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Abstract

Iron plays vital roles in the human body including enzymatic processes, oxygen-transport

via hemoglobin and immune response. Iron metabolism is characterized by ~95% recycling

and minor replenishment through diet. Anemia of chronic kidney disease (CKD) is charac-

terized by a lack of synthesis of erythropoietin leading to reduced red blood cell (RBC) for-

mation and aberrant iron recycling. Treatment of CKD anemia aims to normalize RBC count

and serum hemoglobin. Clinically, the various fluxes of iron transport and accumulation are

not measured so that changes during disease (e.g., CKD) and treatment are unknown.

Unwanted iron accumulation in patients is known to lead to adverse effects. Current whole-

body models lack the mechanistic details of iron transport related to RBC maturation, trans-

ferrin (Tf and TfR) dynamics and assume passive iron efflux from macrophages. Hence,

they are not predictive of whole-body iron dynamics and cannot be used to design individual-

ized patient treatment. For prediction, we developed a mechanistic, multi-scale computa-

tional model of whole-body iron metabolism incorporating four compartments containing

major pools of iron and RBC generation process. The model accounts for multiple forms of

iron in vivo, mechanisms involved in iron uptake and release and their regulation. Further-

more, the model is interfaced with drug pharmacokinetics to allow simulation of treatment

dynamics. We calibrated our model with experimental and clinical data from peer-reviewed

literature to reliably simulate CKD anemia and the effects of current treatment involving

combination of epoietin-alpha and iron dextran. This in silico whole-body model of iron

metabolism predicts that a year of treatment can potentially lead to 90% downregulation of

ferroportin (FPN) levels, 15-fold increase in iron stores with only a 20% increase in iron flux

from the reticulo-endothelial system (RES). Model simulations quantified unmeasured iron

fluxes, previously unknown effects of treatment on FPN-level and iron stores in the RES.

This mechanistic whole-body model can be the basis for future studies that incorporate iron

metabolism together with related clinical experiments. Such an approach could pave the

way for development of effective personalized treatment of CKD anemia.
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Author summary

Iron is mostly recycled with very little loss or replenishment. This model simulates the

complex regulatory network that maintains iron within healthy limits. Iron diseases are

typically characterized by breakdown of such regulatory pathways (e.g. synthesis of eryth-

ropoietin, inhibition of iron release by hepcidin, etc.) that lead to pathological lack of iron

or deposition of iron. Most iron metabolism research focuses on the specific roles of the

regulatory proteins (e.g. HFE, ceruloplasmin), but here we chose to focus on the interplay

between ferroportin and hepcidin. The current literature lacks an integrated whole-body

view of iron metabolism with key fluxes that are essential for investigating the roles of reg-

ulatory protein within feedback networks and molecular pathways. These aspects can be

investigated by simulations with our top-down, mechanistic computational model. Our

model simulations suggest possible improvements in treatment of anemia of chronic kid-

ney disease. Furthermore, this model can provide a platform for future developments of

powerful predictive tools that can be used to accelerate drug development of iron-disorder

diseases.

Introduction

Iron is essential for a wide variety of biological functions. Its most critical physiological func-

tion is associated with the oxygen carrying capacity of hemoglobin. Iron also plays important

roles in mitochondrial redox reactions (cytochromes) and in healthy immune function [1, 2].

While there is a large focus on the multitude of diseases implicated due to iron deficiency,

excessive iron is also very toxic [1]. Hence, iron levels in the body must be very tightly

regulated.

In an adult male in developed countries, the blood iron level is 4-5g of which 50–60% is

associated with hemoglobin. Most iron is stored in the liver, spleen and other organs in ferric

(Fe3+) form bound to the storage protein, ferritin (FN) [2, 3]. Circulating in plasma is a small

amount (3–4 mg) of Fe3+ bound to the protein, apo- (Tf). The liver senses serum iron through

the transferrin receptor 2 pathways and regulates the synthesis and secretion of hepcidin into

blood [4, 5]. In body fluids, ferrous (Fe2+) ions are highly unstable at physiological pH. Since

Fe2+ ions are highly reactive, they must be tightly controlled to prevent damage. Therefore,

Fe2+ is converted to Fe3+, which binds to iron chelators (Tf, FN) except at very low pH, e.g.,

inside endosomes [3].

About 25mg of iron is recycled per day via the hemoglobin synthesis and degradation cycle.

Only 4–5% of this iron is lost and needs to be replenished through absorption from diet [6, 7].

A schematic representation of the recycling process in iron metabolism has been depicted in

literature [8]. Macrophages of the reticulo-endothelial system (RES) degrade senescent red

blood cells (RBCs) to release iron that is transported by Tf. The maturing erythroblasts in the

bone marrow then utilize this iron for incorporation into hemoglobin before entering blood.

Over the last decade, many new details about iron transport have been discovered. Cerulo-

plasmin (Cp), a ferroxidase associated with macrophage iron release [9–12], is essential in

intestinal iron transport. Hepcidin (Hepc), a defensin [13–16], regulates iron release from

macrophages through direct degradation of ferroportin (FPN) [17]. There is a complex net-

work of different enzymes and hormones that provides an intricate control of iron metabo-

lism. Teasing out the specific importance of different molecules under different conditions is
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very challenging. Mathematical modeling of key experimental data can help provide answers

to such complex problems.

Mathematical models of iron transport have been developed and refined since the early

1970’s. Most of these models are based on ferrokinetic studies [18, 19] and focus on flux

changes and relative abundance of iron in different organs. Also, mathematical models of spe-

cific process such as the molecular control of Hepc synthesis or its effect on serum iron have

been developed [20, 21]. Typically, models of whole-body iron metabolism consider iron in a

single molecular form, which is passively transported according to its concentration gradient.

However, iron release from macrophages requires facilitated transport [22] rather than simple

passive diffusion [23, 24]. Despite the key role of iron in erythropoiesis [25, 26], models have

not considered it in formation of iron hemoglobin. Quantitative understanding of iron metab-

olism and recycling under normal and different pathological conditions requires mathematical

models that integrate mechanistic details of iron uptake, release and transport between the

major pools, the dynamics of these processes, as well as the feedback regulation mechanisms

controlling them. With a multi-scale model, processes that occur at the molecular and cellular

levels can be related to observed behaviors at the tissue-, organ- and whole-body levels.

Recent studies [27–29] propose mathematical models to better predict the dosing strategy

of recombinant erythropoietin (rEpo) used to treat anemia in patients with chronic kidney dis-

ease (CKD) [30–32]. The current clinical guidelines for treatment of anemia in CKD [33, 34]

also include administration of iron dextran to CKD patients where rEpo alone is not enough

to improve the hemoglobin levels. Even with low transferrin saturation and low serum iron in

patients with CKD anemia, iron uptake through the gut does not increase and oral iron supple-

ments are typically ineffective [7, 33, 35]. The optimal hemoglobin level needs to be personal-

ized [33]. However, current focus on control of overall hemoglobin levels does not account for

the impact of therapy on iron metabolism, especially on the recycling process and detrimental

effects of iron overload in different tissues [36, 37].

In this study, we have developed a multi-scale model of iron metabolism, which integrates

intracellular, molecular mechanisms with cellular and tissue transport of iron. A variety of per-

turbation scenarios were carefully chosen to estimate model parameters from different parts of

the model. Consequently, we can simulate the important clinical outputs (e.g. serum iron, total

iron binding capacity, serum hemoglobin, RBC cell concentration) related to therapy while

simultaneously providing output of changes in transport fluxes and intracellular species related

to iron metabolism. Of special clinical significance is our model simulation of anemia in CKD

patients with insufficient erythropoietin and treatments with rEpo and iron dextran infusion.

More generally, the goal of this mechanistic mathematical model is to investigate quantitatively

the responses of the iron metabolism system under different disease conditions and treatment

strategies as a guide for newer and improved treatments.

Models

The model of iron metabolism developed here has four scales: whole-body, tissue, cellular and

molecular. A top-down modeling methodology has been used to develop this model providing

just enough detail to simulate the inter-tissue iron fluxes and changes during disease and treat-

ment. A system diagram (Fig 1) shows four major tissue compartments: blood (B), reticular-

endothelial system (RES), bone marrow (BM) and liver (L). We have considered erythropoie-

tin (Epo) synthesized by the kidneys and Hepc synthesized from liver as major hormones that

help maintain iron homeostasis. The B compartment consists of red blood cell (RBC) and

plasma (P) phases. The model covers the major transport processes for iron between these 4

compartments as well as the sensing elements in the liver and kidney.
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A detailed schematic of the reactions and transport processes incorporated in the model is

presented in Fig 2. In the RES, we distinguish intracellular (I), membrane (M), and interstitial

fluid (ISF) phases. The BM compartment includes colony-forming precursor cells (CFUe) that

mature and lead to erythroblasts (EB). The L compartment interfaces with the B compartment.

Because the rate of iron loss and replenishment by intestinal absorption is small, this metabolic

model focuses on key aspects of iron recycling in contrast to previous models of iron metabo-

lism [18, 20, 26, 28, 38, 39]. Our model incorporates detailed molecular mechanisms of iron

transport [18] that differentiate active and passive diffusive transport, as well as the major spe-

cies of the iron relevant for transport and recycling. These mechanistic details help elucidate

the role of different proteins, enzymes and hormones in iron homeostasis and disease

conditions.

Blood (B) compartment

In the blood compartment, we consider RBC dynamics as well as iron-related molecular

species in RBC and plasma. In plasma, these species include iron-hemoglobin (HbFe), free

ferric iron (Fe3+), apo-transferrin (Tf), mono-ferric transferrin (Fe3+Tf ), diferric transferrin

((Fe3+)2Tf ), ceruloplasmin (Cp), erythropoietin (Epo), and hepcidin (Hepc).
In a constant-volume plasma VP, a mass balance of molecular species j that diffuses between

compartments and changes by reaction rate RjP leads to the plasma concentration CjP dynam-

ics:

VP
dCjP
dt
¼ JjISF!P � J

j
P!EB þ VPR

j
P ð1Þ

Fig 1. Major components and processes of whole-body iron metabolism incorporated in the model.

https://doi.org/10.1371/journal.pcbi.1006060.g001
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Fig 2. Key transport and reaction processes of iron metabolism involving four model compartments: Blood (B), reticuloendothelial system

(RES), bone marrow (BM) and liver (L). Four different types of arrows are used to connect compartments and species which are explained in the

legend drawn inside the figure.

https://doi.org/10.1371/journal.pcbi.1006060.g002
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Here, the ISF- plasma diffusion flux is

JjISF!P ¼ h
j
ISF!PðC

j
ISF � C

j
PÞ j ¼ Tf ; ðFe3þÞTf ; ðFe3þÞ

2
Tf ;Cp;Fe3þ ð2Þ

and the plasma-erythroblast (EB) diffusion flux is

JjP!EB ¼ h
j
P!EBðC

j
P � C

j
EBÞ j ¼ Tf ; ðFe3þÞTf ; ðFe3þÞ

2
Tf ð3Þ

Where hjISF� P and hjP� EB are mass transport coefficients; CjISF and CjEB are concentrations in ISF

and EB. Expressions for RjP (j ¼ Fe3þ;Tf ; ðFe3þÞTf ; ðFe3þÞ
2
Tf are provided in the Table 1. The

degradation of Fe3+ refers to non-specific binding of serum Fe3+ to plasma.

The concentrations of Epo and Hepc increase in plasma by endogenous synthesis and

decrease by natural degradation:

dCEpoP
dt
¼ TEpoK!P �

CEpoP
tEpo

;
dCHepcP

dt
¼ THepcL!P �

CHepcP

tHepc
ð4Þ

where TEpoK!P and THepcL!P are the input rates from synthesis of Epo by kidneys andHepc by liver,

which have been discussed in detail later (section on Erythropoietin and Hepcidin Inputs).

These molecular species have average decay times τEpo and τHepc, respectively.

The RBC number per plasma volume (NRBC) increases from EB differentiation and

decreases by macrophage phagocytosis represented by a cell number density balance:

dNRBC
dt
¼
kRBC EB
VP

NEB � dRES RBCNRBC ð5Þ

where NEB is the EB number in the bone marrow compartment, kRBC EB is the differentiation

rate coefficient. The death rate coefficient by RES phagocytosis dRES RBC = 1/τRBC is the

inverse of the average RBC life-span in plasma.

Associated with the RBC isHbFe3+, whose concentration (relative to plasma volume)

changes by the entry of differentiating erythroblasts carryingHbFe3+ and decreases with the

removal of RBC by phagocytosis:

dCHbFeP

dt
¼
kRBC EB
VP

NEB
NSSEB

� �

CHbFeEB � dRES RBCC
HbFe
P ð6Þ

where CHbFeEB is theHbFe3+ concentration in bone marrow. Here, the number of EB cells in the

bone marrow is scaled by their steady-state values, which are initial values, NSSEB ¼ NEBð0Þ.

Bone Marrow (BM) compartment

Precursor cell (CFUe) dynamics. The CFUe number NCFU(μ,t) changes with respect to

maturity, i.e., age (μ) and time (t) [38]. These cells proliferate, but are negligible in bone mar-

row reaction or transport processes related to iron. From an age-distributed cell number

Table 1. Reactions in blood (B) compartment.

Reaction Term Expression

RTfP � kFe3þ ;Tf CFe
3þ

P CTfP

RFe
3þTf

P kFe3þ ;Tf CFe
3þ

P CTfP � kFe3þ ;Fe3þTf CFe
3þ

P CFe
3þTf

P

RðFe
3þÞ2Tf

P kFe3þ ;Fe3þTf CFe
3þ

P CFe
3þTf

P

RFe3þP � dFe3þP CFe3þP

https://doi.org/10.1371/journal.pcbi.1006060.t001
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balance, we obtain

@NCFU
@t
þ vCFU

@NCFU
@m

¼ bCFUNCFU; 0 � m � mF ð7Þ

where the rate of aging is νCFU = dμ/dt and the rate coefficient of proliferation βCFU is assumed

constant. This is a simplification of a model presented by Mahaffy et al. [25]. At steady state,

CFUe number is

NSSCFUðmÞ ¼ N
0

CFUexpðbCFUmÞ ð8Þ

The rate of CFUe aging is represented as:

vCFU ¼ v0

CEpoP
CEpoP þ KmEpo

 !

ð9Þ

This relation is based on saturation of high affinity Epo receptors of CFUe.

The CFUe number forming at μ = 0 from differentiating Burst Forming Unit Erythroids

(BFUe) is dependent on the total BFUe number NBFUe available for differentiation and

CEpoP ðtÞaccording to an empirical function [36]:

NCFUð0; tÞ ¼
NBFUe

CEpoP ðtÞ
CEpoP ð0Þ

� �

NBFUe

for

for

CEpoP ðtÞ < C
Epo
P ð0Þ

CEpoP ðtÞ � C
Epo
P ð0Þ

ð10Þ

8
>><

>>:

where CEpoP ð0Þ is the steady-state value.

No iron transport happens in the CFUe age-distributed compartment. Furthermore, all

details of the development of the receptors on the CFUe etc. are ignored for this model. At

maturity CFUe’s become erythroblasts (EB) with the average number of transferrin receptors

on their surface and the average intracellular iron-free hemoglobin. The internal processes are

developed for recycling of transferrin receptors and incorporation of iron into hemoglobin.

Erythroblast (EB) region relations. At full maturity μF, differentiation to EB occurs at a

rate:

FEB CFU ¼ vCFU
@NCFU
@m

�
�
�
�

m¼mF

ð11Þ

The EB number increases by CFUe differentiation and decreases by EB differentiation into

RBC:

dNEB
dt
¼ FEB CFU � kRBC EBNEB ð12Þ

Where kRBC EB is a differentiation rate coefficient. The process of maturation of erythroblasts

into mature RBC has been simplified into a lumped model unlike the age-distributed model

for maturation of CFU. With this simplification, iron uptake by maturing erythroblasts is rep-

resented by a single set of reactions in a single EB compartment. At steady state, we obtain

NSSEB ¼
VPdRES RBC
kRBC EB

NSSRBC ð13Þ
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Combining equations above, we find

FSSEB CFU ¼ nCFU
@NCFU
@m

�
�
�
�

m¼mF

¼ nCFUbCFUN
SS
CFUðmFÞ ¼ kRBC EBN

SS
EB ð14Þ

Defining the characteristic time for CFUe’s to become RBC’s as τEB = 1/kRBC EB, we can

express the steady-state CFU number as follows:

NSSCFUðmFÞ ¼ N
SS
EB=ðtRBCnCFUbCFUÞ ð15Þ

The steady-state CFU number is defined as follows:

NSSEB ¼
VPdRES RBC
kRBC EB

NSSRBC ¼ VPdRES RBCtEBN
SS
RBC ð16Þ

To compute NSSCFUðmFÞ and NSSEB, we obtain estimates from the literature for Vp, dRES RBC, τEB,
βCFU and NSSRBC. Following Mahaffy [25], we set νCFU0 = 1.

Iron and transferrin dynamics. In the EB region, iron is taken from (Fe3+)Tf and

(Fe3+)2Tf via transferrin receptor (TfR). The reactions of chemical species are represented by

the following kinetics (Fig 2):

TfRþ ðFe3þÞTf $ ðTfRÞFe3þTf

TfRþ ðFe3þÞ
2
Tf $ ðTfRÞðFe3þÞ

2
Tf

ðTfRÞðFe3þÞTf ! TfRþ Fe3þ þ Tf

ðTfRÞðFe3þÞ
2
Tf ! TfRþ 2Fe3þ þ Tf

Fe3þ þHb! HbFe3þ

ð17Þ

Here, the mechanism of iron release from Tf and recycling of Tf and TfR has been simplified as

a single reaction.

In representing the concentration changes of species j in EB with time, we assume EB vol-

ume is constant. Concentrations in EB increases with CFUe entry and decreases because of EB

maturation into RBC and reactions in the EB compartment as follows:

dCjEB
dt
¼
FEB CFUB

j
CFU

VEB
�
kRBC EB
VEB

NEB
NSSEB

� �

CjEB þ R
j
EB; j ¼ TfR;Hb ð18Þ

where BTfRCFU , BHbCFU are the constant amounts of TfR andHb per CFUe entering the EB compart-

ment [7, 40].

SinceHbFe3+ is not in CFUe its concentration changes according to

dCHbFe3þEB

dt
¼
� kRBC EB
VEB

NEB
NSSEB

� �

CHbFe3þEB þ RHbFe3þEB ð19Þ

For the species that do not enter or leave the EB compartment, the concentration changes only

by reaction:

dCjEB
dt
¼ RjEB; j ¼ ðTfRÞðFe3þÞTf ; ðTfRÞðFe3þÞ2Tf ; Fe

3þ ð20Þ

For other species concentrations, changes can occur by reaction and transport into or out of
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plasma:

dCjEB
dt
¼ RjEB þ

JEB P
VEB

; j ¼ ðFe3þÞTf ; ðFe3þÞ
2
Tf ;Tf ð21Þ

Expressions for RjEB are provided in the Table 2.

RES compartment

The RES compartment is divided into intracellular (I), membrane (M) and interstitial (ISF)

regions, which are assumed to have constant volumes (Fig 2). Iron from the hemoglobin in

senescent RBC’s that are phagocytosed by the macrophages of the ISF is delivered as Fe3+ into

the intracellular region. Then, Fe3+ is converted to Fe2+ (labile iron pool) by endosomal reduc-

ing agents and then it binds to intracellular FPN. This complex is carried by an energy-driven

process to the cell membrane, where Fe2+ is converted to Fe3+ by sequestration with ferritin

(FN). At the membrane, oxygen (O2) and ceruloplasmin (CpCu2+) oxidize Fe2+ FPN to Fe3+

FPN. The dissociation of Fe3+ FPN allows FPN to recycle and Fe3+ to diffuse into the ISF or

bind to Tf to form Fe3+Tf in the membrane region.

For most species, the transport fluxes between M and ISF are governed by passive diffusion:

JjM!ISF ¼ h
j
M� ISFðC

j
M � C

j
ISFÞ; j ¼ Tf ; ðFe3þÞTf ; ðFe3þÞ

2
Tf ð22Þ

For a few species, the transport fluxes between RES regions are energy-driven processes:

JFPNI M ¼ hI MC
FPN
M ; JFe2þFPNM I ¼ hM IC

Fe2þFPN
I ; JFe3þ ISF M ¼ hISF MC

Fe3þ
M ð23Þ

In the I region, the species j concentrations change according to

dCjI
dt
¼
JjI M � JjM I

VI
þ RjI j ¼ Fe2þ; FPN ð24Þ

The Fe3+ from the senescent RBC acts as a source of Fe3+ in the intracellular (I) region. Hence

the equation for concentration of Fe3+ in the I region varies as:

dCFe3þI

dt
¼
JFe3þ I M � JFe

3þ

M I

VI
þ RFe3þ I þ dRES RBCC

HbFe
P

VP
VI

� �

ð25Þ

Table 2. Reactions in the erythroblast (EB) compartment.

Reaction Term Expression

RTfREB � kon;TfR;Fe3þTf C
TfR
EB C

Fe3þTf
Eb � kon;TfR;ðFe3þÞ2Tf C

TfR
EB C

ðFe3þÞ2Tf
EB þ kTfR;recycleðC

TfRFe3þTf
EB þ CTfRðFe

3þÞ2Tf
EB Þ

þkoff ;TfRFe3þTf C
TfRFe3þTf
EB þ koff ;TfRðFe3þÞ2Tf C

TfRðFe3þÞ2Tf
EB

RTfRFe
3þTf

EB kon;TfR;Fe3þTf C
TfR
EB C

Fe3þTf
EB � koff ;TfRFe3þTf C

TfRFe3þTf
EB � kTfR;recycleC

TfRFe3þTf
EB

RTfRðFe
3þÞ2Tf

EB kon;TfR;ðFe3þÞ2Tf C
TfR
EB C

ðFe3þÞ2Tf
EB � koff ;TfRðFe3þÞ2Tf C

TfRðFe3þÞ2Tf
EB � kTfR;recycleC

TfRðFe3þÞ2Tf
EB

RFe
3þTf

EB � kon;TfR;Fe3þTf C
TfR
EB C

Fe3þTf
EB þ koff ;TfRFe3þTf C

TfRFe3þTf
EB

RðFe
3þÞ2Tf

EB � kon;TfR;ðFe3þÞ2Tf C
TfR
EB C

ðFe3þÞ2Tf
EB þ koff ;TfRðFe3þÞ2Tf C

TfRðFe3þÞ2Tf
EB

RFe3þEB kTfR;recycleðC
TfRFe3þTf
EB þ CTfRðFe

3þÞ2Tf
EB Þ � kFe3þ ;HbCFe

3þ

EB C
Hb
EB

RHbEB � kFe3þ ;HbCFe
3þ

EB C
Hb
EB

RHbFe3þEB kFe3þ ;HbCFe
3þ

EB C
Hb
EB

https://doi.org/10.1371/journal.pcbi.1006060.t002
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The FPN concentration depends on FPN endogenous synthesis and loss:

dCFPNI
dt
¼
JFPN I M
VI

þ RFPNI þ SFPNI ð26Þ

where

SFPNI ¼
CFPNI jSS � C

FPN
I

tFPN
ð27Þ

Here, τFPN is the half-life of FPN and CFPNI jSS is the steady-state concentration of FPN. The

model ignores any transcriptional regulation of FPN as has been observed especially due to

hypoxia, iron deficiency etc. [41, 42]. In the M region, the species j concentrations change as:

dCjM
dt
¼
JjM I þ J

j
M ISF � J

j
I M

VM
þ RjM ð28Þ

where j ¼ Fe2þFPN; Fe3þFPN; Fe3þ; FPN;CpCu2þ

;CpCu1þ

;Tf ; Fe3þTf ; Fe3þ
2
Tf . In the ISF region,

the species j concentration changes as:

dCjISF
dt
¼
Nscale factorJ

j
ISF M � J

j
ISF!P

VISF
þ RjISF ð29Þ

where JjISF!P ¼ h
j
ISF� PðC

j
ISF � C

j
PÞ; j ¼ Tf ; ðFe3þÞTf ; ðFe3þÞ

2
Tf ;CpCu2þ

;CpCu1þ

ð30Þ

The reaction rates for each chemical species j in the three RES regions (RjISF,RjI,RjM) are

based on the kinetics as indicated in Fig 2 and described below. We incorporated theHepc
blocking of iron transport from RES through degradation of both intracellular and membrane

FPN [15–17]. In the intracellular (I) region:

Fe3þ $ Fe2þ

Fe2þ þ FPN ! Fe2þFPN

FPN þHepc! 


FPN ! 


ð31Þ

where
 represents degradation products. In the membrane (M) region:

4ðFe2þÞFPN þ O2 þ 4Hþ⇄4ðFe3þÞFPN þ 2H2O

Fe2þFPN þ CpðCu2þÞ ! Fe3þFPN þ CpðCu1þÞ

Fe3þFPN ! Fe3þ þ FPN

Fe3þ þ Tf ! ðFe3þÞTf

Fe3þ þ ðFe3þÞTf ! ðFe3þÞ
2
Tf

4CpðCu1þÞ þ O2 þ 4Hþ!4CpðCu2þÞ þ 2H2O

FPN þHepc! 


ð32Þ
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In the interstitial (ISF) region:

Fe3þ þ Tf ! ðFe3þÞTf

Fe3þ þ Fe3þTf ! ðFe3þÞ
2
Tf

4CpðCu1þÞ þ O2 þ 4Hþ!4CpðCu2þÞ þ 2H2O

ð33Þ

Expressions for RjI ;R
j
M;R

j
ISF are provided in Table 3.

Liver (L) compartment

In the liver compartment, we consider the dynamics of binding of iron-transferrin to transfer-

rin receptor 2 (TfR2), internalization and storage of iron inside the liver depicted in Fig 2. This

compartment deals with the changes in serum iron and its effect on the extent of iron stored

(Fe3+) in the liver, and subsequently on hepcidin synthesis and secretion. The other functions

of the liver in iron metabolism, including storage and release of iron from ferritin, are lumped

into the RES compartment in this model rather than the L compartment. The very low binding

affinity of transferrin to TfR2 produces significantly different dynamics in this compartment

as opposed to assuming the same binding affinity as TfR.

All species transport between plasma and liver is governed by passive diffusion:

JjP!L ¼ h
j
P!LðC

j
P � C

j
LÞj ¼ Tf ; ðFe3þÞTf ; ðFe3þÞ

2
Tf ð34Þ

Inside the liver compartment of volume VL, the concentrations of some species change as:

dCjL
dt
¼
JjP!L
VL
þ RjL; j ¼ Tf ; ðFe3þÞTf ; ðFe3þÞ

2
Tf ð35Þ

Table 3. Reactions in the RES (I, M, ISF) compartment.

Reaction Terms Expressions

RFe2þI � kFe2þ!Fe3þCFe
2þ

I þ kFe3þ!Fe3þCFe
3þ

I � kFe2þ ;FPNCFe
2þ

I CFPNI
RFe3þI kFe2þ!Fe3þCFe

2þ

I � kFe3þ!Fe3þCFe
3þ

I

RFe2þFPNI kFe2þ ;FPNCFe
2þ

I CFPNI
RFPNI � kFe2þ ;FPNCFe

2þ

I CFPNI � kFPN;HepcCFPNI CHepcP � kFPN;rhHepcCFPNI CrhHepcT

RFe2þFPNM � ðkFe2þFPN;O2
CO2
M þ kFe2þFPN;CpC

CpðCu2þÞ

M ÞCFe2þFPNM

RFe3þFPNM ðkFe2þFPN;O2
CO2
M þ kFe2þFPN;CpC

CpðCu2þÞ

M ÞCFe2þFPNM � kFe3þFPN;Fe3þCFe
3þFPN

M

RFe3þM kFe3þFPN;Fe3þCFe
3þFPN

M � kFe3þ ;Tf CFe
3þ

M CTfM � kFe3þ ;Fe3þTf CFe
3þ

M CFe
3þTf

M

RFPNM kFe3þFPN;Fe3þCFe
3þFPN

M � kFPN;HepcCFPNM CHepcM � kFPN;rhHepcCFPNM CrhHepcM

RFe
3þTf

M kFe3þ ;Tf CFe
3þ

M CTfM � kFe3þ ;Fe3þTf CFe
3þ

M CFe
3þTf

M

RðFe
3þÞ2Tf

M kFe3þ ;Fe3þTf CFe
3þ

M CFe
3þTf

M

RTfM � kFe3þ ;Tf CFe
3þ

M CTfM

RCpðCu
2þÞ

M � kFe2þFPN;CpC
CpðCu2þÞ

M CFe2þFPNM þ kCpðCu1þÞ;O2
CO2
M C

CpðCu1þÞ

M

RCpðCu
1þÞ

M kFe2þFPN;CpC
CpðCu2þÞ

M CFe2þFPNM � kCpðCu1þÞ;O2
CO2
M C

CpðCu1þÞ

M

RFe
3þTf

ISF kFe3þ ;Tf CFe
3þ

ISF C
Tf
ISF � kFe3þ ;Fe3þTf CFe

3þ

ISF C
Fe3þTf
ISF

RðFe
3þÞ2Tf

ISF kFe3þ ;Fe3þTf CFe
3þ

ISF C
Fe3þTf
ISF

RTfISF � kFe3þ ;Tf CFe
3þ

ISF C
Tf
ISF

https://doi.org/10.1371/journal.pcbi.1006060.t003
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whereas others change as:

dCjL
dt
¼ RjL; j ¼ TfR2;TfR2ðFe3þÞTf ;TfR2ðFe3þÞ

2
Tf ; Fe3þ ð36Þ

Based on the following chemical reactions, equations for reaction rates RjL are provided in

Table 4.

TfR2þ ðFe3þÞTf $ ðTfR2ÞðFe3þÞTf

TfR2þ ðFe3þÞ
2
Tf $ ðTfR2ÞðFe3þÞ

2
Tf

ðTfR2ÞðFe3þÞTf ! TfR2þ Fe3þ þ Tf

ðTfR2ÞðFe3þÞ
2
Tf ! TfR2þ 2Fe3þ þ Tf

Fe3þ ! 


ð37Þ

where
 represents degradation products. In this case, degradation refers to binding or chela-

tion of Fe3+ (possibly into Ferritin or other forms).

The affinity of TfR2 for (Fe3+)Tf and (Fe3+)2Tf is known to be 30 times less than TfRwhich

is used to compute the rate of binding of (Fe3+)Tf and (Fe3+)2Tf to TfR2 from the binding rates

to TfR

kon;TfR2;Fe3þTf ¼ kon;TfR;Fe3þTf � ðkD;TfR;Fe3þTf=ZÞ

kon;TfR2;ðFe3þÞ2Tf
¼ kon;TfR;ðFe3þÞ2Tf � ðkD;TfR;ðFe3þÞ2Tf=ZÞ

ð38Þ

η = 30 is the ratio of the affinity monoferric and diferric transferrin to TfR and TfR2

Erythropoietin and hepcidin inputs

In addition to endogenous inputs of erythropoietin and Hepc to this model, these inputs can

be exogenous for therapy. Whereas the endogenous input rates are empirical, the exogenous

input rates are based on a pharmacokinetic model (S1 Fig). The equations for both endoge-

nous Epo and Hepc inputs are developed in this section, while those for exogenous inputs are

described later in “System perturbations for parameter estimation”

Endogenous erythropoietin entry rate. The rate of erythropoietin (Epo) entry into

plasma is directly related to its synthesis rate in the renal cortex [43], which depends on many

factors [44]. In this model, it is assumed that control of Epo synthesis is primarily a function of

HbFe3+. Data from previous studies [39, 45, 46] were used to develop an empirical relationship

Table 4. Reaction terms in liver (L) compartment.

Reaction Term Expression

RTfR2

L � kon;TfR2;Fe3þTf C
TfR2

L CFe
3þTf

L � kon;TfR2;ðFe3þÞ2Tf
CTfR2

L CðFe
3þÞ2Tf

L þ kTfR;recycleðC
TfR2Fe3þTf
L þ CTfR2ðFe3þÞ2Tf

L Þ

þkoff ;TfR2Fe3þTf C
TfR2Fe3þTf
L þ koff ;TfR2ðFe3þÞ2Tf

CTfR2ðFe3þÞ2Tf
L

RTfR2Fe3þTf
L kon;TfR2;Fe3þTf C

TfR2

L CFe
3þTf

L � koff ;TfR2Fe3þTf C
TfR2Fe3þTf
L � kTfR2;recycleC

TfR2Fe3þTf
L

RTfR2ðFe3þÞ2Tf
L kon;TfR2;ðFe3þÞ2Tf

CTfR2

L CðFe
3þÞ2Tf

L � koff ;TfR2ðFe3þÞ2Tf
CTfR2ðFe3þÞ2Tf
L � kTfR2;recycleC

TfR2ðFe3þÞ2Tf
L

RFe
3þTf

L � kon;TfR2;Fe3þTf C
TfR2

L CFe
3þTf

L þ koff ;TfR2Fe3þTf C
TfR2Fe3þTf
L

RðFe
3þÞ2Tf

L � kon;TfR2;ðFe3þÞ2Tf
CTfR2

L CðFe
3þÞ2Tf

L þ koff ;TfR2ðFe3þÞ2Tf
CTfR2ðFe3þÞ2Tf
L

RFe3þL kTfR2;recycleðC
TfR2Fe3þTf
L þ CTfR2ðFe3þÞ2Tf

L Þ � dL;Fe3þCFe
3þ

EB

https://doi.org/10.1371/journal.pcbi.1006060.t004
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between CHbFeP and Epo synthesis rate, which becomes the Epo entry rate into plasma:

TEpoK!P ¼ ðC
Epo
0 =tEpoÞf1þ aEpoexp½bEpoðCHbFeP jSS � C

HbFe
P Þ�g=ð1þ aEpoÞ ð39Þ

Here, αEpo, βEpo, CEpo0 are model parameters.

Endogenous Hepcidin entry rate. The rate of Hepc entry into plasma is directly related

to its synthesis rate in liver, which is sensitive to serum iron levels. A complex intracellular net-

work of pathways provides precise control of Hepc [47, 48]. The variant of transferrin receptor,

TfR2, which is found abundantly on hepatocytes has been shown to be key to regulation of

Hepc synthesis along with other surface proteins like HFE [14, 49]. In our model, the transfer-

rin receptor 2 (TfR2) pathway mediates uptake of iron from plasma iron transferrin. The

dynamics of hepatocyte iron are described in the Liver compartment section. To represent the

time delay from a change in serum transferrin saturation or serum iron to the appearance of

Hepc in plasma, an intermediate species IHepc is incorporated in the model. Changes in con-

centration of IHepc can be rationalized as representing the dynamics of normalized mRNA

expression for Hepc. The IHepc concentration increases by synthesis at rate RIHepc and

decreases by natural mRNA degradation with a characteristic time τIHepc:

dCIHepc

dt
¼ RIHepc �

CIHepc

tIHepc
ð40Þ

At steady-state, CIHepcjSS ¼ ðRIHepcjSSÞtIHepc

The rate of entry of Hepc into the BL compartment is defined as:

THepcL!P ¼ kIHepc;HepcC
IHepc ) kIHepc;Hepc ¼

THepcL!PjSS
CIHepcjSS

ð41Þ

At steady-state, the rate of entry to the Hepc concentration is derived from Eq (41) as

THepcL!PjSS ¼ C
Hepc
0 j=tHepc

The rate of synthesis of IHepc depends on whether intracellular Fe3+ in the L compartment is

less or more than its steady-state level. Increase in liver intracellular Fe3+ leads to increase in

Hepc [50] through increased transcription which is represented in the model as increased syn-

thesis of IHepc [51]. In the model, the transcriptional regulation is represented as a Hill’s func-

tion. Lowering of liver Fe3+ leads to inhibition of IHepc synthesis as a function of the

reduction of liver Fe3+ from the steady-state concentration:

RIHepc ¼

(
kIHepc;Fe3þððCFe

3þ

L Þ
nIHepc;Fe3þ =ððCFe3þL Þ

nIHepc;Fe3þ þ ðkmIHepc;Fe3þÞ
nIHepc;Fe3þ ÞÞ

RIHepcjSS=ð1þ kIIHepc;Fe3þðCFe
3þ

L jSS � C
Fe3þ
L ÞÞ

for

for

CFe3þL > CFe3þL jSS

CFe3þL � CFe3þL jSS

ð42Þ

The two expressions for RIHepc are designed to allow RIHepc to be continuous across the range

of liver iron concentration. At steady state,

RIHepc ¼ kIHepc;Fe3þ ðC
Fe3þ
L jSSÞ

nIHepc;Fe3þ=ððCFe3þL jSSÞ
nIHepc;Fe3þ þ ðkmIHepc;Fe3þÞ

nIHepc;Fe3þ Þ

� �

ð43Þ

Methods

Values for all initial model variables and parameters are listed in tables described later in the

document. From the literature, we specified steady-state reference values for initial basic
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model variables and parameters. To reduce the number of parameters to be estimated, we

assumed relationships between species transport parameters based on molecular weightMW
of each species such as:

hjISF� P
hTfISF� P

¼

ffiffiffiffiffiffiffiffiffiffiffiffi
MWTf

MWj

s

;
hjP!EB
hTfP!EB

¼

ffiffiffiffiffiffiffiffiffiffiffiffi
MWTf

MWj

s

ð44Þ

The steady-state concentration of iron hemoglobin (HbFe) in plasma represents typical values

of healthy adult male individuals [2] assuming that at least 95% of the total iron hemoglobin is

bound to iron. Some parameter values were computed from steady-state relationships among

the variables (as indicated in the Table 5) and some parameter values were obtained directly

from literature (as indicated in the Table 6). Some initial conditions of the model were also

obtained by using simple steady-state relationships.

Transferrin in plasma

The steady-state concentrations of the three transferrin species TfP,(Fe3+)TfP,(Fe3+)2TfP are

related by stoichiometry [4] as:

CðFe
3þÞTf

P þ CðFe3þÞ2Tfp þ CTfP ¼ C
Tftotal
P ð45Þ

From experiments [2, 64], CTftotalP ¼ 40mM is the mean total serum transferrin. Based on the

mean serum transferrin saturation of 50% in healthy male subjects [1, 2], we can write:

2CðFe3þÞ2Tfp þ CðFe
3þÞTf

P

2CTftotalP

¼ 0:5 ð46Þ

The measured relative concentrations of these species [65, 66] is approximately:

CðFe
3þÞTf

P

2
¼
CðFe3þÞ2Tfp

1
¼
CTfP
1

ð47Þ

The initial (and steady-state) values of Tfj,(Fe3+)Tfj,(Fe3+)2Tfj in other regions (j = ISF, EB) are

assumed equal to the corresponding values in plasma.

Parameters of the model were estimated in stages with estimates from the previous step car-

ried forward for future parameter estimation steps. Some model parameters were estimated by

using small parts of the model to experimental data e.g. the kinetics of transferrin to TFR,

binding of iron (Fe3+) to Tf and Fe3+Tf.

Table 5. Steady-state relationships between parameters.

Parameter Relationship

VP VB(1−hct)
v0 vcfu;ss

ðCEpoP;ssþKmEpoÞ

CEpoP;ss

CO2
X X = [I,M,ISF]

PO2

sO2

XTfRCFU NTfR0/(Avg_no�1E+9,Avg_no = 6.023E + 23

CTfREB;ss FssCFU!EB�X
TfR
CFU

VEB�kRBC EB

https://doi.org/10.1371/journal.pcbi.1006060.t005
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Transferrin receptor-transferrin complex

From in vitro experiments [67], the normalized concentration (y) of I125-labelled (Fe3+)2Tf that

is internalized can be described by

y ¼
CTfRðFe3þÞ2Tf
C0
TfRðFe3þÞ2Tf

¼ 1 � e� krecycle;TfRt ð48Þ

where C0
TfRðFe3þÞ2Tf

is the initial concentration of the complex and krecycle,TfR is the rate constant

for internalization and recycling. The value of this parameter was obtained by fitting the

model to the data as shown in Supplement S2 Fig.

Transferrin binding to transferrin receptor

To estimate the differential binding rates of mono- and di-ferric transferrin to transferrin

receptor (kTfR;ðFe3þÞTf ; kTfR;ðFe3þÞ2Tf ), we used in vitro cell-culture data [40, 65–67]. These data

Table 6. Parameter values obtained from literature.

Parameter name Description Units Value

α1 Rate coefficient for the linear time based change in volume of plasma after phlebotomy [25, 52] min−1 3.76E-5

α2 Rate coefficient for the exponential time based change in volume of plasma after phlebotomy [25, 52] min−1 8.43E-5

βP Fraction of plasma volume removed due to phlebotomy [25, 52] dimensionless 8.00E-2

βCFU Rate coefficient for rate of proliferation of CFUe with age [25, 52] min−1 1.44E-3

hct0 Baseline healthy serum hematocrit [53] dimensionless 4.60E-1

HbFeP,SS Baseline healthy serum concentration of serum iron hemoglobin [53] μM 9.39E+3

kCpðCu1þÞ;O2
Rate of oxidation of the Cu1+ to Cu2+ in ceruloplasmin by O2 [22] μM−1 min−1 5.93E+0

kCpðCu2þÞ;Fe2þ Rate coefficient of oxidation of Fe2+ to Fe3+ by ceruloplasmin [22] μM−1 min−1 8.99E+1

kFe2þ ;Fe3þ Rate coefficient of conversion of Fe3+ to Fe2+ [22] min−1 1.88E+0

kFe3þ ;Fe2þ Rate coefficient of conversion of Fe2+ to Fe3+[22] min−1 3.19E-2

kFe2þ ;FPN Rate coefficient of binding of Fe2+ to intracellular FPN [22] μM−1 min−1 6.30E-1

kFe2þ ;O2
Rate coefficient of oxidation of Fe2+ to Fe3+ by O2 [22] μM−1 min−1 6.24E+0

kFe3þFPN;Fe3þ Rate coefficient of release of Fe3+ from (Fe3+)FPN complex [22] min−1 1.99E+0

kDTfRðFe3þÞ2Tf Rate coefficient of dissociation of (Fe3+)2Tf from complex with TfR [54] μM 8.46E-3

kDTfRðFe3þÞTf Rate coefficient of dissociation of (Fe3+)Tf from complex with TfR [54] μM 3.38E-2

MWTf Molecular weight of transferrin [55] kDa 7.00E+1

MWFeSO4
Molecular weight of FeSO4 [56] Da 1.52E+2

MWCp Molecular weight of ceruloplasmin [57] kDa 1.32E+2

MWFe Molecular weight of elemental iron Da 5.6E+1

MWHepc Molecular weight of hepcidin [58] Da 2.70E+3

MWHbFe Molecular weight of iron hemoglobin [59] kDa 1.66E+3

μF Age at which CFUe mature into erythroblasts [6] min 5.76E+3

sO2
Solubility coefficient for O2 in medium/serum [6] L�atm / μmole 7.69E-4

CPHepc;SS Steady-state concentration of hepcidin in serum [14] μM 1.50E-2

VI Volume of the intracellular compartment of the RES compartment [22] mL 1.00E-3

VM Volume of the membrane compartment of the RES compartment [22] mL 1.00E-4

τTf Half-life of transferrin in serum [6, 53, 60] min 1.152E+4

CTftotalP Total concentration of serum transferrin [54, 61] mg/dL 2.81E+2

NTfR0 Number density of transferrin receptors on erythroblasts [62, 63] receptor / cell 4.00E+5

nIHepc;Fe3þ Hill function’s coefficient for increase in hepcidin expression by Fe3+ [20] dimensionless 2

https://doi.org/10.1371/journal.pcbi.1006060.t006
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show time-course interaction of mono- and di-ferric transferrin to transferrin receptors over a

wide range of doses. The corresponding model equations describe mono-ferric transferrin

((Fe3+)Tf) and diferric transferrin ((Fe3+)2Tf) binding to free transferrin receptor (TfR):

dCðFe3þÞTf
dt

¼ � konTfRðFe3þÞTf CðFe3þÞTf CTfR þ koffTfRðFe3þÞTf CTfRðFe3þÞTf

dCðFe3þÞ2Tf
dt

¼ � konTfRðFe3þÞ2Tf CðFe3þÞ2Tf CTfR þ koffTfRðFe3þÞ2Tf CTfRðFe3þÞ2Tf

dCTfRðFe3þÞTf
dt

¼ konTfRðFe3þÞTf CðFe3þÞTf CTfR � koffTfRðFe3þÞTf CTfRðFe3þÞTf � krecycleCTfRðFe3þÞTf

dCTfRðFe3þÞ2Tf
dt

¼ konTfRðFe3þÞ2Tf CðFe3þÞ2Tf CTfR � koffTfRðFe3þÞ2Tf CTfRðFe3þÞ2Tf � krecycleCTfRðFe3þÞ2Tf

CTfR þ CTfRðFe3þÞTf þ CTfRðFe3þÞ2Tf ¼ CTfR0

ð49Þ

where CTfR0 is the concentration of free transferrin receptors in the absence of any transferrin.

By definition, the binding parameters are related as:

koffTfRðFe3þÞTf ¼ konTfRðFe3þÞTf kDTfRðFe3þÞTf
koffTfRðFe3þÞ2Tf ¼ konTfRðFe3þÞ2Tf kDTfRðFe3þÞ2Tf

ð50Þ

The relative affinities of (Fe3+)Tf and (Fe3+)2Tf are known (Table 6). The unknown parame-

ters in the model krecycle; konTfRðFe3þÞTf ; konTfRðFe3þÞ2Tf ;CTfR0 are estimated by matching the model

output of iron bound to transferrin with different starting concentrations of mono-ferric and

diferric transferrin [65–67] as shown in S3 Fig.

Iron binding with transferrin in plasma

In previous work [22], the rates of binding of Fe3+ to Tf and Fe3+Tfwere assumed to be the

same. However, the rate constants for binding of Fe3+Tf and (Fe3+)2Tf to TfR are different (as

described above) so that the plasma concentration of Fe3+Tf is more than that of (Fe3+)2Tf. To

achieve the expected concentrations of Fe3+Tf and (Fe3+)2Tf in blood at steady-state, the rates

of binding for Fe3+ and Fe3+Tf had to be different.

The next step was to estimate some unknown parameters of the in vivomodel by matching

the simulated output to the steady-state concentrations of the known species. For example, the

model parameters hjISF!P; h
j
P!EB; kEB;Hb;Fe; kFe3þ ;Tf ; kFe3þ ;Fe3þTf were estimated by matching the

model outputs to steady-state values of clinical markers. As described above, distinctive values

of binding rate constants were obtained for Fe3+Tf and (Fe3+)2Tf to TfR and these were used in

the model simulations during the parameter estimation process. The remaining parameters

were estimated by comparing model outputs in response to perturbations corresponding to

experimental time-course data. These perturbation experiments were carefully chosen to esti-

mate parameters in small sets. The best parameter estimates are those that minimize the least-

squared difference between the model outputs and experimental data. In order to develop con-

fidence that the parameter estimates are global, a Differential Evolution algorithm [68] was

used with multiple restarts to find the best result.

Model parameters were estimated using experimental data associated with the following

perturbations applied to the basic model:

1. Phlebotomy produces a loss of blood volume that leads to changes in serum hemoglobin

and Epo concentrations. This experiment allows calibration of changes in Epo synthesis

and secretion in response to changes in serum hemoglobin.
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2. Iron ingestion increases serum iron levels and Hepc synthesis leading to increased serum

Hepc. This experiment allows calibration of the dose response of Hepc synthesis and secre-

tion in response to changes in serum iron and the rate of degradation of FPN by Hepc.

3. rhHepc injection changes serum Hepc concentration that reduces FPN and inhibits iron

transport leading to drop in serum iron. This experiment performed in mice allows estima-

tion of the half-life of FPN which is crucial for simulation of long-term changes in FPN levels

in vivo. Differences in model parameters between mouse and human are listed in Table 7.

4. rEpo injection affects CFUe dynamics leading to increased hemoglobin in blood.

5. Anemia of CKD leads to loss of sensitivity of Epo synthesis to changes in serum hemoglobin

and decrease in baseline Epo synthesis.

Optimal estimates of model parameters were obtained by least-square fitting of model outputs

under a variety of conditions to experimental data. Simulation of model outputs requires numeri-

cal solution of model equations. Steady-state values of the model outputs are obtained by solving

the model equations for a sufficiently long time until the output values change negligibly. The

model consists of differential and algebraic equations. To convert the partial differential equation

(Eq 7) into this format, we discretized spatial derivatives [69]. (Code available as supplementary
material). The model equations are solved as an initial-value problem using a Python code based

on LSODES [70]. LSODES was specifically used to numerical solve the stiff differential equations

because the biological system has variables which change over different time scales.

System perturbations for parameter estimation

From the transient model, a steady state is reached by simulating the model for a long time.

This provides initial conditions for the following perturbations:

Phlebotomy. Standard phlebotomy or blood loss occurs with an 8% reduction of blood vol-

ume, which leads to dilution of both blood cells and protein concentrations. Over several hours,

the intravascular volume is replenished by the slow movement of fluid from the interstitial space

into blood leading to dilution of both blood cells and proteins. The release of iron from stores is

necessary to simulate the time course of recovery of after phlebotomy. For this simulation, we

modified the basic model equations by incorporating equations based on previous studies [25].

As a consequence of blood loss, the plasma volume decrease is represented as:

dVP
dt
¼ � a2VP0ða1t � bPÞe

� a2t ð51Þ

which upon integration yields:

VP ¼ VP0ð1þ ða1t � bPÞe
� a2tÞ ) VPð0Þ ¼ VP0ð1 � bPÞ ð52Þ

Table 7. Parameter values from literature different between human and mouse model.

Parameter name Description Units Value (human) Value (mice)

VB Volume of plasma compartment mL 5.04E+2 3.00E+0

VEB Volume of erythroblast compartment mL 1.89E+3 2.54E+0

VISF Volume of the ISF compartment mL 4.29E+2 1.95E-1

τRBC Half-life of RBC in plasma day 1.20E+2 4.00E+1

τCFU Half-life of CFUe min 5.76E+3 2.88E+3

τEB Half-life of erythroblasts min 2.88E+3 1.44E+3

https://doi.org/10.1371/journal.pcbi.1006060.t007
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where reflects initial blood loss and are empirical rate parameters [25]. Accounting for plasma

volume loss, the plasma concentration for species j that depends on diffusion fluxes between

phases changes as:

dCjP
dt
¼ JjISF!P � J

j
P!EB �

CjP
VP

dVP
dt

ð53Þ

where

1

VP

dVP
dt
¼
� a2ða1t � bPÞe� a2t

1þ ða1t � bPÞe� a2t
ð54Þ

Compared to the basic model equations, the modified plasma concentrations involve this loss

in plasma volume, which tends to increase concentration with time. The modified equations

for Epo and Hepc are

dCEpoP
dt
¼ TEpoK!P �

CEpoP
tEpo
�
CEpoP
VP

dVP
dt

;
dCHepcP

dt
¼ THepcL!P �

CHepcP

tHepc
�
CHepcP

VP

dVP
dt

ð55Þ

Blood loss leads to release of iron from stores in the liver, which is reflected in the equation

representing the Fe3+ concentration change:

VP
dCFe3þP

dt
¼ JFe3þISF!P � J

Fe3þ
P!EB � C

Fe3þ
P
dVP
dt
þ TFe3þL!P ð56Þ

The rate of iron release is controlled by Hepc according to the empirical relation:

TFe3þL!P ¼ min½TFe3þL0 ½1 � ZFe
3þ

HepcðC
SS
Hepc � CHepcÞ�; 0� ð57Þ

where ZFe
3þ

Hepc are empirical parameters. Also, blood volume change affects the RBC number den-

sity:

dNRBC
dt
¼
kRBC EB
VP

NEB � dRES RBCNRBC �
NRBC
VP

dVP
dt

ð58Þ

The dynamic model outputs (basic model including the phlebotomy perturbation) are fit to

time course data of serum concentrations of hemoglobin () and Epo () from literature [25] to

obtain optimal estimation of parameters that affect Epo synthesis, CFUe maturation, Hepc,

and iron release from stores.

Iron ingestion. After ingestion, iron is transported from gut into plasma. The rate of

transport can be approximated as a 1st order process and expressed as:

TFe3þGut!P ¼ kGut!PY
Fe3þ
0

expð� kGut!PtÞ ð59Þ

where YFe3þ
0

represents the oral iron dose and kGut!P is the rate coefficient of absorption. With

this perturbation including plasma volume reduction, the concentration of plasma iron

changes as:

dCFe3þP

dt
¼
JFe3þISF!P � J

Fe3þ
P!EB

VP
þ TFe3þGut!P ð60Þ

The model output incorporating this perturbation was fit to experimental time-course data for

serum iron (CFeP ), transferrin saturation (XTfP ) and serum hepcidin (CHepcP ) [11]. The serum iron
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and transferrin saturation are defined as:

CFeP ¼ ðC
ðFe3þÞTf
P þ 2CðFe

3þÞ2Tf
P Þ �MWFe=10 ð61Þ

XTfP ¼
ðCðFe

3þÞTf
P Þ=2þ CðFe

3þÞ2Tf
P

CTfP þ C
ðFe3þÞTf
P þ CðFe

3þÞ2Tf
P

ð62Þ

MWFe represents the molecular weight of elemental iron.

Drug injection. The perturbations associated with injections of rhHepc and rEpo require

model equations for drug concentrations in plasma and in a generic tissue. For this purpose, a

2-compartment pharmacokinetics model is applied (S1 Fig). Drug (j = rhHepc, rEpo) concen-

tration in the plasma compartment changes according to

dCjP
dt
¼
kP TC

j
T � kT PC

j
P

VP
�
CjP
t
j
P

þ TjEL ð63Þ

where kP T and kT P are rate coefficients for transport between plasma (P) and tissue (T) and

t
j
P is the time constant of drug loss by several processes including metabolism. The rate of

drug entry per plasma volume, which depends on the entry location, is represented as:

TjEL ¼ kELY
0

ELe
� kELt ð64Þ

where EL = Peri,SC,Gut,kEL is the first-order rate of drug entry and Y0
EL is the dose of the drug

injected. The drug concentration in tissue changes as:

dCjT
dt
¼ �

kP TC
j
T � kT PC

j
P

VT
ð65Þ

Injection of rhHepc. With this perturbation, rhHepc acts like endogenous Hepc and

causes degradation of FPN in the intracellular and membrane regions of the RES compart-

ment. This is indicated by a dashed line in Fig 2 and represented by an additional reaction:

FPN þ rhHepc! 
 ð66Þ

The basic model is modified by incorporating the drug injection equations. To estimate the

model parameters, the dynamic model output was fit to the time course of serum drug

(rhHepc) concentration (S4 Fig). In the rhHepc study, the drug was injected into mice through

the peritoneum [71]. Mice data were used because data are not available from human studies.

Consequently, there were changes in volumes and several other factors as described in Table 7.

Injection of rEpo.. With this perturbation, rEpo acts like endogenous Epo and increases

the rate of BFUe differentiation into CFUe as represented by

NCFUð0; tÞ ¼

NBFUe
CEpoP ðtÞ
CEpoP ð0Þ

� �

þ
a
rEpo
NBFUC

rEpo
P

CrEpoP þ ECrEpo50

 !" #

forCEpoP ðtÞ < C
Epo
P ð0Þ

NBFUe
a
rEpo
NBFUC

rEpo
P

CrEpoP þ ECrEpo50

 !

forCEpoP ðtÞ � C
Epo
P ð0Þ

ð67Þ

8
>>>>><

>>>>>:

The model parameters a
rEpo
NBFU and ECrEpo50 represent the sensitivity of BFUe to rEpo and the half-

maximum concentration for the drug. Another effect of adding rEpo is to increase the rate of
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CFUe maturation as represented by

vCFU ¼ v0

CEpoP
CEpoP þ KmEpo

 !

þ
arEpovCFU

CrEpoP

CrEpoP þ ECrEpo50

 !

ð68Þ

The model parameter arEpovCFU
represents the sensitivity of CFUe maturation to rEpo

concentrations.

To estimate the model parameters listed in Table 8, the dynamic model output is fit to the

time course of serum drug (rEpo) concentration. In the rEpo study, the drug is administered

both as intravenous (IV) infusion or subcutaneous injection in humans.

Results

We applied our mechanistic model of iron metabolism to quantitatively analyze differences in

the status of iron metabolism in chronic kidney disease (CKD) with anemia before and after

treatment. The model simulates a treatment strategy for CKD anemia with rEpo injections

and iron-dextran infusion. The effect of the treatment protocol on the status of iron metabo-

lism, especially the iron fluxes, is quantified by our model.

Phlebotomy responses

After phlebotomy, the time course of Epo concentration in plasma and in hematocrit over 60

days has been measured [25]. For comparison with data, hematocrit was evaluated from

model-simulated RBC and plasma volumes:

hctðtÞ ¼
VRBCðtÞ

VRBCðtÞ þ VPðtÞ
; VRBCðtÞ ¼ ðVBlood;SS � VP;SSÞ

NRBCðtÞ
NSSRBC

� �

ð69Þ

The data for hematocrit and Epo in plasma were normalized to initial values to compensate

for differences in steady-state values. Matching model outputs to these data, the model param-

eters (αEpo,βEpo,τEpo, KmEpo) were estimated (as indicated in Table 9). Simulated responses to

phlebotomy (Fig 3A & 3B) follow trends of the experimental data [25]. The hematocrit

decreases for the first ten days and rebounds to the initial level over the next 50 days (Fig 3A),

while the time course of Epo concentration is the opposite (Fig 3B).

Responses to rhHepc injection

In a mouse model of iron metabolism [71], changes of rhHepc and serum iron were measured

after injection of 50, 15.8, and 5.0 μg rhHepc. The first step was estimation of model parameter

for the pharmacokinetics of rhHepc in mice (as indicated in Table 10, S4 Fig). The metabolic

Table 8. Estimated parameters for pharmacokinetics and pharmacodynamics of rEpo.

Parameter name Description Units Value (CV%)

kP!T,rEpo Rate coefficient for transport of rEpo from plasma to tissue compartment mL�min−1 2.84E+0 (12.1)

KT!P,rEpo Rate coefficient for transport of rEpo from tissue to plasma compartment mL�min−1 7.52E+0 (22.4)

Vmax,rEpo Rate coefficient for the maximal rate of metabolism of rEpo mM�min−1 1.22E-1 (10.7)

τrEpo Half-life of rEpo min 2.27E+2 (8.3)

ECrEpo50
Half-maximal concentration of rEpo for effect on CFUe and erythroblasts mM 2.97E+2 (34.2)

a
rEpo
NBFU

Rate coefficient for increase in BFU entering the maturation cycle due to rEpo dimensionless 1.83E-1 (23.1)

arEpovCFU
Rate coefficient for increase in maturation rate of CFUe due to rEpo dimensionless 3.37E-1 (15.9)

https://doi.org/10.1371/journal.pcbi.1006060.t008
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model parameters (kRES,rhHepc,FPN,τEPN) were estimated (Table 9) by matching serum iron out-

put using the pharmacokinetic model for rhHepc in conjunction with the whole-body model

to the normalized serum iron data. The time course of serum iron simulates data after injec-

tion of 50 μg of rhHepc (Fig 4A). Within 5 h, serum iron is reduced by 80%, but gradually

returns to the initial value about 100 h after the injection (Fig 4A). The model also predicts the

maximum changes in serum iron after injection of different doses of rhHepc (Fig 4B).

Responses to iron ingestion

Simulations of the iron ingestion experiment conducted on healthy human subjects by Girelli

et al [50] incorporate all parameter values estimated via different perturbations and experi-

ments (e.g. the half-life of FPN etc.) including steady-state relationships, mouse rhHepc injec-

tion and phlebotomy experiment. The data for serum iron, serum transferrin saturation and

serum hepcidin were normalized with their initial, steady-state values. From these data, we

obtained optimal parameter estimates (dFe3þP ; kFe3þGut!P; kRES;Hepc;FPN tHepc; tIHepc; kIHepc;Fe3þ ; kmIHepc;Fe3þ ;

kIIHepc;Fe3þ) (Table 9). Following ingestion of iron, the model simulates the specific time courses

of serum iron and transferrin saturation that go up and down together (Fig 5A and 5B), but

Table 9. Parameter values estimated based on experimental data.

Parameter name Description Units Value (CV%)

kTfR;Fe3þTf Rate coefficient for binding of mono-transferrin to transferrin receptor μM−1min−1 1.63E-1 (5.2)

kTfR;ðFe3þÞ2Tf Rate coefficient for binding of holotransferrin to transferrin receptor μM−1min−1 7.67E-1 (3.5)

krecycle,TfR Rate coefficient for recycling of endocytosed transferrin-transferrin receptor complex min−1 6.83E-1 (2.1)

hTfP!EB Rate coefficient for transport of transferrin from plasma to EB compartment mL�min−1 9.01E+0 (11.2)

hFe3þP!ISF
Rate coefficient for transport of iron from plasma to ISF compartment mL�min−1 1.25E-2 (15.2)

hTfP!ISF Rate coefficient for transport of transferrin from plasma to ISF compartment mL�min−1 1.26E+2 (11.4)

hFe3þI!M
Rate coefficient for transport of iron from intracellular to membrane compartment inside the RES compartment mL�min−1 1.76E+0 (17.8)

kFe3þ ;Tf Rate coefficient for binding of Fe3+ to apo-transferrin μM−1min−1 2.87E-1 (5.6)

kFe3þ ;FeTf Rate coefficient for binding of Fe3+ to mono-transferrin μM−1min−1 3.16e-2 (4.5)

kFe3þ ;Hb Rate coefficient for binding of Fe3+ to hemoglobin μM−1min−1 4.35E+2 (43.8)

αEpo Rate coefficient for increase in Epo synthesis due to change in serum hemoglobin dimensionless 4.04E-1 (16.7)

βEpo Scaling factor for exponential increase in Epo synthesis due to change in serum hemoglobin μM−1 4.26E-1 (22.1)

τEpo Half-life of Epo in plasma Min 6.66E+2 (17.9)

KmEpo Half-maximal concentration of Epo for effect on erythroblasts μM 6.00E+0

τEPN Half-life of ferroportin in the RES compartment min 3.06E+4 (34.2)

kRES,Hepc,FPN Rate coefficient of removal of FPN by Hepc μM−1min−1 4.39E-1 (21.5)

kRES,rhHepc,FPN Rate coefficient of removal of FPN by rhHepc μM−1min−1 1.19E-1 (12.3)

kTfR2;Fe3þTf Rate coefficient for binding of mono-ferric transferrin to TfR2 μM−1min−1 2.56E-2 (5.2)

kTfR2;ðFe3þÞ2Tf
Rate coefficient for binding of diferric transferrin to TFR2 μM−1min−1 5.42E-2 (3.5)

kIHepc;Fe3þ Rate coefficient for expression of IHepc by Fe3+ μM�min−1 2.87E-1 (34.1)

kmIHepc;Fe3þ Half-maximal concentration of Fe3+ for expression of IHepc μM 4.51E+2 (45.2)

kIIHepc;Fe3þ Half-maximal inhibitory concentration of Fe3+ for expression of IHepc μM 4.01E-2 (11.3)

kFe3þGut!P
Rate coefficient for transport of orally administered iron into plasma μmoles�min−1 2.77E-2 (4.2)

τIHepc Half-life of IHepc min 7.41E+1 (42.9)

τHepc Half-life of Hepc in plasma min 4.37+2 (33.1)

dFe3þP
Rate of removal of iron from plasma min−1 6.93E+0 (29.3)

https://doi.org/10.1371/journal.pcbi.1006060.t009
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also the time course of serum Hepc concentration which also shows an increase and decrease

from steady-state but delayed in time as compared to serum iron (Fig 5C). Model simulations

of the iron ingestion experiment for an extended period (5 days) are also presented to empha-

size the oscillatory behavior for all species (Fig 5D–5F)

Responses of RBC (or Hb) to rEpo

For treatment of CKD anemia, rEpo (epoietin-alpha) is administered regularly and repeatedly.

The dynamics of rEpo concentrations were simulated using a PK model for both intravenous

and subcutaneous administration of rEpo as above (S6A–S6C Fig). The optimal values of

a
rEpo
NBFU , ECrEpo50 , arEpovCFU

(Table 8) are those that provided the best simulation of hematocrit data (S5

Fig) from healthy subjects during repeated IV injections (100 IU/kg) of rEpo over 4 weeks [72,

73]. The model incorporates a constraint such that serum hemoglobin (HbFe3þ
P ) reaches satu-

ration with long-term repeated doses of rEpo (S5 Fig).

Effects of CKD with anemia and iron treatments

Our model simulates the effects of different levels of CKD anemia on plasma RBC number

density due to reduced levels of serum Epo (S7 Fig) over 2 years. In these simulations, the ini-

tial concentration of plasma Epo (CEpo0 ) varied between 6 pM (normal) and 3.6 pM (severe ane-

mia). This allows the RBC number density to reach 50% of normal (S7A Fig) and serum

hemoglobin to reach 9.8 mg/dL (S7B Fig). Similar drops are observed in serum iron (S7C Fig)

and transferrin saturation (S7D Fig). Most of the decrease in RBC number density occurs

within a year. Simulated treatments of CDK anemia for patients with a starting Hb~10 mg/dL,

Fig 3. Comparison of model output (solid line) to experimental data (�) of relative changes in (A) hematocrit and (B) erythropoietin

concentration in plasma for 60 days in response to phlebotomy.

https://doi.org/10.1371/journal.pcbi.1006060.g003

Table 10. Estimated parameter for mouse pharmacokinetics of rhHepc.

Parameter name Description Units Value (CV%)

kP!T,rhHepc Rate coefficient for transport of rhHepc from plasma to tissue compartment mL�min−1 4.70E-2 (23.8)

kT!P,rhHepc Rate coefficient for transport of rhHepc from tissue to plasma compartment mL�min−1 3.71E-2 (31.2)

τrhHepc Half-life of rhHepc in plasma min 4.13E+1 (34.1)

https://doi.org/10.1371/journal.pcbi.1006060.t010
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Fig 4. Comparison of model-simulated serum iron to experimental data in mouse after rhHepc injection (A) Time course after injection of 50 μg

of rhHepc; solid line is the model output and (�) represent the experimental data (B) maximum change of serum iron with different doses of

rhHepc.

https://doi.org/10.1371/journal.pcbi.1006060.g004

Fig 5. Comparison of simulated (solid line) responses to iron ingestion to experimental data (�) for a short period of 2h past iron ingestion—(A) Serum iron (B)

Transferrin saturation (C) Hepcidin concentration. The naturally damped oscillations produced as a result are shown by simulation of a longer time period (5 days)

for the same variables (D-F).

https://doi.org/10.1371/journal.pcbi.1006060.g005
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CEpo0 � 4.6 pM and αEpo = 0 are shown in Fig 6. The simulated treatment consists of epoietin-

alpha injections (rEpo = 100 ug/Kg) every 2 weeks and IV iron-dextran (1g) every 2 weeks for

12 months. The treatment regimen is obtained based on published guidelines and recent litera-

ture [74–78]. For these simulations, changes in two serum markers–hemoglobin (A) and

serum iron (B) are shown along with two measures–ferroportin levels in cells of the RES (C)

and iron efflux from RES (D), which cannot be easily measured in vivo.
As explained before, all simulations of the whole-body model, especially the perturbations,

start from a set of steady-state which is obtained by simulating the model for a period of time

and allowing it to reach a steady-state. This steady-state solution for each of the species is

described below in Table 11.

Discussion

Mechanistic mathematical model for analysis

Our multi-scale model of iron metabolism integrates molecular mechanisms with cellular and

tissue transport of iron in organ systems of the whole body (Figs 1 & 2). A top-down modeling

strategy was applied to incorporate only enough mechanistic and empirical structure (Fig 2) to

reliably simulate key features in the experimental data. Furthermore, the model was used to

predict key physiological responses that have not been measured while maintaining the biolog-

ical consistency of the underlying processes. All expressions in the model are based on causal

mechanistic understanding of processes and not based on associations or correlations

observed in observed data. Examples of key model mechanisms includes transferrin receptor-

mediated uptake of iron in erythroblasts and ferroportin-mediated iron release from RES.

This model does not assume a simple gradient approach to all transport processes, which is

common in previous models of whole-body iron metabolism [18, 19, 39]. Furthermore, it inte-

grates data from in vitro cellular experiments, mouse experiments, healthy human volunteer

studies, and clinical studies of anemia with chronic kidney disease (CKD). The model also

incorporates the pharmacokinetics of different drugs (rhHepc, rEpo) and the effects down-

stream of the changing drug concentrations. This has not been done in previous whole-body

Fig 6. Model simulation to show the variation in (A) serum iron-hemoglobin (mg/dL), (B) serum iron (μg/dL), (C) intracellular ferroportin (FPN), (D) efflux of

iron from RES (μmoles/min), when a CKD patient is treated with combination of epoietin-alpha (rEpo = 100 μg/Kg) and IV Iron Dextran (1g) every 2 weeks for 12

months. The time course of change of all four variables over time have been plotted from the start of the treatment at time 0.

https://doi.org/10.1371/journal.pcbi.1006060.g006
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Table 11. Initial values of all species.

Variable name Value (μM)

CTfP 1.38E+1

CFe
3þTf

P
2.12E+1

CðFe
3þÞ2Tf

P
5.85E+0

CFe3þP
0

CEpoP 6.0E+0

CIHepcP 9.99E-3 (dimensionless)

CHepcP 1.5E-2

CHbFe3þP
1.66E+4

CTfP 1.38E+1

CTfREB 8.81E-1

CTfRFe
3þTf

EB
4.02E-1

CTfRðFe
3þÞ2Tf

EB
1.03E-1

CFe
3þTf

EB
1.93E+0

CðFe
3þÞ2Tf

EB
1.05E-1

CFe3þEB
7.98E-6

CTfEB 3.80E+1

CHbEB 1.04E+2

CHbFe3þEB
2.40E+3

CFe2þI
6.76E-1

CFe3þI
3.03E+1

CFPNI 3.79E+0

CFe2þFPNI
1.05e-5

CFe3þM
1.87e-6

CFPNM 1.05e-5

CFe2þFPNM
2.33e-2

CFe3þFPNM
1.64e+0

CFe3þM
1.87e-5

CFe
3þTf

M
2.25E+1

CðFe
3þÞ2Tf

M
5.41E+1

CTfM 1.21E+1

CCpðCu
2þÞ

M
2.27E+0

CCpðCu
1þÞ

M
3.39E-4

CFe
3þTf

ISF
2.25E+1

CðFe
3þÞ2Tf

ISF
5.41E+0

CTfISF 2.27E+0

CFe3þISF
1.46E-1

CCpðCu
2þÞ

ISF
2.27E+0

CCpðCu
1þÞ

ISF
3.18E-4

CTfR2

L 1.53E+0

CTfR2Fe3þTf
L

1.63E-1

CTfR2ðFe3þÞ2Tf
L

7.74E-2

(Continued)
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iron metabolism models. Of specific clinical value is the model simulation of anemia in CKD

patients with insufficient erythropoietin and treatments with rEpo and iron dextran infusion.

This model was calibrated using a variety of experimental mouse and human data.

In developing this model, we tried to balance mechanistic detail with limitations imposed

by available data. The goal is to relate every expression in the model to some realistic abstrac-

tion of a physiological or biological process such that the model parameters and responses can

then help explain and quantify the underlying behavior. An example of this strategy relates to

modeling the secretion of Hepc based on serum iron. While Hepc is made in the liver, the reg-

ulation of Hepc synthesis is downstream of transferrin receptor 2 and regulated by an intricate

network of intracellular signaling pathways which involve a variety of other molecules, e.g.,

HFE [51]. Applying a few key reasonable assumptions, the model for regulation of Hepc syn-

thesis can be simplified and still maintain biological integrity to simulate and predict the

dynamics and dose response characteristics observed. The goal is to add enough detail to rep-

resent the dose response and dynamics of Hepc to changes in serum iron, which is different

from previous models [21]. To predict the dynamics of iron release in the RES, detailed mecha-

nisms that describe the interaction between serum iron, Hepc and iron release are essential.

Previous models of whole-body iron metabolism [18, 19, 79, 80] are limited by not differentiat-

ing the different forms of iron (Fe2+, Fe3+) and by not incorporating appropriately the roles of

ferroportin in iron release and Hepc in iron homeostasis. Most previous models assume ferro-

portin acts as a pore on the cell surface with passive diffusion of iron rather than facilitated

transport [22]. This model distinguishes the different iron forms, mechanistic roles of ferro-

portin and hepcidin, and incorporates enzymes (e.g., ceruloplasmin) in iron metabolism. The

iron stores in the I-region of the RES compartment represent the overall iron stores in the

model. While the model does not account for total ferritin stores in the human body, Fe3+ is

the closest proxy for ferritin stores in the model, though it likely underestimates the total ferri-

tin content.

Our strategy for this study was to develop a model with the smallest number of compart-

ments and minimum molecular detail that can reproduce experimental data and provide a

mechanistic basis for prediction. For example, the CFU section is assumed spatially distributed

because a simpler spatially lumped model cannot reproduce the expected responses. However,

the RES compartment uses a verified model with more molecular detail than is needed for this

application. However, this model is well tested and can be used in future studies of iron defi-

ciency anemia due to ceruloplasmin deficiency, mutations or even copper deficiency.

Once the model structure was established, the values of model parameters were estimated

based on experimental data from the literature. A step-wise qualitative sensitivity analysis

determined the type of experimental data needed to evaluate system parameters. Enough

experimental data was available to constrain the model parameters for analysis of the CKD

anemia treatment. To obtain optimal estimates of the parameters for the various subsystems,

we simulated a step-wise sequence of responses to phlebotomy, rhHepc injection, iron inges-

tion, and rEpo injections and a small set of parameters was estimated using each of the simula-

tions and all parameters from previous steps were carried forward. The reliability of the

Table 11. (Continued)

Variable name Value (μM)

CFe
3þTf

L
1.34E+1

CðFe
3þÞ2Tf

L
1.35E+0

CFe3þL
4.33E+1

https://doi.org/10.1371/journal.pcbi.1006060.t011
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estimated parameters was estimated by calculating the coefficient of variation (CV) for each

parameter for the specific simulation scenario of the estimation process. The CV for most esti-

mated parameters was around or below 10%. Furthermore, the cross-correlation coefficients

were estimated, but no significant cross-correlation was observed and hence not reported.

Model assumptions and limitations

The model assumes that iron recycling is 100%. While most of iron is recycled (>95%), the

loss of iron is usually replenished by uptake of iron from diet [4, 24, 53]. This dietary uptake of

iron is tightly controlled by Hepc. The uptake of iron from the gut lumen to blood also

involves more than one transporter [4] and the details of iron uptake from the gut are not

included in this model. Gut mediated iron uptake becomes significant especially in anemia of

CKD patients for whom oral iron therapy is generally ineffective. Such details maybe further

refined in the model in future iterations.

Iron is stored in the liver and in the RES as ferritin. When plasma iron is deficient, ferritin

acts as a temporary store of iron. Ferritin is not included as a separate species in the model.

However, Fe3+ in the intracellular compartment of RES is a modest proxy for ferritin in the sys-

tem. Furthermore, the model considers the RES system of the liver and spleen (macrophages) as

a single functional compartment (RES); hence the iron stores are lumped into the RES compart-

ment and no separate iron transport in the liver is considered. During model simulation of iron

deficiency (e.g. phlebotomy) there is release of iron from the Fe3+ stores of the I-region of the

RES compartment. Similarly, during iron overload (e.g. iron dextran treatment in CKD anemia)

the Fe3+ levels increase significantly in the model. The iron in the liver compartment (L) is solely

used for control of hepcidin synthesis in the model. Hepatocytes in the liver also contain TfR1
receptors, which is yet another means of iron uptake from serum transferrin. This iron can also

be released through ferroportin on the cells. Control of expression of iron in the hepatocytes

has been incorporated in the model through the TfR2 pathway, but not through the TfR1 path-

way. This will affect the dynamics of iron transferrin in the serum, delivery of iron to CFUe and

hepcidin expression. The model also does not incorporate the expression of erythroferrone by

the erythroblasts and its inhibitory effect on hepcidin synthesis [81]. These limitations can be

incorporated in a future version of the model as more data becomes available.

The whole-body model incorporates a model of iron release from monocytes [22] based on

in vitro iron release experiments from U937 cells, which is similar, but not the same as iron

release in vivo in mice and human. Using the data from iron sequestration by rhHepc injection

experiments and model simulation, the half-life of ferroportin (protein) is estimated. Informa-

tion about the half-life of ferroportin protein levels is unknown, but significant in design of

experimental studies involving iron release regulation and Hepc. The only information avail-

able is the half-life of ferroportin mRNA, but that is known to be significantly smaller than

that of the stable transporter protein. This model estimate of ferroportin protein half-life is the

first reported and should be validated using properly designed experiments. The value of ferro-

portin half-life is critical in all model simulations which involve degradation of FPN due the

effect of increase in Hepc levels, e.g., iron ingestion and iron dextran administration in CKD

patients with anemia, and gradual recovery of FPN levels over time.

CKD patients have been reported to have blood loss [82]. This has not been incorporated

into the model currently. This can potentially change the concentrations of all serum species.

However, in the simulation of CKD, the serum concentration of Epo is calibrated to achieve

specific levels of serum hemoglobin. While, the levels of hemoglobin are still correct for CKD

patients, it is likely that the levels of Epo needed to achieve them in the model could vary from

those observed in CKD patients.

Computational model of anemia of chronic kidney disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006060 April 16, 2018 27 / 34

https://doi.org/10.1371/journal.pcbi.1006060


Application and limitations of experimental data

With this global model involving a large number of variables and parameters and limited

experimental data, the model validation process cannot be exhaustive. The time course data of

hematocrit and Epo concentrations in response to phlebotomy (Fig 4A and 4B) were obtained

by combining data from different experiments [25]. Since the observations were not from a

single experiment, the variability in the combined data are expected to be greater than normal.

Nevertheless, the model simulations correspond well to the data. For this simulation, the

model parameter values estimated were related to the dose response of erythropoiesis to Epo

concentration and the serum half-life of Epo.

To mathematically model iron metabolism in the mouse using information from human

iron metabolism, it is necessary to scale the compartmental volumes and RBC half-life in

blood. The RBC half-life, which is 4 times less in mice [83], has a great effect on serum iron

when rhHepc is injected. The model simulation of rhHepc injection (Fig 5A) shows that the

serum iron drops to its minimum around 8hr and then gradually rises back to normal around

96hr. However, the mouse experimental data shows that the serum iron drops to a near mini-

mum in nearly 1hr and does not change for 8hr. This feature cannot be explained with the cur-

rent model.

In response to iron ingestion, model simulations show oscillatory behavior with respect to

serum iron (Fig 5A) and transferrin saturation (Fig 5B). This is not evident from the Hepc

response (Fig 5C) because the maximum value of hepcidin occurs about 600 min after the

maximum value of serum iron. However, when the model is allowed to simulate 4 days (more

than the 1 day from experimental data), the oscillations in serum iron and Hepc are seen (Fig

5D–5F). Such oscillations have significant impact on iron release from the RES in response to

perturbations in iron metabolism through disease or treatment. From a modeling perspective,

the appearance of an oscillation suggests a higher-order system. The model produces this natu-

rally by the combination of Hill’s function type response and feedback loops related to regula-

tion of serum iron by hepcidin associated with changes in iron release from RES and changes

of hepcidin secretion associated with serum iron.

Due to a lack of experimental data, the model could not be exhaustively validated. Addi-

tional experimental data that can significantly improve the model & provide robust validation

would include (1) time-course data over a range of doses of iron ingested rather than a single

dose (2) time-course data on individual patients with CKD anemia receiving treatment, and

(3) measurement of iron stores and iron flux through animal models of CKD anemia.

Analysis of CKD anemia and treatment

Reduced levels of serum Epo leads to reduced levels of RBC number density and serum hemo-

globin in a dose response manner (S7 Fig). In CKD patients, it has been observed that serum

levels of Hepc are often higher than normal even with reduced serum iron [84]. This is

explained by the role of inflammation on Hepc synthesis [85]. The current model does not

support inflammation in CKD patients or its role in Hepc synthesis. Thus, in this model, Hepc

levels are lower than normal in CKD patients. Model simulations of treatment of CKD anemia

with rEpo and iron-dextran, show the improvement in RBC number density (not shown),

serum hemoglobin (Fig 6A) and serum iron (Fig 6B). The effect of the treatment is gradual as

can be seen through comparison of the results from 1 month vs. 12 months of treatment (Fig

6A and 6B). The injection of iron-dextran into the system was carefully simulated to avoid a

sudden, large increase in serum iron as reported [33]. However, even with a slow increase in

serum iron, the model simulations predict that serum Hepc increased substantially (not

shown), which over time caused nearly complete degradation of intracellular ferroportin in
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the macrophages of the RES (Fig 6C). According to the model simulations, iron release from

the RES system is increased only by 20% during the 12 months of simulation (Fig 6D). Investi-

gations into the fate of all the iron injected revealed that the levels of iron in the RES system

that were 50% of steady-state levels at the start of the treatment increased by 3.8 fold in 1

month and 15.1 fold above control in 12 months. The model simulations highlight that while

the current treatment is able to improve the serum hemoglobin levels, it is not fully utilizing

the recycling process characterizing iron metabolism. The significant accumulation of iron in

the RES system is likely to have additional pathological effects [36, 37]. Because the current

model does not take into account uptake of iron in hepatocytes through the TfR1 pathway,

accumulation of iron during such treatment in hepatocytes cannot be simulated. Then it

would be expected that the estimates of accumulation of iron in the RES would be reduced by

the amount accumulated in the hepatocytes. Also, the current model is missing the negative

regulation of hepcidin expression mediated through erythroferrone, which could be significant

due to rhEPO administration.

Single vs ensemble predictions

In the simulation of CKD with treatments, only the best calibrated model was used for all simula-

tions. Ideally, one could generate an ensemble of models generated by varying all the parameters

estimated around the best estimated values. The large ensemble of models can then be compared

to the training data across all the scenarios using likelihood-based scores. Based on these likeli-

hood scores, predictions from each of the individual models can be combined to generate a mean

prediction and confidence interval (CI) for the predictions. This approach requires knowledge of

the error rates for each of the different types of measurements used in likelihood scoring and sub-

sequent large-scale simulations. The total number of parameters estimated in this model is high,

so the requirement of the ensemble size would be very large. This makes the generation of ensem-

ble predictions intractable for the scope of this study and has been avoided.

Conclusion and future studies

This multi-scale, whole-body model of iron metabolism not only simulates data from a wide

range of experimental studies, but also predicts novel responses that have not been observed.

Future versions of the model may be developed to add further mechanistic detail to iron

absorption in the gut and the regulation of hepcidin synthesis as shown in some studies [21].

Of special clinical significance are the side effects associated with the CKD anemia treatment

by rEpo and iron-dextran, which are related mechanistically to iron transport and pathways of

iron metabolism. Future studies with this model could analyze (a) hepcidin increase as a defen-

sin in patients with CKD that exacerbates anemia [86] or (b) the effect of increased levels of

inflammatory load of cytokines in patients with CKD anemia that causes the RBC lifespan to

decrease [73, 86, 87]. Beyond the effects and mechanisms of CKD anemia, other aspects associ-

ated with iron metabolism could be investigated using this model as a platform for the analysis

of copper deficiency on iron metabolism through ceruloplasmin or even other iron metabo-

lism related genetic mutations.

Supporting information

S1 Fig. Pharmacokinetic model incorporating absorption, distribution and elimination of

rhHepc and rEpo. P represents drugs taken orally, SC represents subcutaneous administra-

tion, VT represents the volume of the tissue compartment.

(TIF)
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S2 Fig. Comparison of the model output (solid line) and experimental data (�) for the recy-

cling of transferrin receptors from the surface.

(TIF)

S3 Fig. Comparison of the model output (hashed boxes) vs experimental data (solid boxes)

for binding of iron transferrin to transferrin receptors on erythroblasts for varying con-

centration of iron (11–90 μg/dL) measured at 60 min or 120 min as denoted.

(TIF)

S4 Fig. Comparison of the model output (solid line) vs. experimental data (�) for changes

in concentration of rhHepc in mice after a single peritoneal injection of 50μg of rhHepc.

(TIF)

S5 Fig. Comparison of model simulation (solid line) and experimental data (�) for relative

changes in hematocrit in response to rEpo injections (3/wk) over 4 weeks.

(TIF)

S6 Fig. Comparison of model simulation (solid line) against experimental data (�) of serum

concentration over time of rEpo with different doses of rEpo injections (A) IV 50IU/Kg (B) 50

IU/Kg SC and (C) 100 IU/kg IV.

(TIF)

S7 Fig. Represents model simulation of development of anemia of chronic kidney disease.

Serum erythropoietin is set to decrease from 6pM to 3.6pM at increments of 0.6pM to represent

increasing severity of CKD and the model outputs are shown for a period of 2 yrs. The model can

reproduce varying degrees of anemia of CKD as shown with the reduction in plasma red blood

cell density (A), plasma hemoglobin (B), serum iron (C) and transferrin saturation (D).

(TIF)

S1 Data.

(GZ)
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