 101

PCR-SSP rs1800795 No significant difference was found in SNP of -174G/C 
and PE risk

  Valencia Villalvazo 
et al‡‡

Mexican PE: 411
Ctl: 613

RT-PCR rs1800795 SNP of IL-6 -174G/C was no association with PE women

  Stonek et al† Austrian PE: 107
Ctl: 107

Multiplex PCR rs1800795 IL-6 G174C was no associated with PE

IL-10
  Kamali-Sarvestani 

et al[77]

Iranian PE: 134
Ctl: 164

PCR-RFLP rs1800871
rs1800872

No association between -819T/C, -592A/C 
polymorphisms and PE was observed

(Continued)
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American, Italian, Indian, Mexican, and Austrian not having 
found any association with risk of PE (Table 2).

2.4. Th17 cytokines

2.4.1. IL-17A. The interleukin 17A cytokine (IL-17A) is 
translated by IL17A gene, also known as IL17; CTLA8; IL-17; 
CTLA-8; IL-17A and IL17A is localized on chromosomal 
region 6p12.2,[133] and this gene encoded a proinflammatory 
cytokine produced by activated T cells and by other cell subsets, 
such as γδT cells, cytotoxic CD8+ T cells, innate tissue-specific 
cells, innate lymphoid cells (ILCs), and myeloid cells.[134,135] This 
cytokine regulates the activities of NF-kappaB and mitogen-
activated protein kinases. The IL-17A can stimulate the 
expression of IL-6 and cyclooxygenase-2 (PTGS2/COX-2), as 
well as enhance the production of nitric oxide (NO). The IL-17A 
cytokine has been implicated in several chronic inflammatory 
diseases like rheumatoid arthritis, psoriasis, multiple sclerosis, 
and autoimmune diseases.[133,136,137]

The IL-17 family has six members IL-17A (IL17), IL-17B, 
IL-17C, IL-17D, IL-17E (IL-25), and IL-17F. In fact, IL-17A and 
IL-17F are the most closely related, are coexpressed in linked 
genes and usually are coproduced by Th17 cells.[138–140] The 

IL-17A promotes hypertension, because is traditional cardiovas-
cular risk factor that contributes to myocardial infarction and 
stroke.[141–143] The Th17 cells participate in pregnancy related 
pathologies, including recurrent spontaneous abortion and PE, 
and imbalances between Th1/Treg/Th17 subsets in blood circu-
lation and uterus have been reported.[83,144–147] In humans, it has 
been suggested that IL-17 can increase in the invasive capacity 
of JEG-3 cells (trophoblast-like human choriocarcinoma cell 
line) and increase progesterone secretion significantly.[148] In nor-
mal pregnancy, the size of peripheral blood TH17 cells decrease, 
but in PE cases, this change is not observed, being higher in the 
peripheral blood and decidua.[149]

Only one SNP has been reported affecting the expression of 
IL-17, causing recurrent pregnancy loss.[150] There is an asso-
ciation between the heterozygous GA and the minor allele A 
at position -197 and PE in Chinese women, and is related to 
high levels of IL-17A production compared with the control 
group.[80] However, another studies did not found association 
with PE in Chinese and Iranian population (Table 2).

2.4.2. IL-22 Interleukin-22 cytokine (IL-22) is a member of the 
IL-10 family (along with IL-10, IL-19, IL-20, IL-24, IL-26, IL-28, 
and IL-29). IL-22 is key for the host defense against extracellular 
pathogens at mucosal surfaces strengthening epithelial barrier 

Authors 
Population 

studied 
Population 

size Methodology SNP Finding 

  Previtera and 
Restaino§

Italian SPE: 20
Ctl: 10

Sanger sequencing rs1800872 No association was observed in -592A/C

  Pinheiro et al[48] Brazilian SPE: 116
Ctl: 107
NP: 58

PCR-SSP rs1800896 No association in -1082G/A SNP and PE was observed

  Sowmya et al§§ Indian PE: 88
Ctl: 100

ARMS-PCR rs1800896 No association was observed in -1082G/A and risk of PE

  de Lima et al[56] Brazilian PE: 92
E: 73

Ctl: 101

PCR-SSP rs1800871
rs1800896
rs1800872

No association between -819T/C, -1082G/A 
and - 592A/C polymorphisms and PE was observed

  Valencia Villalvazo 
et al‡‡

Mexican PE: 411
Ctl: 613

RT-PCR rs1800896 SNP in -1082G/A was no association with PE women

  Stonek et al† Austrian PE: 107
Ctl: 107

Multiplex PCR rs1800896 IL-10 G-1082A was no associated with PE

  Haggerty et al[82] American PE: 150
Ctl: 661

TaqMan rs1800871
rs1800896

There were no differences in -819C/T and -1082G/A 
allele distribution

IL-17A
  Lang et al[80] Chinese PE: 120

Ctl: 120
NP: 150

PCR-RFLP rs1974226
rs3748067

No significant genetic association were observed in the 
distribution *1245C/T and 1249C/T and risk of PE

  Wang et al‖‖ Chinese PE: 1031
Ctl: 1.298

RT- PCR Allele 
Discrimination

rs2275913 -197A/G was no associated with risk of PE

  Anvari et al[83] Iranian PE: 261
Ctl: 278

PCR-RFLP rs2275913 No significant differences in genotypic and allelic 
frequencies was found in -197A/G

Ctl = control (normotensive pregnancy), E = Eclampsia, GH = gestational hypertension, NP = Non-pregnant women, PE = preeclampsia, SNP = single nucleotide polymorphism, SPE = Severe preeclampsia. 
*Livingston JC, Park V, Barton JR, et al. Lack of association of severe preeclampsia with maternal and fetal mutant alleles for tumor necrosis factor alpha and lymphotoxin alpha genes and plasma tumor 
necrosis factor alpha levels. Am J Obstet Gynecol. 2001;184:1273–7. 
†Stonek F, Hafner E, Metzenbauer M, et al. Absence of an association of tumor necrosis factor (TNF)-alpha G308A, interleukin-6 (IL-6) G174C and interleukin-10 (IL-10) G1082A polymorphism in women 
with preeclampsia. J Reprod Immunol. 2008;77:85–90.
‡Freeman DJ, McManus F, Brown EA, et al. Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. Hypertension (Dallas, Tex: 1979). 2004;44:708–14.
§Previtera F, Restaino S. Gene polymorphism in five target genes of immunosuppressive therapy and risk of development of preeclampsia.Healthcare (Basel). 2021;9:821.
‖Heiskanen J, Romppanen EL , Hiltunen M, et al. Polymorphism in the tumor necrosis factor-alpha gene in women with preeclampsia. J Assist Reprod Genet. 2002;19:220–3. 
¶Saarela T, Hiltunen M, Helisalmi S, et al. Polymorphisms of interleukin-6 , hepatic lipase and calpain-10 genes, and preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2006;128:175–9.
#Harmon QE, Engel SM, Wu MC, et al. Polymorphisms in inflammatory genes are associated with term small for gestational age and preeclampsia. Am J Reprod Immunol. 2014;71:472–84.
**Bayoumy NM, Al-Sharaidh AS, Babay ZH, et al. The role of interleukin-6 promoter polymorphism -174G/C in Saudi women with hypertensive disorders of pregnancy. Saudi Med J. 2013;34:689–94.
††Stonek F, Metzenbauer M, Hafner E, et al. Interleukin 6 -174 G/C promoter polymorphism and pregnancy complications: results of a prospective cohort study in 1626 pregnant women. Am J Reprod 
Immunol. 2008;59:347–51.
‡‡Valencia Villalvazo EY, Canto-Cetina T, Romero Arauz JF, et al. Analysis of polymorphisms in interleukin-10, interleukin-6, and interleukin-1 receptor antagonist in Mexican-Mestizo women with pre-
eclampsia. Genet Test Mol Biomarkers. 2012;16:1263–9.
§§Sowmya S, Ramaiah A, Sunitha T, et al. Evaluation of interleukin-10 (G-1082A) promoter polymorphism in preeclampsia. J Reprod Infertil. 2013;14:62–6.
‖‖Wang H, Guo M, Liu F, et al. Role of IL-17 variants in preeclampsia in Chinese Han Women. PloS One. 2015;10:e0140118. 

Table2
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functions and is involved in tissue homeostasis, tissue repair and 
wound healing.[151] Although IL-22 is classified a Th17 cytokine, 
since is mostly coexpressed with IL-17 can be produced by a wide 
variety of cells from adaptive and the innate immune system: 
CD4+ T cells (Th1, Th17, T helper 22; Th22), CD8+ T cells (Tc17, 
Tc22) γδT cells, natural killer T (NKT) cells, lymphoid tissue 
inducer (LTi) cells, and certain NK cell subset.[152,153]

IL-22 has been related to PE. For instance, IL-22 concentra-
tion is significantly higher in PE patients group compared with 
the control group, resulting in the predominance of Th17- and 
Th22-mediated immunity in PE. This suggests that the immune 
imbalance among CD4 + T helper cells could lead to PE through 
placental ischemia.[154] Also, Stefańska et al,[155] showed that the 
IL-22, MDC, and IL2/IL-4 ratio can be used to discriminate 
between PE, gestation hypertension and healthy pregnancy.

As for IL-17, only one SNP has been reported affecting the 
expression of IL-22 (rs2227485) involved in the development of 
PE in the Chinese Han population. Significant differences were 
found between PE patients and controls for this SNP in terms of 
genotypic frequencies (P < .001). Then rs2227485 was assessed 
under the dominant model of the C allele (CC/CT + TT genotype) 
or the recessive model of the T allele (TT/CC + CT genotype), and 
observed a significant difference under the recessive model of the 
T allele (P < .001, OR = 0.620, 95% CI 0.495–0.776).[81]

3. Discussions
Pathophysiology of PE is multifactorial, being the abnormal 
placentation a key factor that can trigger endothelial system 

dysfunction and dysregulation of the inflammatory process. 
Nevertheless, genetic aspects also play a very important role in 
the development of PE.

PE is a complex and multi-symptomatic disease in which 
onset time, severity, and development can be a reflex of mul-
tiple genotypes. In this regard, considering that cytokines are 
involved in PE pathogenesis and that cytokine gene polymor-
phism may affect cytokine production it is obvious to seek for 
association between these candidate SNPs and PE.

Until now, SNPs in IFN-γ, TNF-α, IL-4, IL-6, IL-10, 
IL-17A, and IL-22 have shown a clear association with the 
development, early-onset, and severity of PE. In this regard, 
Th1, Th2, and Th17 responses are modified by the pres-
ence of these SNPs, affecting processes such as placentation, 
control of inflammation, and vascular function (Fig.  2). 
Nevertheless, association studies have shown different results 
depending on sample size, diagnostic, and population. More 
extensive studies could help to have more accurate conclu-
sions about how cytokine genotypes should be considered in 
clinical practice since PE remains a very serious public health 
problem.

4. Conclusions
SNPs in IFN-γ, TNF-α, IL-4, IL-6, IL-10, IL-17A, and IL-22 
have a clear association with the development, early-onset and 
severity of PE, modifying the Th1, Th2, and Th17 responses, 
affecting processes such as placentation, control of inflamma-
tion, and vascular function. Nevertheless, association studies 

Figure 2. SNPs in IFN-γ, TNF-α, IL-4, IL-6, IL-10, IL-17A, and IL-22 have a clear association with the development, early-onset and severity of PE, modifying 
the Th1, Th2, and Th17 responses, affecting processes such as placentation, control of inflammation, and vascular function, which in turn affects organs such 
as kidney, liver and brain. This Altered production of immunoregulatory cytokines, a disbalance in angiogenic factors and maternal inflammatory response are 
responsible of PE severity. IFN-γ = interferon-gamma, IL-4 = interleukin 4, IL-6 = interleukin 6, IL-10 = interleukin 10, IL-17A = interleukin 17A, IL-22 = interleukin 
22, PE = preeclampsia, SNP = single nucleotide polymorphism, Th1 = T helper 1, Th2 = T helper 2, Th17 = T helper 17.
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have shown different results depending on sample size, diagnos-
tic, and population.
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