data reports

OPEN access

Crystal structure of (2-{[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl](5methyl-2H-pyrrol-2-ylidene)methyl}-5methyl-1*H*-pyrrolido- $\kappa^2 N, N'$)difluoridoboron

Yukio Morimoto,^a* Keizo Ogawa,^b Yoshihiro Uto,^c Hideko Nagasawa^d and Hitoshi Hori^e

^aResearch Reactor Institute, Kyoto University, 2-1 Asashiro-Nishi, Kumatori, Osaka 590-0494, Japan, ^bNihon University Junior College, 7-24-1 Narashinodai, Funabashi, Chiba 274-8501, Japan, CDepartment of Engineering, The University of Tokushima, Minami-Josanjima, Tokushima 770-8506, Japan, ^dLaboratory of Pharmaceutical & Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan, and ^eNiigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan. *Correspondence e-mail: morimoto@rri.kyoto-u.ac.jp

Received 18 August 2015; accepted 23 August 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The title compound, $C_{25}H_{31}BF_2N_2O$, is a potential boron tracedrug in boron neutron capture therapy (BNCT), in which the B atom adopts a distorted BN2F2 tetrahedral geometry: it is soluble in dimethyl sulfoxide, dimethylformamide and methanol. The pyrrolylidenemethylpyrrole triple fused ring system is almost planar (r.m.s. deviation = 0.031 Å) and subtends a dihedral angle of $47.09 (5)^{\circ}$ with the plane of the pendant phenol ring. The phenol -OH group is blocked from forming hydrogen bonds by the adjacent bulky tert-butyl groups. In the crystal, inversion dimers linked by pairs of very weak C-H···F interactions generate $R_2^2(22)$ loops.

Keywords: crystal structure; boron tracedrug; boron neutron capture therapy (BNCT).

CCDC reference: 1420063

1. Related literature

For background to tracer compounds for BNCT, see: Hori et al. (2010, 2012). For further synthetic details, see: Nakata et al. (2011).

2. Experimental

2.1. Crystal data

C25H31BF2N2O $M_r = 424.34$ Triclinic, P1 a = 9.2518 (2) Å b = 10.0975 (2) Å c = 12.5142 (3) Å $\alpha = 79.364~(6)^{\circ}$ $\beta = 89.613 \ (6)^{\circ}$

2.2. Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) $T_{\min} = 0.749, \ T_{\max} = 0.973$

$\gamma = 83.367 \ (6)^{\circ}$
$V = 1141.18 (5) \text{ A}^3$
Z = 2 Cu K aradiation
$\mu = 0.69 \text{ mm}^{-1}$
T = 296 K
$0.16 \times 0.08 \times 0.04 \text{ mm}$

13606 measured reflections 4044 independent reflections 3644 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{\rm int} = 0.026$

2.3. Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.115$ S = 1.09 4044 reflections	289 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.29 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.20 \text{ e } \text{\AA}^{-3}$
4044 reflections	$\Delta \rho_{\rm max} = 0.29 \text{ e A}$ $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C12-H12C\cdots F2^{i}$	0.96	2.54	3.4464 (18)	158
Symmetry code: (i) $-x$	+1, -y + 2, -	-z + 1.		

Data collection: RAPID-AUTO (Rigaku, 2011); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2011); software used to prepare material for publication: CrystalStructure.

Acknowledgements

The authors thank Dr Akihito Yamano (Rigaku Co. Ltd) for his kind technical support of data collection, and YM is grateful to the Grant-in-Aid for the project of a molecular mechanism of emotional control (Customer Care Plan 2014, 2015).

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7487).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Hori, H., Uto, Y. & Nakata, E. (2010). Anticancer Res. 30, 3233-3242.
- Hori, H., Uto, Y. & Nakata, E. (2012). Anticancer Res. 32, 2235-2239.
- Nakata, E., Koizumi, M., Yamashita, Y., Onaka, K., Sakurai, Y., Kondo, N., Ono, K., Uto, Y. & Hori, H. (2011). *Anticancer Res.* **31**, 2477–2481.
- Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2011). RAPID-AUTO and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2015). E71, o694–o695 [doi:10.1107/S2056989015015789]

Crystal structure of 2-{[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl](5-methyl-2*H*-pyrrol-2-ylidene)methyl}-5-methyl-1*H*-pyrrolido- $\kappa^2 N, N'$]difluoridoboron

Yukio Morimoto, Keizo Ogawa, Yoshihiro Uto, Hideko Nagasawa and Hitoshi Hori

S1. Chemical context

\ For the synthesis of 2-{[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl](5-methyl-2*H*-pyrrol-2-\ ylidene)methyl}-5methyl-1*H*-pyrrolido- $\kappa^2 N, N'$]\ difluoridoboron see: Nakata, *et al.* (2011). The compound: CAS Registry Number 1415304-92-5. The ring compound binding BF₂ is a contracted form given in IUPAC.

S2. Structural commentary

The traceability of boron tracedrugs is based on the neutron capture activity of the stable isotope boron-10 embedded in the drug. Thus, newly designed boron tracedrugs would be novel pharmaceuticals, the structures of which would always include natural boron (B^{11} , 80.4%; B^{10} , 19.6%), as tracers, embedded deeply in their skeletons or scaffolds. The compound is used at a cancer therapy by an irradiation of neutron, since B^{10} atom generates a high energy alpha-line within a cancer cell by fission of the atom. The compound is required to keep a suitable three-dimensional structure until reaching cancer cell via intravenous injection and an irradiation of neutron. Our group has developed boron tracedrugs in use of boron-neutron reaction (Hori, *et al.* 2010, 2012), in this study a suitable compound has been reported and presents that two bulky rings tilt each other to avoid steric hindrance.

S3. Synthesis and crystallization

Crystals were obtained from methanol solvent at room temperature by slow evaporation. Crystal structure has no present of solvent molecule. The synthesis of the title compound was decribed by Nakata *et al.* (2011). The compound: CAS Registry Number 1415304-92-5. The ring compound binding BF_2 is a contracted form given in IUPAC.

S4. Refinement

All hydrogen atoms were placed in the calculated positions and constrained their parent atoms with a C—H distances of 0.95 Å (aromatic) and 0.99 Å (methylene) and with Uiso(H) = 1.2Ueq(C), and 0.98 Å for CH3 [Uiso(H)= 1.5Ueq(C)].

Figure 1

Figure 1

Molecular structure of the compound. Displacement ellipsoids are shown at the 50% probability level. H atoms are depicted as small spheres of arbitrary radius.

$(2-\{[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](5-methyl-2H-pyrrol-2-ylidene)methyl\}-5-methyl-1H-pyrrolido-\kappa^2N,N') difluoridoboron$

Crystal data	
$C_{25}H_{31}BF_{2}N_{2}O$ $M_{r} = 424.34$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 9.2518 (2) Å b = 10.0975 (2) Å c = 12.5142 (3) Å a = 79.364 (6)° $\beta = 89.613$ (6)° $\gamma = 83.367$ (6)° V = 1141.18 (5) Å ³	Z = 2 F(000) = 452.00 $D_x = 1.235 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54187 \text{ Å}$ Cell parameters from 11333 reflections $\theta = 3.6-68.2^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$ T = 296 K Platelet, orange $0.16 \times 0.08 \times 0.04 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.000 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Rigaku, 1995) $T_{min} = 0.749, T_{max} = 0.973$ 13606 measured reflections	4044 independent reflections 3644 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.026$ $\theta_{max} = 67.5^\circ, \ \theta_{min} = 3.6^\circ$ $h = -10 \rightarrow 10$ $k = -12 \rightarrow 12$ $l = -14 \rightarrow 14$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.115$ S = 1.09 4044 reflections 289 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0594P)^2 + 0.4471P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29$ e Å ⁻³ $\Delta\rho_{min} = -0.20$ e Å ⁻³

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
F1	0.16643 (10)	0.79448 (8)	0.09158 (7)	0.0297 (2)
F2	0.39555 (10)	0.84379 (8)	0.11327 (7)	0.0294 (2)
01	0.22265 (12)	0.68344 (10)	0.86928 (8)	0.0231 (2)
N1	0.30765 (13)	0.67065 (12)	0.24855 (9)	0.0191 (3)
N2	0.21212 (13)	0.91383 (12)	0.23671 (9)	0.0193 (3)
C1	0.23318 (15)	0.70635 (14)	0.75831 (11)	0.0181 (3)
C2	0.18152 (15)	0.60808 (13)	0.70604 (11)	0.0183 (3)
C3	0.18647 (15)	0.63023 (14)	0.59314 (11)	0.0187 (3)
C4	0.24376 (15)	0.74233 (13)	0.53267 (11)	0.0185 (3)
C5	0.29681 (15)	0.83469 (14)	0.58803 (11)	0.0188 (3)
C6	0.29266 (15)	0.82094 (13)	0.70055 (11)	0.0185 (3)
C7	0.12345 (16)	0.47938 (14)	0.76987 (11)	0.0203 (3)
C8	-0.00798 (17)	0.51496 (15)	0.83913 (12)	0.0263 (3)
C9	0.24586 (17)	0.39358 (14)	0.84310 (12)	0.0252 (3)
C10	0.07400 (18)	0.38987 (15)	0.69353 (12)	0.0257 (3)
C11	0.34936 (16)	0.92882 (14)	0.75712 (11)	0.0207 (3)
C12	0.47337 (17)	0.86627 (15)	0.83888 (12)	0.0264 (3)
C13	0.22373 (18)	1.00162 (15)	0.81377 (13)	0.0267 (3)
C14	0.41194 (18)	1.03996 (15)	0.67502 (12)	0.0274 (3)
C15	0.24904 (15)	0.76195 (14)	0.41279 (11)	0.0189 (3)
C16	0.30154 (15)	0.65409 (14)	0.36187 (11)	0.0189 (3)
C17	0.35863 (16)	0.51942 (14)	0.40509 (12)	0.0219 (3)
C18	0.39704 (17)	0.45610 (15)	0.31931 (12)	0.0241 (3)
C19	0.36563 (16)	0.55126 (14)	0.22312 (12)	0.0213 (3)
C20	0.16017 (16)	1.04503 (14)	0.19924 (12)	0.0218 (3)
C21	0.11602 (16)	1.10733 (15)	0.28709 (12)	0.0235 (3)
C22	0.14065 (16)	1.01132 (14)	0.38080 (12)	0.0218 (3)
C23	0.20257 (15)	0.88981 (14)	0.34988 (11)	0.0192 (3)
C24	0.38939 (18)	0.53166 (16)	0.10909 (12)	0.0259 (3)
C25	0.15235 (18)	1.10739 (15)	0.08147 (12)	0.0264 (3)
B1	0.27066 (19)	0.80652 (16)	0.16769 (13)	0.0209 (3)
H1	0.24213	0.7504	0.8922	0.0277*
H3	0.15046	0.56837	0.55667	0.0224*
Н5	0.33661	0.90855	0.5481	0.0225*
H8A	-0.03914	0.43306	0.87955	0.0316*
H8B	-0.08608	0.56366	0.79254	0.0316*
H8C	0.01911	0.5704	0.88858	0.0316*
H9A	0.21123	0.31164	0.88038	0.0302*
H9B	0.2753	0.44429	0.89533	0.0302*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9C	0.32743	0.37128	0.79929	0.0302*
H10A	-0.002	0.44051	0.64586	0.0308*
H10B	0.03821	0.31134	0.73579	0.0308*
H10C	0.15488	0.36182	0.65121	0.0308*
H12A	0.55293	0.8262	0.80142	0.0317*
H12B	0.43873	0.79781	0.8935	0.0317*
H12C	0.50577	0.93581	0.87267	0.0317*
H13A	0.25886	1.07288	0.84391	0.0320*
H13B	0.18676	0.93777	0.87091	0.0320*
H13C	0.14735	1.03955	0.76174	0.0320*
H14A	0.49141	0.99973	0.63759	0.0329*
H14B	0.44603	1.10512	0.71286	0.0329*
H14C	0.33743	1.08438	0.62338	0.0329*
H17	0.36849	0.48053	0.47844	0.0262*
H18	0.43675	0.36626	0.32406	0.0289*
H21	0.0771	1.1973	0.28295	0.0282*
H22	0.12026	1.02419	0.45129	0.0261*
H24A	0.43805	0.60446	0.07017	0.0311*
H24B	0.29725	0.531	0.0745	0.0311*
H24C	0.44821	0.44688	0.10904	0.0311*
H25A	0.08056	1.06873	0.04575	0.0316*
H25B	0.2455	1.09007	0.04932	0.0316*
H25C	0.12595	1.20352	0.07348	0.0316*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0432 (6)	0.0228 (4)	0.0232 (5)	-0.0056 (4)	-0.0130 (4)	-0.0026 (3)
F2	0.0376 (5)	0.0257 (5)	0.0273 (5)	-0.0101 (4)	0.0142 (4)	-0.0075 (4)
01	0.0345 (6)	0.0206 (5)	0.0158 (5)	-0.0088(4)	0.0015 (4)	-0.0040 (4)
N1	0.0194 (6)	0.0217 (6)	0.0168 (6)	-0.0031 (5)	0.0001 (5)	-0.0048 (5)
N2	0.0195 (6)	0.0208 (6)	0.0173 (6)	-0.0034 (5)	0.0001 (5)	-0.0018 (5)
C1	0.0189 (7)	0.0192 (7)	0.0155 (7)	0.0005 (5)	0.0001 (5)	-0.0027 (5)
C2	0.0172 (7)	0.0167 (7)	0.0199 (7)	-0.0008(5)	0.0001 (5)	-0.0018 (5)
C3	0.0194 (7)	0.0183 (7)	0.0190 (7)	-0.0021 (5)	-0.0009 (5)	-0.0051 (5)
C4	0.0182 (7)	0.0189 (7)	0.0183 (7)	-0.0010 (5)	0.0008 (5)	-0.0037 (5)
C5	0.0185 (7)	0.0181 (7)	0.0191 (7)	-0.0022 (5)	0.0014 (5)	-0.0014 (5)
C6	0.0176 (7)	0.0182 (7)	0.0198 (7)	-0.0009 (5)	-0.0003 (5)	-0.0042 (5)
C7	0.0248 (8)	0.0178 (7)	0.0183 (7)	-0.0047 (6)	-0.0001 (6)	-0.0021 (5)
C8	0.0284 (9)	0.0232 (7)	0.0274 (8)	-0.0073 (6)	0.0057 (6)	-0.0021 (6)
C9	0.0321 (9)	0.0182 (7)	0.0242 (8)	-0.0032 (6)	-0.0039 (6)	-0.0008 (6)
C10	0.0325 (9)	0.0218 (7)	0.0239 (8)	-0.0099 (6)	-0.0005 (6)	-0.0027 (6)
C11	0.0258 (8)	0.0186 (7)	0.0188 (7)	-0.0054 (6)	0.0004 (6)	-0.0045 (6)
C12	0.0302 (9)	0.0247 (8)	0.0259 (8)	-0.0080 (6)	-0.0040 (6)	-0.0058 (6)
C13	0.0348 (9)	0.0199 (7)	0.0274 (8)	-0.0050 (6)	0.0054 (7)	-0.0085 (6)
C14	0.0363 (9)	0.0245 (8)	0.0241 (8)	-0.0133 (7)	0.0010 (7)	-0.0056 (6)
C15	0.0160 (7)	0.0217 (7)	0.0195 (7)	-0.0055 (5)	-0.0001 (5)	-0.0034 (6)
C16	0.0188 (7)	0.0234 (7)	0.0151 (7)	-0.0051 (6)	-0.0002 (5)	-0.0036 (5)

supporting information

C17	0.0218 (8)	0.0241 (7)	0.0187 (7)	-0.0011 (6)	-0.0014 (6)	-0.0025 (6)
C18	0.0253 (8)	0.0211 (7)	0.0248 (8)	0.0027 (6)	-0.0003 (6)	-0.0048 (6)
C19	0.0194 (8)	0.0239 (7)	0.0212 (7)	-0.0015 (6)	0.0006 (6)	-0.0065 (6)
C20	0.0196 (8)	0.0220 (7)	0.0225 (7)	-0.0029 (6)	-0.0013 (6)	-0.0005 (6)
C21	0.0239 (8)	0.0198 (7)	0.0257 (8)	0.0010 (6)	0.0000 (6)	-0.0034 (6)
C22	0.0219 (8)	0.0245 (7)	0.0193 (7)	-0.0019 (6)	0.0017 (6)	-0.0053 (6)
C23	0.0190 (7)	0.0220 (7)	0.0170 (7)	-0.0044 (6)	0.0007 (5)	-0.0035 (5)
C24	0.0285 (8)	0.0277 (8)	0.0219 (8)	0.0006 (6)	0.0021 (6)	-0.0078 (6)
C25	0.0308 (9)	0.0245 (8)	0.0218 (8)	-0.0009 (6)	-0.0013 (6)	-0.0005 (6)
B1	0.0268 (9)	0.0209 (8)	0.0159 (8)	-0.0063 (7)	0.0005 (6)	-0.0034 (6)

Geometric parameters (Å, °)

1.391 (2)	C22—C23	1.412 (2)
1.391 (2)	O1—H1	0.820
1.3698 (17)	С3—Н3	0.930
1.3985 (18)	С5—Н5	0.930
1.3536 (19)	C8—H8A	0.960
1.5515 (18)	C8—H8B	0.960
1.3537 (17)	C8—H8C	0.960
1.3960 (18)	С9—Н9А	0.960
1.555 (2)	С9—Н9В	0.960
1.412 (2)	С9—Н9С	0.960
1.4132 (19)	C10—H10A	0.960
1.3904 (19)	C10—H10B	0.960
1.5453 (19)	C10—H10C	0.960
1.3971 (19)	C12—H12A	0.960
1.393 (2)	C12—H12B	0.960
1.4778 (19)	C12—H12C	0.960
1.3899 (19)	C13—H13A	0.960
1.544 (2)	С13—Н13В	0.960
1.536 (2)	C13—H13C	0.960
1.5386 (19)	C14—H14A	0.960
1.536 (2)	C14—H14B	0.960
1.540 (2)	C14—H14C	0.960
1.542 (2)	С17—Н17	0.930
1.538 (2)	C18—H18	0.930
1.399 (2)	C21—H21	0.930
1.4045 (18)	C22—H22	0.930
1.4096 (18)	C24—H24A	0.960
1.372 (2)	C24—H24B	0.960
1.4036 (19)	C24—H24C	0.960
1.488 (2)	C25—H25A	0.960
1.400 (2)	C25—H25B	0.960
1.491 (2)	C25—H25C	0.960
1.3784 (19)		
107.94 (11)	С4—С3—Н3	118.911
	$\begin{array}{c} 1.391 \ (2) \\ 1.391 \ (2) \\ 1.391 \ (2) \\ 1.3698 \ (17) \\ 1.3985 \ (18) \\ 1.3536 \ (19) \\ 1.5515 \ (18) \\ 1.3537 \ (17) \\ 1.3960 \ (18) \\ 1.555 \ (2) \\ 1.412 \ (2) \\ 1.4132 \ (19) \\ 1.3904 \ (19) \\ 1.5453 \ (19) \\ 1.3904 \ (19) \\ 1.5453 \ (19) \\ 1.3971 \ (19) \\ 1.393 \ (2) \\ 1.4778 \ (19) \\ 1.393 \ (2) \\ 1.4778 \ (19) \\ 1.3899 \ (19) \\ 1.544 \ (2) \\ 1.536 \ (2) \\ 1.536 \ (2) \\ 1.540 \ (2) \\ 1.542 \ (2) \\ 1.542 \ (2) \\ 1.542 \ (2) \\ 1.542 \ (2) \\ 1.542 \ (2) \\ 1.542 \ (2) \\ 1.542 \ (2) \\ 1.544 \ (18) \\ 1.4096 \ (18) \\ 1.372 \ (2) \\ 1.4036 \ (19) \\ 1.488 \ (2) \\ 1.400 \ (2) \\ 1.491 \ (2) \\ 1.3784 \ (19) \\ 107.94 \ (11) \end{array}$	1.391(2) $C22-C23$ $1.391(2)$ $O1-H1$ $1.3698(17)$ $C3-H3$ $1.3985(18)$ $C5-H5$ $1.3536(19)$ $C8-H8A$ $1.5515(18)$ $C8-H8B$ $1.3537(17)$ $C8-H8C$ $1.3960(18)$ $C9-H9A$ $1.555(2)$ $C9-H9B$ $1.412(2)$ $C9-H9C$ $1.412(2)$ $C9-H9C$ $1.412(2)$ $C9-H9C$ $1.412(2)$ $C9-H9C$ $1.412(2)$ $C9-H9C$ $1.412(2)$ $C9-H9C$ $1.4132(19)$ $C10-H10A$ $1.3904(19)$ $C10-H10B$ $1.5453(19)$ $C12-H12A$ $1.393(2)$ $C12-H12A$ $1.393(2)$ $C12-H12B$ $1.4778(19)$ $C12-H12A$ $1.3899(19)$ $C13-H13A$ $1.544(2)$ $C13-H13B$ $1.536(2)$ $C14-H14B$ $1.536(2)$ $C14-H14B$ $1.540(2)$ $C14-H14C$ $1.542(2)$ $C17-H17$ $1.538(2)$ $C18-H18$ $1.399(2)$ $C21-H21$ $1.4045(18)$ $C22-H22$ $1.4096(18)$ $C24-H24A$ $1.372(2)$ $C24-H24B$ $1.4006(19)$ $C24-H24C$ $1.488(2)$ $C25-H25B$ $1.491(2)$ $C25-H25C$ $1.3784(19)$ $C1-G3-H3$

C1(N1 D1	125 50 (12)	CA C5 115	110 (75
CI6—NI—BI	125.50 (12)	С4—С5—Н5	118.675
C19—N1—B1	126.23 (12)	С6—С5—Н5	118.675
C20—N2—C23	107.87 (12)	С7—С8—Н8А	109.472
C20—N2—B1	126.91 (11)	С7—С8—Н8В	109.471
C23—N2—B1	125.21 (11)	C7—C8—H8C	109.472
O1—C1—C2	115.70 (12)	H8A—C8—H8B	109.462
O1—C1—C6	121.79 (13)	H8A—C8—H8C	109.480
C2—C1—C6	122.51 (13)	H8B—C8—H8C	109.471
C1—C2—C3	117.24 (12)	С7—С9—Н9А	109.472
C1—C2—C7	122.35 (12)	С7—С9—Н9В	109.469
C3—C2—C7	120.40 (13)	С7—С9—Н9С	109.475
C2—C3—C4	122.18 (14)	H9A—C9—H9B	109.473
C3—C4—C5	118.46 (13)	Н9А—С9—Н9С	109.469
C3—C4—C15	120.80 (13)	H9B—C9—H9C	109.470
C5—C4—C15	120.73 (12)	C7—C10—H10A	109.472
C4—C5—C6	122.65 (13)	C7—C10—H10B	109.473
C1 - C6 - C5	116.91 (13)	C7—C10—H10C	109.472
$C_1 - C_6 - C_{11}$	122 82 (12)	H10A - C10 - H10B	109.172
C_{5}	122.02(12) 120.27(12)	H10A - C10 - H10C	109.172
$C_2 C_7 C_8$	120.27(12) 111.62(11)	HIOR CIO HIOC	109.404
$C_2 = C_7 = C_8$	111.02(11) 100.37(12)	$C_{11} C_{12} H_{12A}$	109.474
$C_2 = C_7 = C_9$	109.57(12) 111.74(11)	C11 C12 H12R	109.407
$C_{2} - C_{7} - C_{10}$	100.80 (11)	C11 - C12 - H12C	109.473
$C_{0} = C_{1} = C_{2}$	109.89 (11)		109.474
$C_{0} = C_{1} = C_{10}$	107.04 (13)	H12A - C12 - H12B	109.472
$C_{2} = C_{1} = C_{10}$	107.06 (12)	H12A - C12 - H12C	109.466
	111.63 (11)	HI2B—CI2—HI2C	109.475
C6C11C13	110.32 (12)	CII—CI3—HI3A	109.473
C6—C11—C14	111.71 (12)	C11—C13—H13B	109.475
C12—C11—C13	110.63 (12)	C11—C13—H13C	109.468
C12—C11—C14	106.21 (12)	H13A—C13—H13B	109.476
C13—C11—C14	106.14 (11)	H13A—C13—H13C	109.463
C4—C15—C16	120.26 (11)	H13B—C13—H13C	109.472
C4—C15—C23	119.79 (13)	C11—C14—H14A	109.471
C16—C15—C23	119.95 (12)	C11—C14—H14B	109.473
N1-C16-C15	121.13 (11)	C11—C14—H14C	109.466
N1-C16-C17	107.58 (13)	H14A—C14—H14B	109.468
C15—C16—C17	131.26 (13)	H14A—C14—H14C	109.475
C16—C17—C18	107.60 (12)	H14B—C14—H14C	109.473
C17—C18—C19	107.72 (13)	C16—C17—H17	126.206
N1-C19-C18	109.16 (13)	C18—C17—H17	126.198
N1—C19—C24	122.81 (12)	C17—C18—H18	126.137
C18—C19—C24	128.03 (13)	C19—C18—H18	126.139
N2—C20—C21	109.37 (12)	C20—C21—H21	126.155
N2-C20-C25	123.17 (14)	C22—C21—H21	126.156
C21—C20—C25	127.45 (12)	C21—C22—H22	126.369
C20-C21-C22	107.69 (13)	C23—C22—H22	126.370
$C_{21} - C_{22} - C_{23}$	107 26 (13)	C19—C24—H24A	109 466
N2-C23-C15	121 42 (13)	C19-C24-H24R	109.400
	141,14 (13)	C_{1} C_{2} Π_{2} Π_{2}	107.7/1

N2—C23—C22	107.79 (11)	C19—C24—H24C	109.467
C15—C23—C22	130.78 (13)	H24A—C24—H24B	109.474
F1—B1—F2	108.79 (12)	H24A—C24—H24C	109.473
F1—B1—N1	110.89 (13)	H24B—C24—H24C	109.476
F1—B1—N2	110.50 (12)	C20—C25—H25A	109.472
F2—B1—N1	109.74 (12)	C20—C25—H25B	109.473
F2—B1—N2	110.35 (13)	С20—С25—Н25С	109.478
N1—B1—N2	106.56 (11)	H25A—C25—H25B	109.464
C1—O1—H1	109.476	H25A—C25—H25C	109.468
С2—С3—Н3	118.907	H25B—C25—H25C	109.473
C16—N1—C19—C18	0.27 (15)	C1—C2—C7—C10	179.90 (11)
C16—N1—C19—C24	-179.62 (12)	C3—C2—C7—C8	-120.82 (13)
C19—N1—C16—C15	178.62 (12)	C3—C2—C7—C9	117.35 (13)
C19—N1—C16—C17	0.15 (15)	C3—C2—C7—C10	-1.00 (17)
C16—N1—B1—F1	-125.79 (14)	C7—C2—C3—C4	-177.28 (10)
C16—N1—B1—F2	113.99 (15)	C2—C3—C4—C5	-0.29 (19)
C16—N1—B1—N2	-5.49 (19)	C2—C3—C4—C15	179.24 (11)
B1—N1—C16—C15	4.9 (2)	C3—C4—C5—C6	-1.14 (19)
B1—N1—C16—C17	-173.54 (12)	C3—C4—C15—C16	-47.14 (18)
C19—N1—B1—F1	61.66 (19)	C3—C4—C15—C23	133.53 (13)
C19—N1—B1—F2	-58.56 (19)	C5—C4—C15—C16	132.38 (13)
C19—N1—B1—N2	-178.04 (12)	C5—C4—C15—C23	-46.95 (18)
B1—N1—C19—C18	173.90 (12)	C15—C4—C5—C6	179.33 (11)
B1—N1—C19—C24	-6.0(2)	C4—C5—C6—C1	0.86 (19)
C20—N2—C23—C15	-179.76(12)	C4—C5—C6—C11	-178.32(11)
C20—N2—C23—C22	0.77 (15)	C1—C6—C11—C12	59.64 (16)
C23—N2—C20—C21	-0.21 (16)	C1—C6—C11—C13	-63.79 (15)
C23—N2—C20—C25	-179.57(12)	C1—C6—C11—C14	178.40 (11)
$C_{20} = N_2 = B_1 = F_1$	-56.02(19)	C5—C6—C11—C12	-121.24(12)
C20 - N2 - B1 - F2	64.34 (18)	C5—C6—C11—C13	115.33 (12)
$C_{20} N_{2} B_{1} N_{1}$	-176.57(13)	C5—C6—C11—C14	-2.48(17)
B1—N2—C20—C21	179.05 (12)	C4-C15-C16-N1	-179.89(11)
B1—N2—C20—C25	-0.3(2)	C4-C15-C16-C17	-1.8(2)
C_{23} N2 B1 F1	123.11 (13)	C4-C15-C23-N2	177.05 (11)
$C_{23} = N_{2} = B_{1} = F_{2}$	-116.52(14)	C4-C15-C23-C22	-3.6(2)
$C_2 = N_2 = B_1 = N_1$	2.57 (19)	$C_{16} - C_{15} - C_{23} - N_{2}$	-2.3(2)
B1—N2—C23—C15	1.0(2)	C_{16} C_{15} C_{23} C_{22}	177.06 (13)
B1—N2—C23—C22	-178.50(12)	C_{23} — C_{15} — C_{16} — N_{1}	-0.6(2)
01-C1-C2-C3	178.10 (10)	C_{23} — C_{15} — C_{16} — C_{17}	177.49 (13)
01-C1-C2-C7	-2.77(17)	N1-C16-C17-C18	-0.52(16)
01-C1-C6-C5	-17944(10)	C_{15} C_{16} C_{17} C_{18}	-17877(14)
01-C1-C6-C11	-0.28(19)	C_{16} C_{17} C_{18} C_{19}	0.67 (17)
$C_2 - C_1 - C_6 - C_5$	0.85 (18)	C17 - C18 - C19 - N1	-0.59(17)
$C_2 - C_1 - C_6 - C_{11}$	180 00 (11)	C17 - C18 - C19 - C24	179 29 (13)
$C_{1} = C_{1} = C_{2} = C_{3}$	-2.16(19)	N_{2} C_{20} C_{21} C_{22}	-0.45(17)
C6-C1-C2-C7	176.96 (11)	C_{25} C_{20} C_{21} C_{22}	178 88 (14)
$C_1 = C_2 = C_3 = C_4$	1 87 (19)	C_{20} C_{21} C_{22} C_{23}	0.01 (16)
01 - 02 - 03 - 04	1.07 (19)	020 - 021 - 022 - 023	0.91 (10)

supporting information

C1—C2—C7—C8	60.08 (16)	C21—C22—C23—N2	-1.04 (16)
C1—C2—C7—C9	-61.75 (16)	C21—C22—C23—C15	179.55 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C12—H12 C ···F2 ⁱ	0.96	2.54	3.4464 (18)	158

Symmetry code: (i) -x+1, -y+2, -z+1.