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Abstract

Background: The reliable and robust estimation of ligand binding affinity continues to be a challenge in drug
design. Many current methods rely on molecular mechanics (MM) calculations which do not fully explain complex
molecular interactions. Full quantum mechanical (QM) computation of the electronic state of protein-ligand
complexes has recently become possible by the latest advances in the development of linear-scaling QM methods
such as the ab initio fragment molecular orbital (FMO) method. This approximate molecular orbital method is
sufficiently fast that it can be incorporated into the development cycle during structure-based drug design for the
reliable estimation of ligand binding affinity. Additionally, the FMO method can be combined with approximations
for entropy and solvation to make it applicable for binding affinity prediction for a broad range of target and
chemotypes.

Results: We applied this method to examine the binding affinity for a series of published cyclin-dependent kinase
2 (CDK2) inhibitors. We calculated the binding affinity for 28 CDK2 inhibitors using the ab initio FMO method
based on a number of X-ray crystal structures. The sum of the pair interaction energies (PIE) was calculated and
used to explain the gas-phase enthalpic contribution to binding. The correlation of the ligand potencies to the
protein-ligand interaction energies gained from FMO was examined and was seen to give a good correlation
which outperformed three MM force field based scoring functions used to appoximate the free energy of binding.
Although the FMO calculation allows for the enthalpic component of binding interactions to be understood at the
quantum level, as it is an in vacuo single point calculation, the entropic component and solvation terms are
neglected. For this reason a more accurate and predictive estimate for binding free energy was desired. Therefore,
additional terms used to describe the protein-ligand interactions were then calculated to improve the correlation
of the FMO derived values to experimental free energies of binding. These terms were used to account for the
polar and non-polar solvation of the molecule estimated by the Poisson-Boltzmann equation and the solvent
accessible surface area (SASA), respectively, as well as a correction term for ligand entropy. A quantitative structure-
activity relationship (QSAR) model obtained by Partial Least Squares projection to latent structures (PLS) analysis of
the ligand potencies and the calculated terms showed a strong correlation (r2 = 0.939, q2 = 0.896) for the 14
molecule test set which had a Pearson rank order correlation of 0.97. A training set of a further 14 molecules was
well predicted (r2 = 0.842), and could be used to obtain meaningful estimations of the binding free energy.

Conclusions: Our results show that binding energies calculated with the FMO method correlate well with
published data. Analysis of the terms used to derive the FMO energies adds greater understanding to the binding
interactions than can be gained by MM methods. Combining this information with additional terms and creating a
scaled model to describe the data results in more accurate predictions of ligand potencies than the absolute
values obtained by FMO alone.
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Background
A major goal in computational structure-based drug
design and virtual screening protocols is to accurately
predict the free energy of ligand binding to a receptor in
a timescale that is amenable to drug discovery [1]. This
is attractive for reducing costs in the discovery process
by replacing wet-lab experiments with computer simula-
tion, accelerating the discovery process and assisting in
lead optimisation [2]. A popular procedure to identify
possible lead compounds is to run a virtual screening
campaign by docking a large number of diverse com-
pounds to a receptor binding site [3]. A score is then
given to the docked pose based on a potential function
which relates the spatial orientation of a ligand in a
binding site to the free energy of binding. The scoring
functions are generally used in a qualitative manner to
rank ligand binding poses and in doing so estimate the
free energy of binding. Docking programmes are gener-
ally recognised for making reasonably successful predic-
tions of binding modes, however, the scoring functions
used to predict the binding affinity are less reliable
[4-6]. There must be a balance between the attempted
accuracy of the scoring function and the computational
time required to perform that calculation. A compro-
mise for improved accuracy at greater computational
expense can result in overly complicated and slower
functions illsuited for the turn-around times required
within a medicinal chemistry program. Methods to
develop a physically satisfying model to estimate the
free energy of ligand binding to a receptor accurately
enough to be predictive and useful, in a reasonable
amount of time, has proven challenging [7,8].
The most rigorous theoretical methods that have been

developed to estimate the free energy of binding from a
thermodynamic standpoint are based on free-energy
perturbation (FEP), thermodynamic integration (TI) and
similar methodologies [9]. These methods are still lim-
ited by their use of MM force fields, and are further
limited by high computational expense and are best sui-
ted to examining relative binding affinities of a small
number of similar ligands. A number of approximate
methods based on structural sampling, have been devel-
oped, to find appropriate stable structures and to cover
enough conformational space for entropy estimations to
be possible. These methods include linear-response
approximation (LRA), the semi-macroscopic version of
the protein-dipole Langevin-dipole approach (PDLD/S-
LRA), the linear interaction energy (LIE) and molecular
mechanics Poisson-Boltzmann surface area (MM-PBSA)
approaches [10-15]. Also, there has been some valida-
tion for the use of a single molecular conformation,
where the estimation of binding affinities is based on
either physical or statistical measures [8,16,17].

The physical methods mentioned are based on calcu-
lations with a MM force field, enabling fast energy
determination through the utilisation of extensive phase
space sampling [18,19]. Additionally, the system can be
parameterised to account for solvation effects. However,
the accuracy of the underlying force field underpins any
estimation of binding free energies [20]. Conventional
force fields are limited in that electronic effects are not
accounted for adequately. It is becoming increasingly
apparent that there are numerous kinds of non-classical
intermolecular forces, such as cation-π [21,22], dipole-π
[23], halogen-π [24], carbonyl n-π* [25], and so-called
“non-conventional hydrogen bonds”, are playing an
important role in inter- and intra-molecular interactions.
Implementation of QM chemical calculations can signif-
icantly improve the accuracy of conventional force fields
by accounting for charge transfer, polarisation effects,
dispersion and other bonding interactions with greater
rigor [26-28]. QM chemical calculations explicitly
describe these non-classical interactions whereas they
are not accounted for by MM force fields. Such QM
methods are typically based on either semi-empirical
calculations [29] or ab initio methods using fractional
approaches, e.g., the fragment molecular orbital (FMO)
method or the molecular fractionation with conjugate
caps (MFCC) and related methods [30,31]. The QM/
MM method is another method that attempts to over-
come the system size and sampling limitations of QM
methods. In QM/MM simulations, a region that requires
accurate analysis is studied quantum-mechanically, and
other regions are studied by classical force field
calculations.
Binding interaction energies can be studied in a new

light using QM methods. The charge transfer and polar-
isation effects are particularly important when studying
hydrogen bonding [32]. Many force fields treat hydrogen
bond effects through their van der Waals (vdW) and
fixed electrostatic contributions, however, hydrogen
bonding interactions are complex. Hydrogen bonds are
highly directional. There are however varying amounts
of charge transfer and polarisation energy components
that contribute to hydrogen bonding [33-35]. QM meth-
ods account for dispersion forces more adequately than
MM force fields because the electronic correlation
effects are taken into account appropriately [36]. Only
one of these previous studies has been performed at a
level (MP2/6-311(+)G(2 d.p)) for which there is hope
that dispersion and polarisation effects are treated in a
balanced and satisfactory way [37].
QM methods have begun to demonstrate their useful-

ness as scoring functions for calculating ligand binding
free energies. Semi-empirical methods have been used to
build PLS models to describe protein-ligand interactions
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[38,39], and as computer power has increased ab initio
QM methods have also been used [30,40,41]. Historically
QM methods were primarily limited to smaller systems
because of the computational expense, but these methods
are now tenable for larger systems because of the advent
of fractional QM methods. However, in order to provide
reliable ligand-binding energies, additional terms account-
ing for solvent effects, entropy, and sampling need to
be considered. Only recently has an estimate of ligand-
binding energies with realistic QM methods, which con-
sidered these factors, been published [42].
The FMO method is an attractive method for dealing

with large biomolecular systems quantum mechanically.
In the FMO method, a large molecular system is divided
into smaller fragments, and the conventional molecular
orbital calculations are performed for each fragment and
fragment pair. This QM method is gaining attention as
an accurate and fast method to correlate binding affinity
to calculated values [43-46]. We compare our results to
MM-based scoring functions and show the importance
of high level QM methods to obtain reasonable binding
energy predictions. Using only the FMO method
resulted in values for the gas phase binding interactions,
however protein-ligand interactions are more complex
than this, as illustrated in the thermodynamic cycle
shown in Figure 1. An alternative approach was then
taken to account for all aspects of the binding phenom-
enon at various levels of approximation. In an effort to
account for solvation and entropic binding events
further terms were included, together with the enthalpic
contribution of ligand binding calculated from the FMO
method, to form a scoring function. The electrostatic
interactions between the ligand and the protein and
between the solvent and the protein-ligand complex are
determined by solving the Poisson-Boltzmann equation.
An entropic term was derived from the number of rota-
table bonds present in the ligand. These terms were
then used to build a PLS model as a scoring function
to estimate the free energy of binding. The results
show that consideration of other contributing terms

pertaining to the thermodynamic cycle greatly enhances
the predictability of free energy binding models. This
was validated using a series of CDK2 inhibitors.

Computational and Experimental Details
Data Set Preparation
A database of 28 CDK2 inhibitors with experimental
binding affinity available in the literature was compiled
[47,48]. The reported IC50 (μM) values were converted
to -ln(IC50) values and the free energy of binding
(ΔGbind) was calculated according to the Eq. (1) at
310 K.

Δ Δ ΔG RT T Sbind = − −1nIC =50 H (1)

The compounds with known X-ray structures were
selected as the training set to compare the various meth-
ods used to predict the free energy of binding. In order
to effectively validate the PLS model, compounds that
were not included in the data set to obtain the model
were placed into a separate test set to assess the predic-
tive potential of the model. The distribution of the data
set into training and test sets is shown in Table 1.

Structure Preparation
The 14 X-ray structures, corresponding to the 14
ligands in the training set were obtained from the PDB
(Table 1). The remaining 14 ligands for which the X-ray
structure data was not available were modelled into one
of the 14 reported PDB structures based on ligand
structural similarity (Table 1). The protein-ligand com-
plexes were aligned in PyMOL [49]. Hydrogen atoms
were added and the protonation state of the acidic and
basic amino acid residues were adjusted at pH 7 using
the Protonate3 D tool within MOE [50]. An inclusion
sphere with a 4.5 Å radius was projected around the
bound ligands. This area defined the residues which
were to be included in the QM and MM calculations.
All water molecules were removed. The N-terminals of
the residues were capped with acetyl groups and the
C-terminal ends were N-methyl capped using the geo-
metry of the cleaved neighbouring residue as a vector to
place the capping group. Partial charges were initially
calculated to optimise the system using MM. The partial
charges for the ligand binding site were calculated using
the MMFF94x force field and the ligand partial charges
were calculated with AM1BCC charges [51,52]. The sys-
tem was geometry optimized using MMFF94x force
field in the presence of the Born continuous implicit
water model, with an internal dielectric constant of 3
and an external dielectric constant of 80. The coordi-
nates of the heavy atoms of the protein and the ligand
were held fixed and the protons were energy mini-
mised using the other default settings in MOE. The 14

Figure 1 Schematic view of the thermodynamic cycle used to
in the derivation of the binding affinity. The cycle calculates the
receptor (R), ligand (L), and complex (C) in vacuum and then
transfers them to solvent to find the solvation free energy.
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Table 1 CDK2 Inhibitor Data Set

Entry Structure PDB Resolution (Å) IC50 (μM) Gbind
Expt

1a

N
H

N
2VTA 2 185.000 -5.292

2a

NH2

S
O

O

OH 2VTH 1.9 120.000 -5.558

3a N

N
N

N

2VTM 2.25 1000.000 -4.253

4
N
H

N
Cl

N

2VTJb 7.000 -7.308

5a

NH2 S

O

O

N
H

N
Cl

N

2VTJ 2.2 1.900 -8.110

6a

N
H

Cl

N

N

N

N

2VTR 1.9 1.500 -8.256

7a

N
H

N
H

NH3

+

N

N
N

N

2VTS 1.9 0.030 -10.665

8

N
N
H

O

N
H

2VTNb 3.000 -7.829

9a

N
H

O

NNH S

O

O

NH2

2VTI 2 0.660 -8.761
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Table 1 CDK2 Inhibitor Data Set (Continued)

10a O

N
H

NN
H

2VTL 2 97.000 -5.689

11

N NHN
H

N 2VTNb 25.000 -6.524

12

NH2

NNH

O

N
H

F

2VTNb 85.000 -5.770

13a

O

NH

N
H

N

O

N
H

F

2VTN 2.2 0.850 -8.606

14

NH

NN
H

O

N
H

F

OH

O

2VTPb 0.730 -8.699

15

NH

NN
H

O

N
H

F
O

2VTTb 1.600 -8.216

16

N
H

N
N
H

O

N
H

F

O

2VTTb 0.090 -9.988

17a

F

N
H

O

N
N
H

N
H

O

2VTO 2.19 0.140 -9.716

18a

F

N
H

O

N
N
H

N
H

O

F

F

2VTP 2.15 0.003 -12.082
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Table 1 CDK2 Inhibitor Data Set (Continued)

19

NHO

N
N
H

N
H

O

F

F 2VTTb 0.025 -10.777

20

N
H

O

NN
H

NHO

F
F

2VTTb 0.012 -11.229

21

N
H

O

N
N
H

N
H

O

F

F

OH

2VTTb 0.019 -10.946

22

N
H

O

N
N
H

N
H

O

F

F

NH3

+

2VTTb 0.038 -10.519

23a

N
H

O

N
N
H

N
H

O
F

F

N
H2

+

2VTQ 1.9 0.140 -9.716

24a

N
H

O

N
N
H

N
H

O

F

F

NH2

+

2VTT 1.68 0.044 -10.429

25

N
H

O

NN
H

NHO

F
F

F

NH2

+

2VTTb 0.910 -8.564
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modelled ligands were built by manually modifying the
reference ligand and then energy minimising the ligand
whilst keeping the reference heavy atoms fixed accord-
ing to the method detailed above. Where appropriate,
charged amino acid residues were neutralised with
either a chloride anion or a lithium cation.
The FMO input files for GAMESS were prepared

using Facio (version 14.2.4) [53,54] following preproces-
sing of the structure in MOE. An example of the pro-
tein-ligand system is shown in Figure 2.

The FMO Method
The FMO method has previously been thoroughly
described [30,55-57]. Therefore, we provide only a short
summary of the method. The FMO calculations were
used to perform high-level ab initio quantum chemical
calculations at MP2/6-31G* (6-31G 3df for Cl and S)
theory level using the one-residue-per-fragment frag-
mentation scheme. All calculations were run using the
GAMESS implementation (either April 2008 or January
2009 version) [58-60].
The principle behind the FMO method is to divide a

large biomolecular system into a collection of small FMO
fragments and then perform molecular orbital calculations
for each fragment (called monomer) and fragment pair
(called dimer). Generally the system is fragmented into
amino acids residues and ligands. It should be noted that
FMO fragments differ from the standard assignment for

amino acids residues. Here, amino acids are fragmented
along the sp3 bond joining the Ca carbon to the peptide-
bond carbonyl carbon. This simple calculation scheme sig-
nificantly reduces computational time. It may be possible
that this method impairs the computational accuracy
because the covalent bonds are detached. However, in the

Table 1 CDK2 Inhibitor Data Set (Continued)

26

N
H

O

NN
H

NHO

F
O

NH2

+

2VTTb 0.052 -10.326

27

N
H

O

NN
H

NHO

F
Cl

NH2

+

2VTTb 0.063 -10.208

28a

N
H

O

N
N
H

N
H

O

N
H2

+

Cl

Cl

2VU3 1.85 0.082 -10.045

Structures of the small molecule CDK2 inhibitors are shown, together with the reference PDB structure from which the compound was extracted, the resolution
(Å) of the PDB structure, the ligand potency (IC50 in μM) and the experimental free energy of binding (kcal/mol). a) Entries which made up the training sets for
each of the MM and QM methods used to estimate the free energy of binding; b) the reference PDB structure used in the modelling the protein-ligand complex
where an experimentally determined X-ray structure was not available.

Figure 2 Orientation of the CDK2 active site in the PDB
structure 2VU3 showing the amino acid residues (grey lines)
used for the QM and MM calculations. Ligand 33 is shown as
grey sticks.
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FMO method, the accuracy is kept by employing projec-
tion operators made from the sp3 hybrid orbital.
One of the great advantages of the FMO method is

that it can be combined with a number of current
quantum chemical techniques. Thus, an appropriate
method for each system can be chosen. It was noted
that incorporation of vdW interactions is an important
consideration in studying protein-ligand interactions.
Here, the FMO method provides a useful calculation
scheme for dealing with these effects. Dispersion
energy, which can dominant in vdW interactions, is
not considered by Hartree-Fock (HF) and poorly mod-
elled by Density Functional Theory (DFT). To achieve
accurate dispersion energies correlated ab inito meth-
ods are required. Here, the second-order Møller-
Plesset (MP2) perturbation method was used as it is
the least expensive non-empirical approach. The MP2
method has been implemented in the FMO method
(FMO-MP2).
The molecular system is divided into a number of

monomer fragments and the ab inito molecular orbital
calculations on the monomers are solved repeatedly at
the HF level until all monomer densities become self-
consistent. Then the FMO-MP2 method begins with
MP2 calculations of monomers, followed by MP2 calcu-
lations of dimers. The results are used to calculate the
total energy of a system following the formula:

E E E E EFMO I IJ I J
I J

N

I

N
= + − −( )

>∑∑ (2)

where I and J run over all the of the fragments, N. The
term EI is the self-consistent field (SCF) energy of the Ith
fragment in the external Coulomb field of the other N -
1 fragments. The EIJ term is the SCF energy of the I + J
dimer in the external Coulomb field of the other N - 2
fragments. The FMO calculations can provide PIEs, also
known as inter-fragment interaction energies (IFIE),
between fragments. The PIEs are used during the analysis
of interaction between protein residues and the bound
ligand and is derived from the FMO calculation:

Δ ΔEIJ IJ I J IJ IJE E E Tr= ′ − ′ − ′( ) + ( )D V (3)

where ΔDIJ and VIJ are the difference density matrix
and the environmental electrostatic potential for dim-
mer IJ from other fragments, ′EI and ′EIJ are the mono-
mer energy and the dimer energy without environmental
electrostatic potential, respectively. The IFIE analysis can
be plotted in two-dimensions, referred to as the IFIE
map, to highlight hot-spots of protein-ligand interac-
tions [40,61-63].

Scoring Function Used to Estimate Free Energy of Binding
The values of the free energy of binding in solvent
(ΔGbind) of each inhibitor were calculated according to
Eq. (4) following thermodynamic cycle shown in Figure 1.

Δ Δ Δ Δ ΔG G G G Gbind bind
gas

solv
complex

solv
receptor

solv
ligand= + − − (4)

Δ Δ ΔG H T Sbind
gas

bind
gas

bind
gas= − (5)

ΔH ES EX DI CT mixbind
gas = + + + + (6)

T S num rot bondsbind
gasΔ = ( )_ (7)

Δ Δ ΔG G Gsolv psolv npsolv= + (8)

ΔG SASA bnpsolv = +γ (9)

The solution-phase ΔGbind was decomposed into the

solvation free energy and the gas-phase interaction
energy. The free energy change on solvation is com-
posed of terms for the desolvation of the receptor and

ligand − −( )Δ ΔG Gsolv
receptor

solv
ligandand and the solvation of

the complex ΔGsolv
complex( ) . The gas phase free energy of

binding, ΔGbind
gas , is the sum of the enthalpic contribu-

tions ΔHbind
gas( ) from the electrostatic and nonpolar

interaction energies and the entropic term TΔSbind
gas( )

for the degrees of freedom for each component of the
system at a given temperature (310 K).
The enthalpic binding energy of interaction term is

derived from the FMO method at the MP2/6-31G* level.
The breakdown of this interaction energy can be expressed
as relating to electrostatic interactions (ES), exchange
repulsion (EX), dispersion contributions (DI) and charge
transfer (CT) with higher order mixed terms, Eq. (6)
[64,65]. Evaluation of the enthalpic ligand binding energy is
commonly performed by the supermolecule method. Here,
the difference between the energy of the receptor-ligand
complex and the sum of the energies of the apo-receptor
and the isolated ligand is considered, Eq. (10).

Δ Δ Δ ΔH H H Hbind
gas complex receptor ligand= − +( ) (10)

Thus three separate calculations are required to obtain
the total ligand binding energy. However, in the FMO cal-
culation, as all the PIEs between fragments are calculated
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by default, the ligand binding energy can be conveniently
estimated by simply taking the sum of all the PIEs between
the ligand and receptor fragments. Although the sum of
PIE does not include the effect of electron redistribution
in the complex as a result of ligand-protein binding, it is
known that there is good qualitative agreement between
the binding energy calculated by the supermolecule
method and the sum of PIE [44].
Entropy plays an important role in binding. During

receptor-ligand complex formation, there are changes in
the degrees of rotational, translational and conformational
freedom, which make the process entropically unfavour-
able [66-68]. The number of rotatable bonds in a ligand
[69-71] or the receptor and ligand together [67,72] has
previously been used as a measure for conformational
entropy. More complex measures of determining entropy
using vibrational frequencies of a ligand when complexed
to a receptor have been shown to correlate well to the
number of rotatable bonds [73]. However, vibrational
entropy is not a component of conformational entropy,
and do not make significant contributions to the overall
entropy of the system [74]. The calculation of the num-
ber of rotatable bonds is also an attractive estimation for
conformational ligand entropy as it is significantly less
computationally demanding than other methods. There-
fore we chose this method and assigned a conformational
penalty of 1 kcal/mol for each rotatable bond in the
ligand according to published work [73].
The other term of the binding free energy is the solva-

tion free energy ΔGsolv( ) . To account for the solvation
effects during receptor-ligand binding, the Born conti-
nuum implicit solvation model was chosen as it has
been shown to appropriately describe solvent interac-
tions [66]. The solvation free energy was described by a
polar solvation term ΔGpsolv( ) and a nonpolar solvation
term ΔGnpsolv( ) , Eq. (8).
The polar solvation term estimated by solving the

Poisson-Boltzmann (PB) equation using MOE [50]. The
system was parameterised as described in the Structure
Preparation section. The nonpolar solvation term was esti-
mated from the solvent-accessible surface area (SASA) of
the molecule, Eq. (9). This was computed in MOE with a
solvent probe radius of 1.4 Å. The values taken for g and
b were 5.0 cal/mol·Å2 and 0.86 kcal/mol, respectively, as
described in the literature [75,76]. In order to speed up
the calculation of the free energy of solvation we chose to
use a single energy-minimised structure which has been
reported in the literature to be a reasonable estimation to
molecular dynamics simulations [16,17].

Multivariate Analysis
The statistical program SIMCAP, version 11.0.0.0, from
Umetrics was used to build a PLS model [77,78]. The
X-variables originate from the components used to

derive the free energy of binding in solvent, see above.
The dependent Y-variable was the experimental binding
affinity in -ln(IC50), Eq. (1). The variables were mean-
centred and scaled to unit variance. The non-cross-
validated variance coefficient (r2) and the cross-validated
variance coefficient (q2) were used to describe how well
a model can reproduce the data under analysis and the
predictive ability of the model. Cross-validation was per-
formed by dividing the training sets into 7 groups and
developing a number of parallel models for the data
devoid of one group. The omitted group then became
the test set for the reduced model and residuals for the
test set were calculated. A measure of the predictivity of
the models, termed predictive residual sum of squares
was derived from the sum of squares of these differences
for all parallel models. The q2 value that resulted in the
optimum number of components and lowest predictive
residual sum of squares was used. The root mean square
error of estimation (RMSEE) of the fit for observations
in the model and the root mean square error of predic-
tion (RMSEP) were also calculated.

Results and Discussion
Ligand and Protein Preparation
A series of 14 X-ray crystal structures of CDK2-ligand
complexes with known experimental binding affinities
and with resolutions of better than 2.3 Å were down-
loaded from the PDB [48]. A further 14 ligands from
the same chemical series were manually docked to
either one of 4 known ligand X-ray structures which
had the closest chemical similarity as indicated in Table
1. Details of the proteins and the ligand structures, data
set clustering into training and test sets, the resolution
of the PDB structures and the experimental binding affi-
nities are detailed in Table 1. The well resolved X-ray
crystal structures meant that we were confident of the
initial conformation of the complexes. Our experiments
focussed primarily in the binding pocket, which for
CDK2 is well resolved, particularly the residues which
constitute the gate keeper and the Hinge region (resi-
dues Phe80 - Gln85 Figure 2). Our rationale for only
using minimised X-ray structures as a single protein-
ligand structure in preference to the averaging over a
number of molecular dynamics snapshots is that this
conformation can be considered to contribute signifi-
cantly to and thus dominate the Boltzmann-averaged
potentials for the free energy estimation. This is particu-
larly true when the bound conformation of the ligand
corresponds to a particular stable conformation of the
unbound ligand. Also, a good single point calculation is
more likely to be a good representation of the system
than one from which the phase space is poorly sampled.
Other studies have used MM/MD simulations ascertain
an optimal system conformation before further analysis
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using FMO [79]. For the 14 X-ray structures examined
the average local strain energy (the potential energy of
the X-ray structure minus the value of the energy at a
near local minimum) was 6 kcal/mol, which is an accep-
tably reasonable energy [80]. Therefore, it can be argued
that the energetic penalties coming from ligand confor-
mational strain are minimal as the ligand is already in a
good binding conformation [81]. Using a single-point
calculation is also more amenable to virtual screening.
The method is not only a comparably accurate alterna-
tive to averaged snap shots over a molecular dynamics
simulation, but is less time-consuming to setup and
compute. It follows then that the remaining 14 ligands
can be modelled by slight modifications to the X-ray
solved ligands whilst maintaining the geometry of the
common chemical scaffold, followed by a minimisation
step (see Methods) would be a reasonable approxima-
tion of actual binding pose.
Although the structural sampling was not performed

in the FMO calculation of the enthalpic contributions to
binding free energy, a good correlation (r2 of 0.68)
was obtained to the experimental free energy of binding,
Figure 3. The binding pocket in CDK2 is not exposed to
solvent and important hydrogen bonding interactions
within the active site are of limited flexibility [82].
Under these conditions, enthalpic binding contributes
significantly to the free energy of binding, and this
therefore accounts for the good correlation to the FMO
sum of PIE. For this target it appears that structural
sampling is not crucial in order to obtain good correla-
tions. However, the appropriate selection of atomic
coordinates is an important factor to obtain well corre-
lated data. A consideration of the optimal binding pose
for the modelled ligands was out of the scope of this
work, and further validations regarding conformational
refinement of docked or aligned poses using the FMO
method are in progress.

Correlation Between MM-Based Scoring Functions and
Biochemical Activity
The performance of the FMO method was compared
with that of several MM scoring functions implemented
in MOE, including the Generalized Born solvation
model VI, London dG, Affinity dG, Alpha HB, and ASE
scoring functions (Figure 3). In each of these MM meth-
ods, the protein was parameterised using the MMFF94x
force field and ligand charges calculated using AM1-
BCC. The 14 X-ray structures used to build the PLS
model were used to compare the 6 scoring functions.
The FMO method clearly outperformed three of the
scoring functions and was similar to the London dG
and the Alpha HB score. A good correlation was
observed (r2 of 0.68) for the FMO sum of PIE and the
best performing MM scoring function was the ASE

score (r2 of 0.75). The ASE score has terms for the over-
lap of the ligand pose with alpha spheres and the
overlap between ligand and receptor atom volumes
approximated by Gaussians, and therefore can be
thought of as mimicking dispersion interactions of
ligand binding. As the CDK2 binding pocket is very
hydrophobic this generalisation may be sufficient to get
a good correlation to experimental binding energy. The
Generalized Born solvation model VI failed to correlate
the data (r2 of 0.03). The Affinity dG scoring function
only considers enthalpy of ligand binding in a simplistic
fashion (r2 of 0.31). This function is improved by terms
to account for hydrogen bonding in the Alpha HB func-
tion (r2 of 0.61). The London dG scoring function has
further improvements, adding rotational and transla-
tional entropy and a desolvation term which resulted in
a good estimation of binding free energy (r2 of 0.73).
The two methods that yield free energy binding predic-
tions close to the actual values are the ASE and the
London dG scoring functions.
The main purpose of a scoring function though is to

rank binding poses, and here the MOE scoring functions
are effective. A Pearson rank order analysis for London
dG, Alpha HB and ASE score all gave a value of 0.76,
the FMO method performing less well with a Pearson
value of 0.64. However, an important consideration in
drug development is the identification of active com-
pounds, thus good correlations to experimental binding
free energy is of more value than the rank ordering of
compounds. To effectively account for other compo-
nents pertaining to binding additional terms were intro-
duced, the results of which are detailed below.

Data Preparation
The four X-variables used to build and test the PLS
model were derived from the sum of the enthalpic con-
tributions ΔHbind

gas( ) calculated by the FMO method,
the polar solvation term (ΔGpsolv), the nonpolar solva-
tion term (ΔGnpsolv), and the entropic term TΔSbind

gas( ) .
These descriptors were mean-centred and normalised
for the model generation. The PLS model was trained
on the 14 X-ray structures obtained from the literature
using the experimental reported inhibitory data as the
Y-variable [48]. The PLS model was tested against the
14 modelled complexes.

PLS Analysis Results
The optimum number of components in the PLS model
was two which gave a very high q2 of 0.896, and the
RMSEE of the fit for observations was 0.632. The r2

value was 0.939 for this model. The 4 X-variables con-
tributed similarly to the model, and there were no out-
liers in the observations used to build the model. The
model rank orders the compounds extremely well, with
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a Pearson correlation of 0.97. This robust model pre-
dicted the test set well, the r2 of the test set was 0.824,
and the RMSEP was 1.005. The plot of computed and
experimentally determined binding free energies is
shown in Figure 3 and together with the residual

differences between these values for each of the ligands
is shown in Table 2. The majority of the data (Figure 3)
lies within the two yellow-dashed lines, indicating errors
of less than 1 order of magnitude. There are two
ligands, 12 and 15 that fall well outside this boundary.

Figure 3 Calculated versus observed free energy of binding for 14 CDK2 inhibitors assessed using seven different methods. Methods
include a) FMO (green diamonds), r2 = 0.68; b) GBVI (orange diamonds), r2 = 0.03; c) London dG (purple diamonds), r2 = 0.73; d) Affinity dG
(green triangles), r2 = 0.31; e) Alpha HB (red diamonds), r2 = 0.61; f) ASE (black diamonds) r2 = 0.75; and g) QM-based scoring function (red
squares) together with the 14 compound test set (blue diamonds) for the QM-scoring function, and h) the calculated versus the experimental
pIC50 values for the QM-scoring function, r2 = 0.94. For graphs a-f, and g, the line of best fit is shown in black. Graph h shows the line of best fit
as a dotted red line and the two dotted yellow lines correspond to 1 log unit boundaries.

Mazanetz et al. Journal of Cheminformatics 2011, 3:2
http://www.jcheminf.com/content/3/1/2

Page 11 of 15



An examination of the 4 components which make up
the free energy term does not reveal any strong trend
resulting in the large residual values. All the ligands
used to train and test the model were well within the
95% confidence intervals for the predicted Y-values and
there were no observations that deviated significantly
from the model in X-space.

QMbased Scoring Function
FMO has been used previously to generate a charge
transfer term for a quantitative structure-activity rela-
tionship (QSAR) model [44]. Here, we aimed at produ-
cing a QM-based scoring function which would take
into consideration complex binding interactions, solva-
tion effects and ligand binding entropy on a timescale
amenable to drug discovery. The FMO methods allows

for accurate treatment of charge transfer and polarisa-
tion effects. It has been noted previously that the major-
ity of polarisation energy is within 5 Å of a ligand [83].
This observation justifies the 4.5 Å residue inclusion
radius used to describe the binding pocket and allows
for this polarisation to be incorporated into the enthalpy
of binding energy term. The contribution of charge
transfer effects on ligand binding have already been
mentioned, and represent an important addition to a
scoring function particularly when examining particular
ligand-residue interactions [44]. However, the contribu-
tion of charge transfer on the enthaplic binding term is
dependent on the wave function used. The FMO contri-
bution to the binding free energy has a very broad range
(-28 to -178), this may be a result of using the MP2
method which is known to overestimate charge transfer

Table 2 Estimation of Free Energy of Ligand Binding

Entry Hbind
gas ΔGpsolv ΔGnpsolv TSbind

gas Gbind
Expt

Gbind
Calc

Residual

1a -41.712 -8.756 -2.296 0 -4.276 -5.292 -1.016

2a -65.593 -16.745 -2.782 1 -5.852 -5.558 0.294

3a -51.706 -9.542 -2.434 1 -5.167 -4.253 0.915

4 -43.071 -8.427 -2.852 2 -6.242 -7.308 -1.066

5a -81.351 -20.047 -3.196 3 -7.751 -8.110 -0.359

6a -55.993 -11.678 -3.085 3 -7.291 -8.256 -0.965

7a -157.304 -59.945 -3.837 5 -10.268 -10.665 -0.397

8 -27.615 -15.471 -3.098 3 -6.693 -7.829 -1.136

9a -93.407 -25.109 -3.490 4 -8.845 -8.761 0.083

10a -56.084 -13.070 -2.791 3 -6.751 -5.689 1.062

11 -58.015 -20.047 -2.762 1 -5.595 -6.524 -0.929

12 -63.864 -12.846 -2.906 3 -7.099 -5.770 1.329

13a -61.236 -14.824 -3.221 5 -8.518 -8.606 -0.087

14 -60.888 -15.442 -3.292 6 -9.105 -8.699 0.406

15 -60.917 -15.604 -3.709 7 -10.308 -8.216 2.091

16 -60.720 -13.072 -3.750 6 -9.951 -9.988 -0.037

17a -64.809 -17.109 -3.682 6 -9.811 -9.716 0.095

18a -177.695 -16.106 -3.727 6 -12.015 -12.082 -0.067

19 -70.768 -15.895 -3.535 7 -10.183 -10.777 -0.593

20 -71.985 -14.962 -3.781 6 -10.169 -11.229 -1.059

21 -79.530 -19.304 -3.846 6 -10.316 -10.946 -0.630

22 -81.814 -58.172 -3.927 6 -9.547 -10.519 -0.972

23a -106.410 -54.144 -3.794 6 -9.873 -9.716 0.157

24a -138.056 -52.223 -3.803 6 -10.524 -10.429 0.095

25 -94.987 -51.774 -3.824 6 -9.771 -8.564 1.207

26 -100.764 -54.605 -3.764 7 -10.190 -10.326 -0.136

27 -96.554 -53.308 -3.797 6 -9.716 -10.208 -0.491

28a -112.339 -53.340 -3.929 6 -10.236 -10.045 0.191

Calculated ( )ΔGbind
Calc

versus experimental ( )ΔGbind
Expt

free energy of binding and the associated terms used to derive the scoring function including, see the text

for more information. All the energy terms are in kcal/mol. The residual differences between the calculated and the experimental free energies of binding are
shown. a) indicates an entry which was used to train the PLS QSAR model.
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interactions [33]. Energy decomposition analysis from
the FMO calculation reveals that the majority of the
energy comes from the charge transfer contribution of
charged atoms. The approximations for other terms in
the scoring function make this overestimation less sig-
nificant compared to the absolute binding energy deter-
mined by the FMO method when used in isolation.
The binding free energy is a combination of enthalpic

and entropic terms. Indeed, a thorough understanding
of enthalpy/entropy compensation is needed to accu-
rately predict binding energies [84,85]. Ligand confor-
mational entropy contributions are also significant, and
neglecting this will adversely affect binding energy predic-
tions [86]. As a very simplistic method to account for this
we chose to examine how the number of rotational
bonds in the ligand would influence the predicted bind-
ing free energy. The good correlation obtained with our
data, in this test case, indicates that this extremely fast
method is adequate for this purpose. More detailed stu-
dies of entropy could be performed by normal mode ana-
lysis of molecular dynamics simulations. The lack of an
adequate protein entropy term can result in an overesti-
mation of binding free energy, and more work is needed
to examine the effect of this on such calculations.
The solvation free energy is divided into polar and non-

polar terms. The nonpolar term is dependent upon the
size of the ligand, which is scaled by the two constants g
and b. This scaling makes the nonpolar term small and
negative, allowing the polar terms to dominate the solva-
tion free energy of binding. Recently, the polarisable conti-
nuum model (PCM) implemented in the GAMESS
program was used to calculate solvation energies and were
compared to those obtained with PB+SASA [42]. It was
found that PCM exaggerated the nonpolar contribution
substantially, and therefore a QM treatment of solvation
was not advantageous. Solvation calculations with the
PCM have been implemented with the FMO method [87]
and although this does increase computational time, more
accurate treatment of solvation from a single point calcu-
lation would be possible. Solvation effects have also been
developed for FMO using the PB equation to account for
ion concentrations [88]. Further studies need to be per-
formed to assess the effects these advances in treating sol-
vation effects brings to the determination of binding free
energy and the computational cost of the method.

Conclusions
The results show that a single point QM calculation
using the FMO method gives a good correlation to
experimentally determined free energies of ligand bind-
ing calculated from ligand potencies. The FMO method
outperformed 3 other methods used to estimate the free
energy of binding by MM-based methods. We conclude
that the additional terms which treat charge transfer,

polarisation and dispersion effects during ligand binding
in this QM method significantly improves the estimation
of ligand potency compared to MM-based procedures.
Methods were then introduced to further improve upon
the initial estimates. This paper presents the first
attempt to calculate ligand-binding free energies using a
combination of high-level ab inito FMO methods
together with PBSA techniques to derive reasonable esti-
mations of enthalpy, entropy and solvation energies. We
used a PLS QSAR model to correlate the 4 components
of our scoring function to build a model which was very
robust and highly predictive. The data set was composed
of ligands from a lead development program that
resulted in a clinical candidate against CDK2, thus test-
ing the QSAR model against a range of ligand potencies.
The need to run a PLS model stems from the poor
absolute prediction of free binding energies and there-
fore the need to adjust the data. This QM-based scoring
function represents a new protocol to estimate ligand
potencies in a congeneric series of compounds whereby
single point changes can be performed on a known
X-ray crystal structure to guide medicinal chemistry.
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