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The variant virus-based 2019 coronavirus disease (COVID-19) pandemic has reportedly

impacted almost all populations globally, characterized by a huge number of infected

individuals. Clinical evidence proves that patients with cancer are more easily infected

with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) because of

immunologic deficiency. Thus, there is an urgent need to develop candidate

medications to treat patients with cancer plus COVID-19, including those with

osteosarcoma (OS). Ferulic acid, a latent theriacal compound that has anti-tumor and

antivirus activities, is discovered to have potential pharmacological use. Thus, in this

study, we aimed to screen and determine the potential therapeutic targets of ferulic acid

in treating patientswithOS plusCOVID-19 aswell as the pharmacologicalmechanisms.

We applied a well-established integrated methodology, including network

pharmacology and molecular docking technique, to detail target prediction, network

construction, gene ontology, and pathway enrichment in core targets. The

network pharmacology results show that all candidate genes, by targeting autophagy,

were the core targets of ferulic acid in treating OS and COVID-19. Through molecular

docking analysis, the signal transducer and activator of transcription 3 (STAT3),mitogen-

activated protein kinase 1 (MAPK1), and phosphoinositide-3-kinase regulatory subunit 1

(PIK3R1) were identified as the pharmacological targets of ferulic acid in treating OS.

These preclinical findings from bioinformatics analysis altogether effectively determined

the pharmacological molecules and mechanisms via targeting autophagy,

demonstrating the therapeutic effectiveness of ferulic acid against COVID-19 and OS.
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Introduction

The 2019 coronavirus disease (COVID-19), reportedly

caused by severe acute respiratory disease coronavirus 2

(SARS-CoV-2), has developed into a cosmopolitical

pandemic crisis, causing an imponderable death toll (1).

The pathogenesis following SARS-CoV-2 infection may

comprise acute respiratory distress syndrome and deadly

pneumonia, also related to the cytokine storm that induces

secondary tissue impairment (2). Despite the availability of

COVID-19 vaccines, clinical evidence shows that emerging

mutations result in unexpected escape from vaccine effect (3).

The protection of existing vaccines may be affected over time

against the highly infectious Omicron variant (4). Currently,

few specific antiviral medications have been approved for

treating COVID-19. From clinical observations, patients with

cancer who become infected with SARS-CoV-2 may have a

higher risk for in-hospital mortality than other infections (5).

In addition, patients with cancer are believed to have a higher

risk for severe COVID-19 due to their advanced age and pre-

existing disorders (6). Osteosarcoma (OS) is one of the most

malignant cancers in orthopedics, occurring in adolescents

and the elderly aged >65 years (7). Recent data have reported

that the 5-year survival rate of patients with OS has not

meliorated in the past 30 years and has approached around

55–75% (8). Children with cancer such as metastatic OS are

likely to have a higher risk of developing life-threatening

COVID-19 (9). Patients with OS and COVID-19 are

medically hard to treat as current clinical treatment is not

yet available, and specific functions of the pathogenetic genes

involved in OS and COVID-19 are still unreported. In China,

traditional Chinese medicine (TCM) is commonly used for

chronic clinical disorders, including malignant cancers (10).

In anti-COVID-19 practice, the use of TCM for COVID-19

treatment has been recommended in most Chinese provinces,

which is characterized by enhanced cure rate (11). Preclinical

reports show that some new compounds isolated from TCM

have potent antiviral action, including glycyrrhizic acid (12).

Ferulic acid, termed 3-methoxy-4-hydroxycinnamic acid, has

broad pharmacological properties, such as antioxidant

function as well as antibacterial and antiviral actions (13).

In addition, the anti-neoplastic effect of ferulic acid has been

experimentally validated (14). Furthermore, ferulic acid may

mediate potential anti-OS action in vitro by promoting the

apoptotic pathway (15). Based on the current antiviral and

anti-cancer characteristics of ferulic acid, this study was

des igned to invest igate the potent ia l e fficacy and

mechanisms of ferulic acid in treating OS and COVID-19

by using network pharmacology and molecular docking

approaches. The preclinical findings may provide a new

direction for the promising treatment of OS and COVID-19

in future clinical practice.
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Materials and methods

Screening out the OS and
COVID-19 targets

Expression profiling by array for OS was retrieved from the

Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/

geo/) database (16), including GSE28424 [modulation of the OS

expression phenotype by miRNAs (Illumina)], in which the

dataset was based on the platform file GPL13376. Then, the

GEO2R online tool (https://www.ncbi.nlm.nih.gov/geo/geo2r/)

was applied for gene differential analysis. The screening

conditions were set as the difference fold |log2FC| >0.5, and

the false discovery rate (FDR) was <0.05 to obtain the

significantly differentially expressed genes of human OS and to

draw the volcano plot associated with differential genes. Using

the Genecards database (17) and the Online Mendelian

Inheritance in Man (OMIM) database (18), relevant targets of

COVID-19 were screened out accordingly.
Determining ferulic acid-related
autophagic targets

The action targets of ferulic acid were obtained using the

comparative toxicogenomics database, Swiss Target Prediction

database, SuperPred database, and Pharmmapper database. The

aforementioned targets were corrected using the reviewed

(Swiss-Prot) and Human in the UniprotKB database (19). The

OMIM database, GeneCards database, and National Center for

Biotechnology Information gene function module were used to

identify the autophagy-related targets. Finally, a Venn diagram

analysis (20) was performed between the ferulic acid/autophagy-

associated targets and OS/COVID-19-related targets to acquire

the co-targets of ferulic acid-anti-OS/COVID-19 effect

through autophagy.
GO and KEGG enrichment
analyses and visualization

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analyses and visualization of

core targets were performed using R-packages such as

“ClusterProfiler”, “org.Hs.eg.Db”, and “ggplot2” in the R

language. The gene annotation information was obtained from

“org.Hs.eg.Db”, the adjusted p-value cutoff was 0.05, and the q-

value cutoff was 0.05 during enrichment, resulting in an output

corresponding to a bubble chart and a circle chart. In addition,

Cytoscape_v3.8.2 was used to create a drug-target–GO–CC–

MF-pathway disease visualization graph from the results of the

biological process and pathway enrichment of ferulic acid

against OS and COVID-19 targets through autophagy (21).
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Building up the protein–protein
interaction network

To reveal the interaction between the ferulic acid targets and

OS/COVID-19 targets, a protein–protein interaction (PPI)

network was established through the Search Tool for the

Retrieval of Interacting Genes (STRING) database (22). All

core targets were transferred to this STRING database. Their

size is in direct proportion to the enrichment method. The PPI

network was assayed through the network analyzer from

Cytoscape v3.7.1 to identify the core genes based on the

betweenness, closeness, and degree scores.
Molecular docking imitation

Molecular docking analysis was performed to illustrate and

validate the binding energy of the OS/COVID-19-associated

proteins with ferulic acid. The three-dimensional structures of

ferulic acid were collected from the PubChem database (https://

pubchem.ncbi.nlm.nih.gov/) (23). The crystal structures of the

screened proteins, including the signal transducer and activator

of transcription 3 (STAT3), mitogen-activated protein kinase 1

(MAPK1), and phosphoinositide-3-kinase regulatory subunit 1

(PIK3R1), were identified from the Uniprot database (https://

www.uniprot.org/) and transferred in Protein Data Bank

(https://www.pdbus.org/) format. In addition, the Autodock

(version 1.5.6) software was used to increase polar hydrogen

and set the grid box, and the autodock vina function was further

used to conduct the molecular docking assay. The binding

energy of ferulic acid with these identified proteins was

established, and then the Pymol software was used to visualize

the optimal docking conformations (24).
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Results

Screening for OS and COVID-19
candidate genes

We compared 19 normal group samples to four OS tumor

group samples through the GEO database by retrieving the

GSE28424 dataset. After screening, a total of 3,011 differential

genes were obtained, including 1,500 upregulated genes and

1,511 downregulated genes, as shown in Figure 1. After

searching databases such as Genecards, a total of 2,199

relevant COVID-19 target genes were obtained accordingly.
Ascertaining ferulic acid autophagy-
related targets

Using databases such as TCD to search for drug targets and

correcting through the UniprotKB database, a total of 360 ferulic

acid targets were obtained. The OMIM and other databases were

used to obtain 870 autophagy-related targets. The obtained

targets were mapped using a Venn diagram, and a total of five

intersection targets were obtained, including MAPK1, TLR4,

PIK3R1, STAT3, and PARP1 (Figure 2).
Enrichment findings for all
intersection targets

To better indicate the biological characteristics of the identified

intersection targets, the R language software was used to implement

GO and KEGG enrichment assays. Using parametric analysis, the

GO-based biological process (BP) terms (Figure 3) mainly

comprised protein localization to the nucleus, cellular response to
FIGURE 1

Volcano map illustrating all differentially expressed genes between osteosarcoma and non-osteosarcoma samples.
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peptide, astrocyte differentiation, myeloid cell differentiation,

positive regulation of protein localization to the nucleus, positive

regulation of tumor necrosis factor production, positive regulation

of tumor necrosis factor superfamily cytokine production,

regulation of protein localization to the nucleus, protein import

into the nucleus, and import into the nucleus. Furthermore, the key

cellular component (CC) terms (Figure 4) suggested the functions

of postsynaptic density, asymmetric synapse, postsynaptic

specialization, neuron to neuron synapse, early endosome,

transcription regulator complex, pseudopodium, perinuclear

endoplasmic reticulum, phagocytic cup, and phosphatidylinositol

3-kinase complex. Other molecular function (MF) terms (Figure 5)

indicated phosphatase binding, phosphotyrosine residue binding,

protein phosphorylated amino acid binding, signaling adaptor

activity, phosphoprotein binding, nuclear receptor binding,
Frontiers in Endocrinology 04
protein phosphatase binding, cytokine receptor binding, protein–

macromolecule adaptor activity, and RNA polymerase II-specific

DNA-binding transcription factor binding. The KEGG enrichment

assay was executed to cluster the pharmacological signaling

pathways exerted by ferulic acid. A total of 42 molecular

pathways with FDR <0.05 were identified (Figure 6). These

enrichment data indicated the KEGG pathways of ferulic acid,

including the HIF-1 signaling pathway, EGFR tyrosine kinase

inhibitor resistance, Toll-like receptor signaling pathway, FoxO

signaling pathway, apoptosis, signaling pathways regulating the

pluripotency of stem cells, necroptosis, neutrophil extracellular

trap formation, chemokine signaling pathway, and VEGF

signaling pathway. Detailed enrichment terms were visualized in

ferulic acid–OS/COVID-19–BP–CC–MF clusters through

Cytoscape_v3.8.2 software analysis (Figure 7).
FIGURE 2

Venn diagram of ferulic acid, autophagy, and osteosarcoma/COVID-19-targeted genes is displayed, and a protein–protein interaction network
was established from this diagram.
A B

FIGURE 3

The main terms for biological process, cellular component, and molecular function are presented using bar plots (A). The top terms of the
functional enrichment analysis are displayed through the bubble chart (B).
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Identification of the core targets

To further ascertain the core targets, topological parameters

and target degrees of freedom were measured through

Cytoscape_v3.8.2, wherein the filter condition range was set to

three to four. As a result, all top three targets, including STAT3,

MAPK1, and PIK3R1, were identified as the core genes before

further in silico imitation analysis.
Molecular docking data

To confirm the potential targets of ferulic acid, these STAT3,

MAPK1, and PIK3R1 proteins were computationally docked with

ferulic acid based on the binding energy scores, characterized by
Frontiers in Endocrinology 05
6SM8, 3SA0, and 6OCO binding active sites. The amino acid residue

GLY-1020 (3.4 Å) formed a functional hydrogen bond between

ferulic acid and 6SM8 (STAT3), and the free docking energy was -6.3

kcal/mol (Figure 8A). Moreover, the amino acid residues ASP-111

(2.3 Å), MET-108 (2.3 Å), and LYS-114 (2.4 Å) formed a functional

hydrogen bond between ferulic acid and 3SA0 (MAPK1), with a free

docking energy of -5.5 kcal/mol (Figure 8B). Finally, the amino acid

residues SER-831 (3.0 Å) and VAL-828 (2.6 Å) formed a functional

hydrogen bond between ferulic acid and 6OCO (PIK3R1), and the

free docking energy was -5.7 kcal/mol (Figure 8C).
Discussion

TCM is found to have anti-inflammatory, antiviral, and

immunoregulatory activities and is also characterized by a
A B

FIGURE 4

The main terms for biological process, cellular component, and molecular function are presented using bar plots (A). The top terms of the
functional enrichment analysis are displayed through the bubble chart (B).
A B

FIGURE 5

The main terms for biological process, cellular component, and molecular function are presented using bar plots (A). The top terms of the
functional enrichment analysis are displayed through the bubble chart (B).
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candidate curative effect against COVID-19 (25). It is of interest

that bioinformatics analysis through the network pharmacology

methodology has demonstrated that niacin may be used to

potentially treat colorectal cancer and COVID-19 (21). By

using comprehensive bioinformatics approaches, we aimed to

reveal the potential molecular mechanisms and therapeutic

targets of ferulic acid, a functional molecule, in the treatment

of OS and COVID-19. A previous study indicates that ferulic

acid has proven antiviral action against PPV infection through

effective regulation of the caspase-dependent apoptotic pathway

(26). Another in vitro experiment suggests that ferulic acid

restrains NLRP3 inflammasome activities and lowers the

synthesis of inflammatory cytokines through the autophagy
Frontiers in Endocrinology 06
channel (27). Thus, ferulic acid may mediate a potential action

against COVID-19 by inhibiting virus infection and

inflammatory reaction. Furthermore, in the cell culture model

of 143B and MG63 OS cells, ferulic acid plays anti-OS effects by

inactivating the PI3K/Akt pathway (28). Taking all the present

information together, we surmised that ferulic acid may exert a

potential action against OS and COVID-19. In our

bioinformatics analysis, the clinicopathological features

showed 3,011 differentially expressed genes, 1,500 and 1,511 of

which were up- and downregulated, respectively. These

differentially expressed genes indicate potential diagnostic

biomarkers for human OS. In addition, we identified 2,199

genes that are mutual for OS and COVID-19, 360 ferulic acid
frontiersin.org
A B

FIGURE 6

Summary of the Kyoto Encyclopedia of Genes and Genomes enrichment analysis characterized by signaling mechanisms, as shown in bubble
chart (A) and circle diagram (B).
FIGURE 7

Visualization of the detailed findings in our bioinformatics analysis.
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target genes, and 870 autophagy target genes. Using Venn

diagram mapping, we further identified five core ferulic acid

targets against OS and COVID-19 via autophagy, including

MAPK1, TLR4, PIK3R1, STAT3, and PARP1. Among these

core target genes, TLR4, STAT3, and PARP1 are associated with

the development of COVID-19 (29–31). Moreover, the GO and

KEGG enrichment assays revealed that biological processes were

distinctly enriched in the positive regulation of tumor necrosis

factor production, particularly the positive regulation of tumor
Frontiers in Endocrinology 07
necrosis factor superfamily cytokine production. More data have

suggested that ferulic acid might inhibit autophagy-dependent

cell proliferation in cancers (32) as well as inflammation-related

SARS-CoV-2 infection (33). Following the use of the molecular

docking analysis, we ultimately identified the core ferulic acid

target proteins against OS and COVID-19, namely, STAT3,

MAPK1, and PIK3R1. Among these, STAT3 could be

developed as a promising therapeutic target for patients with

cancer who contract COVID-19 (34). Furthermore, other
A B

C

FIGURE 8

Molecular docking models of ferulic acid binding to the identified STAT3, MAPK1, and PIK3R1 target proteins with respect to (A) 6SM8, (B) 3SA0,
and (C) 6OCO.
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preclinical evidence shows that both MAPK1 and PIK3R1 could

be potential pharmacological targets against human cancers (35,

36). The molecular docking data of these core target proteins

suggest that ferulic acid may function in multiple disease stages

of patients with cancer plus a SARS-CoV-2 infection. However,

our current study still has certain limitations. Experimental

validation in vitro and in vivo was not performed as models of

SARS-CoV-2 infection are currently unavailable commercially.

Further clinical trials using ferulic acid to treat OS and COVID-

19 are still unconducted.

Conclusions

This study systematically revealed the therapeutic targets and

mechanisms of ferulic acid for the potential treatment of OS and

COVID-19 through network pharmacology and molecular docking

validation. In addition, our results indicate that ferulic acid could

regulate multiple anti-cancer and antiviral signaling pathways to

exert anti-OS and anti-COVID-19 properties. Our findings

conclude that ferulic acid may be a promising therapeutic

compound for potentially treating OS and COVID-19. As

potential limitation in the current bioinformatics report, we still

need further experimental confirmation of our current

bioinformatics findings.
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