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Simple Summary: OmiEmbed is a unified multi-task deep learning framework for multi-omics data,
supporting dimensionality reduction, multi-omics integration, tumour type classification, phenotypic
feature reconstruction and survival prediction. The framework is comprised of deep embedding
and downstream task modules to capture biomedical information from high-dimensional omics
data. OmiEmbed outperformed state-of-the-art methods on all three types of downstream tasks:
classification, regression and survival prediction. Better performance was achieved using the multi-
task training strategy compared to training each downstream task individually. With the multi-task
strategy, OmiEmbed learnt a comprehensive omics embedding containing information from multiple
tasks. OmiEmbed is open source, well-organised and convenient to be extended to other customised
input data, network structures and downstream tasks, which has promising potential to facilitate
more accurate and personalised clinical decision making.

Abstract: High-dimensional omics data contain intrinsic biomedical information that is crucial for
personalised medicine. Nevertheless, it is challenging to capture them from the genome-wide data,
due to the large number of molecular features and small number of available samples, which is
also called “the curse of dimensionality” in machine learning. To tackle this problem and pave
the way for machine learning-aided precision medicine, we proposed a unified multi-task deep
learning framework named OmiEmbed to capture biomedical information from high-dimensional
omics data with the deep embedding and downstream task modules. The deep embedding module
learnt an omics embedding that mapped multiple omics data types into a latent space with lower
dimensionality. Based on the new representation of multi-omics data, different downstream task
modules were trained simultaneously and efficiently with the multi-task strategy to predict the
comprehensive phenotype profile of each sample. OmiEmbed supports multiple tasks for omics data
including dimensionality reduction, tumour type classification, multi-omics integration, demographic
and clinical feature reconstruction, and survival prediction. The framework outperformed other
methods on all three types of downstream tasks and achieved better performance with the multi-task
strategy compared to training them individually. OmiEmbed is a powerful and unified framework
that can be widely adapted to various applications of high-dimensional omics data and has great
potential to facilitate more accurate and personalised clinical decision making.

Keywords: multi-omics data; deep learning; multi-task learning; survival prediction; cancer classification

1. Introduction

With the increasingly massive amount of omics data generated from emerging high-
throughput technologies, the large-scale, cost-efficient and comprehensive analysis of
biological molecules becomes an everyday methodology for biomedical researchers [1,2].
The analysis and assessment of different types of omics data facilitate the integration
of molecular features during the standard diagnostic procedure. For instance, in the
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2016 World Health Organization (WHO) classification of central nervous system (CNS)
tumours [3], an integrative method combining both histopathology and molecular infor-
mation was recommended for the identification of multiple tumour entities. Nevertheless,
most of these molecular features designed to aid diagnosis are manually selected biomark-
ers referring to specific genetic alterations, which neglects the genome-wide patterns
correlated with disease prognosis and other phenotypic outcomes. In recent years, instead
of focusing on the effect of specific molecular features, many researchers began to delve into
the overall picture of genome-wide omics data and try to obtain the deep understanding of
diseases and uncover crucial diagnostic or prognostic information from it [4–7].

It is challenging to analyse genome-wide high dimensional omics data because of
the mismatch between the number of molecular features and the number of samples.
The dimensionality of genome-wide omics data is fairly high. For example, a RNA-Seq gene
expression profile consists of more than 60,000 identifiers, and a HumanMethylation450
(450 K) DNA methylation profile has more than 485,000 probes, while the number of
available samples in an omics dataset is normally small, due to the difficulty of patient
recruitment and sample collection. This phenomenon is called “the curse of dimensionality”
in machine learning, which would cause the massive overfitting of a model and make
samples hard to cluster [8]. To overcome this issue, the number of molecular features used
in downstream tasks is required to decrease significantly. Two common approaches are
(1) to manually select a subset of the molecular features related to the downstream task
based on domain knowledge; (2) to apply traditional dimensionality reduction algorithms,
e.g., principal component analysis (PCA).

Inspired by the significant success in fields like computer vision [9] and natural
language processing [10], deep learning approaches have been applied to analyse the
complicated and nonlinear relationships between molecular features of high-dimensional
omics data and detect genome-wide biological patterns from them [11–13]. With the
deep learning mechanism, molecular features can be automatically selected during the
training process without manual selection. Multiple downstream tasks were conducted on
different types of high-dimensional omics data, including dimensionality reduction [11,14],
disease type classification [6,15], survival prediction [4,16]. However, there is no unified
deep learning method, to the best of our knowledge, that can simultaneously conduct all
aforementioned downstream tasks together on any combination of omics types.

Here, we proposed a unified multi-task deep learning framework named OmiEmbed
for integrated multi-omics analysis. The OmiEmbed framework is comprised of two main
components: deep embedding module and downstream task module. In the deep embed-
ding module, high-dimensional multi-omics data were embedded into a low-dimensional
latent space to tackle the challenge of “dimensionality curse”. The learnt novel representa-
tion of each sample was then fed to multiple downstream networks, which were trained
simultaneously with a joint loss function and the multi-task training strategy. Different
downstream tasks that were already implemented in OmiEmbed include tumour type
classification, demographic and clinical feature (e.g., age, gender, primary site, and disease
stage of sample) reconstruction and prognosis prediction (i.e., predicting the survival
function of each input sample). The model was trained and evaluated on two publicly
available omics datasets, the Genomic Data Commons (GDC) pan-cancer multi-omics
dataset [17] and the GSE109381 brain tumour methylation (BTM) dataset [5]. Our model
achieved promising results for all aforementioned downstream tasks and outperformed
other corresponding existing methods. With the multi-task training strategy, OmiEmbed
was able to infer all downstream tasks simultaneously and efficiently. Better results were
achieved in the multi-task scenario, compared to training and inferring each downstream
task separately.

2. Related Work

The representation learning ability of DNNs (deep neural networks) has been widely
verified by the significant breakthrough in computer vision and natural language pro-
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cessing. Inspired by this achievement, a number of deep learning approaches have been
applied to high-dimensional omics data for different downstream tasks in recent years.

The most common downstream task is classification. Danaee et al. [18] presented a
cancer detection model that discriminated breast tumour samples from normal samples
using gene expression data based on a stacked denoising autoencoder (SDAE). Lyu and
Haque [19] reshaped the high-dimensional RNA-Seq data into images and applied a
convolutional neural network (CNN) for tumour type classification on the GDC dataset,
which obtained an accuracy of 95.59%. Rhee et al. [20] proposed a hybrid model that was
comprised of a graph convolution neural network (GCN) and a relation network (RN)
for breast tumour subtype classification using gene expression data and protein–protein
interaction (PPI) networks. Jurmeister et al. [21] developed a multi-layer neural network
to distinguish metastatic head and neck squamous cell carcinoma (HNSC) from primary
squamous cell carcinoma of the lung (LUSC), with an accuracy of 96.4% in the validation
cohort. The AffinityNet [15] was a data efficient deep learning model that comprised
multiple stacked K-nearest neighbours (KNN) attention pooling layers for tumour type
classification. OmiVAE [6] was an end-to-end deep learning method designed for tumour
type classification, based on a deep generative model variational autoencoder (VAE),
achieving an accuracy of 97.49% among 33 tumour types and the normal control using
gene expression and DNA methylation data from the GDC dataset.

Another typical task that has been tackled by deep learning approaches recently is
the prediction of prognosis status from high-dimensional omics data. Chaudhary et al. [4]
applied a vanilla autoencoder (AE) to reduce the dimensionality of multi-omics data which
was comprised of gene expression, DNA methylation and miRNA expression profiles,
and used the learnt representation to identify two different survival subgroups of liver
tumours by Cox proportional hazard model (CoxPH), K-means clustering and support
vector machine (SVM). In their experiment, a concordance index (C-index) of 0.68 was
achieved on the liver tumour subjects from the GDC dataset. The deep learning model
applied in this research was not an end-to-end model, and the embedding learnt by the
network was used separately outside the network for downstream tasks. Huang et al. [22]
implemented a deep learning network with the CoxPH model to predict prognosis for
breast tumour using multi-omics data, cancer biomarkers and a gene co-expression net-
work. The aforementioned research focused mostly on tumour samples of specific primary
site and neglected the information cross different tumour types which had the potential
to improve the performance of survival prediction for each tumour type. Cheerla and
Gevaert [16] constructed a multimodal deep learning network to predict the survival
of subjects for 20 different tumour types in the GDC dataset which achieved an overall
C-index of 0.78 based on additional clinical information and histopathology whole slide
images (WSIs) besides the multi-omics data.

There are also several attempts on applying deep learning methodology to multiple
downstream tasks for high-dimensional omics data. Amodio et al. [7] presented a deep
neural network method named SAUCIE to explore single-cell gene expression data and
perform multiple data analysis tasks, including clustering, batch correction, imputation
and denoising, and visualisation. However, the backbone of SAUCIE was basically an
autoencoder used for embedding learning, and most of the downstream tasks were required
to conduct outside the network separately, hence the network was not able to perform all
of the tasks simultaneously with a single training process. Deepathology [23] was another
deep learning method for omics data analysis which adopted the idea of multi-task learning.
This model encoded gene expression profile into a low-dimensional latent vector to predict
the tumour type and primary site of the input sample, which obtained an accuracy of 98.1%
for primary site prediction and 95.2% for tumour type classification. In spite of the good
results on multiple classification tasks, deepathology was not able to perform the more
complicated survival prediction task and did not adopt any state-of-the-art deep multi-task
learning optimisation mechanism.
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3. Materials and Methods
3.1. Datasets

Two publicly available datasets were used as examples to demonstrate the ability of
OmiEmbed: the Genomic Data Commons (GDC) pan-cancer multi-omics dataset [17] and
the DNA methylation dataset of human central nervous system tumours (GSE109381) [5].
The overview information of the two datasets was summarised in Table 1.

Table 1. Overview information of the Genomic Data Commons (GDC) pan-cancer dataset and the GSE109381 brain tumour
methylation (BTM) dataset. The GDC dataset includes two cancer genome programmes: The Cancer Genome Atlas (TCGA)
and Therapeutically Applicable Research to Generate Effective Treatment (TARGET).

Dataset Info GDC BTM

Domain Pan-cancer Brain tumour
Tumour type 33 (TCGA) + 3 (TARGET) + 1 (normal) 86 + 8 (normal)
Additional label Disease stage, primary site, gender, age, survival Disease stage, gender, age
Omics type Gene expression DNA methylation miRNA expression DNA methylation
Feature number 60,483 485,577 1881 485,577
Sample number 11,538 9736 11,020 3905

The GDC pan-cancer dataset is one of the most comprehensive and widely used multi-
omics dataset. It comprises high-dimensional omics data and corresponding phenotype
data from two cancer genome programmes: The Cancer Genome Atlas (TCGA) [24] and
Therapeutically Applicable Research to Generate Effective Treatment (TARGET). The TAR-
GET programme mainly focuses on pediatric cancers. Three types of omics data from the
GDC dataset were used in our experiments, including RNA-Seq gene expression profiling,
DNA methylation profiling and miRNA expression profiling. The dimensionalities of the
three types of omics data are 60,483, 485,577 and 1881 respectively. This dataset consists of
36 different types of tumour samples, along with corresponding normal control samples,
among which 33 tumour types are from TCGA and 3 tumour types are from TARGET.
The detailed tumour type information was tabulated in Supplementary Table S1. A wide
range of phenotype features are also available in the GDC dataset including demographics
(e.g., age and gender), clinical sample information (e.g., primary site and disease stage of
the sample) and the survival information (recorded time of death or censoring).

The GSE109381 brain tumour methylation (BTM) dataset from the Gene Expression
Omnibus (GEO) is one of the largest DNA methylation datasets specifically targeting
brain tumours. We integrated both the reference set and validation set of this dataset
and the whole dataset consists of 3905 samples, with almost all WHO-defined central
nervous system (CNS) tumour entities [3] and eight non-neoplastic control CNS regions.
The genome-wide DNA methylation profile for each sample was generated using Infinium
HumanMethylation450 BeadChip (450 K) arrays, which is the same platform used for the
GDC DNA methylation data. Each sample in this dataset has two types of diagnostic
label, the histopathological class label defined by the latest 2016 WHO classification of CNS
tumours [3] and the methylation class label defined by the original paper of this dataset [5].
The detailed tumour type information of the two label systems was listed in Supplementary
Tables S2 and S3. Other phenotypic information is also available in this dataset, including
age, gender and the disease stage of each sample.

3.2. Omics Data Process

Raw data of the GSE109381 BTM dataset downloaded from GEO (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109381, accessed on 30 August 2019) were
first processed by the Bioconductor R package minfi [25] to obtain the beta value of
each CpG probe. Beta value is the ratio of methylated signal intensities and the overall
signal intensities, which indicates the methylation level of a specific CpG site. The DNA
methylation profile generated by the 450 K array has 485,577 probes in total. Certain probes

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109381
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109381
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were removed during the feature filtering step according to the following criteria: probes
targeting the Y chromosome (n = 416), probes containing the dbSNP132Common single-
nucleotide polymorphism (SNP) (n = 7998), probes not mapping to the human reference
genome (hg19) uniquely (one mismatch allowed) (n = 3965), probes not included in the
latest Infinium MethylationEPIC BeadChip (EPIC) array (n = 32,260), the SNP assay probes
(n = 65), the non-CpG loci probes (n = 3091) and probes with missing values (N/A) in more
than 10% of samples (n = 2). We followed some of the criteria mentioned in the original
paper of this dataset [5]. Overall, 46,746 probes were filtered out, which results in a final
DNA methylation feature set of 438,831 CpG sites.

For the GDC pan-cancer dataset, the harmonised data of three omics types were down-
loaded from the UCSC Xena data portal (https://xenabrowser.net/datapages/, accessed
on 1 May 2019) with the original data dimensionality. Each RNA-Seq gene expression
profile is comprised of 60,483 identifiers referring to corresponding genes. The expression
level is quantified by the fragments per kilobase of transcript per million mapped reads
(FPKM) value, which has been log2-transformed. Feature filtering was applied to the gene
expression data: targeting Y chromosome (n = 594) and zero expression in all samples
(n = 1904). In total, 2440 genes were removed, leaving 58,043 molecular features for further
analyses. As for miRNA expression profiles, the expression level of each miRNA stem-loop
identifier was measured by the log2-transformed reads per million mapped reads (RPM)
value. All of the miRNA identifiers were kept in our experiments. For both the gene
expression and miRNA expression profiles, the expression values were normalised to the
range of 0 to 1 due to the input requirement of the OmiEmbed framework. The DNA
methylation data in the GDC dataset were filtered based on the same criteria used for the
BTM dataset. The remaining missing values in all datasets mentioned above were imputed
by the mean of corresponding molecular features.

3.3. Overall Architecture

OmiEmbed is a unified end-to-end multi-view multi-task deep learning framework
designed for high-dimensional multi-omics data, with application to dimensionality re-
duction, tumour type classification, multi-omics integration, demographic and clinical
feature reconstruction, and survival prediction. The overall architecture of OmiEmbed is
comprised of a deep embedding module and one or multiple downstream task modules,
which is illustrated in Figure 1.

The role of the deep embedding module in OmiEmbed is to embed high-dimensional
multi-omics profiles into a low-dimensional latent space for the downstream task mod-
ules. The backbone network that we used in the deep embedding module is variational
autoencoder (VAE) [26]. VAE is a deep generative model which is also effective to cap-
ture the data manifold from high-dimensional data. We assume each sample x(i) ∈ Rd

in the multi-omics dataset D can be represented by, and generated from, a latent vector
z(i) ∈ Rp, where p� d. In the generation process, each latent vector is first sampled from
a prior distribution pθ(z), and then the multi-omics data of each sample are generated
from the conditional distribution pθ(x|z), where θ is the set of learnable parameters of the
decoder. In order to address the intractability of the true posterior pθ(z|x), the variational
distribution qφ(z|x) is introduced to approximate pθ(z|x), where φ is the set of learnable
parameters of the encoder. As a result, the VAE network is optimised by maximizing the
variational lower bound, formularised as below:

Ez∼qφ(z|x) log pθ(x|z)− DKL
(
qφ(z|x)‖pθ(z)

)
(1)

where DKL is the Kullback–Leibler (KL) divergence between two probability distributions [8].

https://xenabrowser.net/datapages/
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Figure 1. The overall architecture of OmiEmbed is comprised of two main components: the VAE deep
embedding networks and the downstream task networks. The number of omics types and downstream
tasks can be modified based on the user needs and requirements of the experiment. E_expr, E_methy and
E_miRNA represent encoders of gene expression, DNA methylation and miRNA expression respectively.
Similarly, D_expr, D_methy and D_miRNA represent decoders of gene expression, DNA methylation
and miRNA expression. µ, σ and z represent the mean vector, the standard deviation vector and the
latent vector calculated by the reparameterisation trick, respectively.

We applied the framework of VAE to our deep embedding module to obtain the
low-dimensional latent vector that can represent the original high-dimensional omics
data in the downstream task modules. For each type of omics data, the input profiles
were first encoded into corresponding vectors with specific encoders. Those vectors of
different omics types were then concatenated together in the subsequent hidden layer
and encoded into one multi-omics vector. Based on the idea of VAE, the multi-omics
vector was connected to two bottleneck layers in order to obtain the mean vector µ and the
standard deviation vector σ. These two vectors defined the Gaussian distribution N (µ, σ)
of the latent variable z given the input sample x, which is the variational distribution
qφ(z|x). Since sampling z from the learnt distribution is not differentiable and suitable for
backpropagation, the reparameterisation trick is applied as follows:

z = µ + σε (2)

where ε is a random variable sampled from the standard normal distribution N (0, I).
The latent variable z was then fed to the decoders with a symmetrical network structure to
obtain the reconstructed multi-omics data x′.

We provided two types of detailed network structure for the encoders and decoders
in the deep embedding module, the one-dimensional convolutional neural network (CNN)
and the fully connected neural network (FC). The network structures of the two types
of deep embedding modules were illustrated in Supplementary Figures S1 and S2. Both
network types shared the same architecture, and other state-of-the-art or customised
embedding networks can be easily added to the OmiEmbed framework with minimal mod-
ification using our open-source repository in Github (https://github.com/zhangxiaoyu11/
OmiEmbed/, accessed on 19 May 2021). With the deep embedding module, we can obtain

https://github.com/zhangxiaoyu11/OmiEmbed/
https://github.com/zhangxiaoyu11/OmiEmbed/
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the low-dimensional representation of the input omics data. This new representation can
directly replace the original omics data as the input of any downstream task. For instance,
when the latent dimension is set to 2 or 3, the new representation can be used for visualisa-
tion purpose. Nevertheless, we can also attach one or multiple downstream task networks
to the bottleneck layer of the deep embedding module to obtain an end-to-end multi-task
model, which is able to guide the embedding step with objectives and share information
among different tasks.

Three main types of end-to-end downstream tasks were provided in the OmiEmbed
framework: classification task, regression task and survival prediction task. Each down-
stream task fell into one of these categories can be trained individually or collaboratively
with other downstream tasks using the multi-task training strategy discussed in later sec-
tions. A multi-layer fully connected network was applied to classification-type downstream
tasks, including diagnostic tasks such as tumour type classification, primary site prediction
and disease stage (i.e., primary tumour, recurrent tumour, metastatic tumour or normal
control) prediction and demographic tasks, e.g., the prediction of gender. The output di-
mension of the classification downstream network was set to the number of classes. For the
regression task, a similar network was attached to the deep embedding module, but only
one neuron was kept in the output layer to predict the target scalar value (e.g., age of the
subject). The survival prediction downstream network is more complicated and addressed
separately in a subsequent section. The downstream networks add further regularisation
to the low dimensional latent representation and urge the deep embedding module to learn
the omics embedding related to certain downstream tasks. With the downstream modules,
a single well-trained multi-task OmiEmbed network is able to reconstruct a comprehensive
phenotype profile, including diagnostic, prognostic and demographic information from
omics data.

3.4. Training Strategy

The same as the overall structure, the joint loss function is also comprised of two main
components: the loss of the deep embedding and the loss of the downstream tasks.

We denote each type of input omics profile as xj, and the corresponding reconstructed
profile as x′j, where j is the omics type index and there are M omics types in total. The deep
embedding loss can then be defined as follows:

Lembed =
1
M

M

∑
j=1

BCE
(

xj, x′j
)
+ DKL(N (µ, σ)‖N (0, I)) (3)

where BCE is the binary cross-entropy to measure the distance between input data and re-
constructed data, and the second term is the KL divergence between the learnt distribution
and a standard Gaussian distribution.

In the downstream modules, each downstream task has its specific loss function
Ldownk

and a corresponding weight wk. For the classification type task, the loss function
can be defined as:

Lclassi f ication = CE(y, y′) (4)

where y is the ground truth, y′ is the predicted label and CE is the cross-entropy loss.
Similar to the classification loss, the loss function of regression type task is

Lregression = MSE(y, y′) (5)

where MSE is the mean squared error between the real value and the predicted value.
The loss function of the survival prediction task is discussed separately in the next sec-
tion. The overall loss function of the downstream modules is the weighted sum of all
downstream losses, i.e.,

Ldown =
1
K

K

∑
k=1

wkLdownk
(6)
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where K is the number of downstream tasks, Ldownk
is the loss for a certain task and

wk is the corresponding weight. wk can be manually set as hyperparameters or used as
learnable parameters during the training process. In conclusion, the joint loss function of
the end-to-end OmiEmbed network is

Ltotal = λLembed + Ldown (7)

and depends on λ, which balances the two terms in the overall loss function.
Based on the aforementioned loss functions, three training phases were designed in

OmiEmbed. Phase 1 was the unsupervised phase that only focused on the deep embedding
module. In this training phase, only the deep embedding loss was backpropagated and
only the parameters in the deep embedding network were updated based on the gradients.
No label was required in the first training phase and this phase can be used separately as
a dimensionality reduction or visualisation method. In Phase 2, the pre-trained embed-
ding network was fixed whilst the downstream networks were being trained. The joint
downstream loss was backpropagated and only the downstream networks were updated
during this phase. After the embedding network and the downstream networks were
pre-trained separately, the overall loss function defined in Equation (7) was calculated and
backpropagated during Phase 3. In this final training phase the whole OmiEmbed network,
including the deep embedding module and the downstream modules, was fine-tuned to
obtain better performance.

3.5. Survival Prediction

Survival prediction is the most complicated downstream task implemented in OmiEm-
bed. The objective of this task is to obtain individual survival function and hazard function
data for each subject, based on the high-dimensional omics data. The survival function can
be denoted by

S(t) = P[T > t] (8)

where T is time elapsed between the sample collection time and the time of event occurring.
The survival function signifies the probability that the failure event, i.e., death, has not
occurred by time t. The hazard function can be defined as:

h(t) = lim
dt→0

P[t ≤ T < t + dt | T ≥ t]
dt

(9)

which represents the instantaneous rate of occurrence for the failure event. A large hazard
value manifests a great risk of death at specific time t. However, the original form of
hazard function is infrequently used, and the risk score of each sample x is more commonly
applied by subdividing the time axis into m time intervals, such that:

r(x) =
m

∑
i=1

h(ti, x). (10)

In order to train a survival prediction downstream network, besides the omics data x,
two elements of the survival labels are required: the event time T and the event indicator
E. The indicator was set to 1 when the failure event was observed during the study and
0 when the event was not observed, which is termed censoring. In the case of censoring,
the event time T is the time elapsed between the time when the sample was collected and
the time of the last contact with the subject. Both T and E are available in the GDC dataset.

The multi-task logistic regression (MTLR) model [27] was applied and adapted to
the OmiEmbed framework for the survival prediction downstream task. In the first
step, the time axis was divided into m time intervals {li}m

i=1. Each time interval was
defined as li = [ti−1, ti), where t0 = 0 and tm ≥ max(T). The number of time intervals
m is a hyperparameter. A larger m results in more fine-grained output, but requires
more computation resources. We applied the multi-layer fully connected network as the
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backbone of our survival prediction network and the dimension of the output layer is the
number of time intervals. As a result, the output of our survival prediction network is
an m-dimensional vector y′ =

[
y′1, y′2, . . . , y′m

]
. Similarly, the survival label of each subject

was also encoded into an m-dimensional vector y = [y1, y2, . . . , ym], where yi signifies the
survival status of this subject at the time point ti. The likelihood of observing y on the
condition of sample x with the network parameters θ can be defined as follows:

Pθ(y | x) =
exp

(
∑m

i=1 yiy′i
)

∑m
j=0 exp(∑m

i=j+1 y′i)
. (11)

The objective of this survival network is to find a set of parameters θ that maximises
the log-likelihood, hence the loss function of the survival prediction downstream task is
defined as,

Lsurvival = −
m

∑
i=1

yiy′i + log
m

∑
j=0

exp
m

∑
i=j+1

y′i (12)

which can be directly applied to the downstream module and included in the joint loss
function of OmiEmbed.

3.6. Multi-Task Strategy

With the joint loss function (6) of the multi-task downstream modules, we aimed to
train multiple downstream networks in OmiEmbed simultaneously and efficiently instead
of separate training, so as to obtain a unified model that can reconstruct a comprehensive
phenotype profile for each subject. In order to balance the optimisation of different tasks,
we adapted the multi-task optimisation method gradient normalisation (GradNorm) [28]
to our OmiEmbed framework.

In Equation (6), wk is the weight of each downstream loss, and the weight can also
be regarded as a trainable parameter that varies at each training iteration. The idea of
GradNorm is to penalise the network if gradients of any downstream task are too large or
too small, which makes all the tasks train at similar rates [28]. Firstly, the gradient norm of
each downstream task is calculated by

G(k)
θ =

∥∥∇θwkLdownk

∥∥
2 (13)

where θ is the parameters of the last encoding layer in the deep embedding module of
OmiEmbed. The average gradient norm among all tasks can then be calculated by

Ḡθ =
1
K

K

∑
k=1

G(k)
θ (14)

where K is the number of downstream tasks. The relative inverse training rate of each task
can be defined as:

rk =
L̃downk

1
K ∑K

k=1 L̃downk

(15)

where L̃downk
= Ldownk

/Ldownk0
, which is the ratio of the current loss to the initial loss of

the downstream task k. Then, the loss of GradNorm can be defined as:

Lgrad =
K

∑
k=1

∣∣∣G(k)
θ − Ḡθ × rk

α
∣∣∣
1

(16)

where α is the hyperparameter that represents strength pulling tasks back to a common
training rate. A separate backpropagation process was conducted during each training
iteration on Lgrad, which was only used for updating wk.
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4. Results
4.1. Implementation Details

The OmiEmbed multi-omics multi-task framework was built on the deep learning
library PyTorch [29]. The code of OmiEmbed has been made open source on GitHub
(https://github.com/zhangxiaoyu11/OmiEmbed/, accessed on 19 May 2021), and it is
easy to apply it on any high-dimensional omics dataset for any aforementioned down-
stream task, individually or collaboratively. The detailed network structures of both the
FC-type and CNN-type deep embedding modules were illustrated in Supplementary
Figures S1 and S2. In the FC-type omics embedding network, CpG sites of DNA methyla-
tion profiles were separately connected to different hidden layers based on their targeting
chromosomes in order to reduce the number of parameters, prevent overfitting and save
the GPU memory. The chromosome separation step can be automatically processed in
OmiEmbed with a built-in DNA methylation annotation if the FC-type embedding was
selected using corresponding command-line arguments. Other deep learning techniques
were also applied to prevent overfitting in OmiEmbed, including dropout [30], batch
normalisation [31], weight decay regularisation and the learning rate schedule.

The model was trained on two NVIDIA Titan X GPUs with 12 gigabytes of memory
each. The input dataset for each experiment was randomly separated into training, valida-
tion and testing sets. The separation was conducted in a stratified manner so as to keep
the proportion of each class in all three sets. Stratified 5-fold cross-validation was also
applied to robustly evaluate the performance of OmiEmbed and other compared methods
avoiding bias from specific testing set. The open-source project files of OmiEmbed are
well-organised with modular code structures, predefined packages and easy-to-follow
tutorials, which make it convenient to extend the framework to other customised input
data, network structures and downstream tasks.

4.2. Dimensionality Reduction

OmiEmbed can be regarded as an unsupervised dimensionality reduction method
when only the training Phase 1 mentioned above was applied in the experiment. The high-
dimensional multi-omics data can be compressed into a new representation with the target
dimensionality set by the command line argument of OmiEmbed. Then, the output file
can be directly used for visualisation or any other downstream task. Here, we reduced
each sample in the BTM dataset into a 128D latent vector using the unsupervised Phase
1 of OmiEmbed. The learnt 128D latent space of the BTM dataset was visualised by t-
distributed stochastic neighbour embedding (t-SNE) [32]. As illustrated in Figure 2, a
multi-level hierarchical clustering pattern is revealed in the latent space. Each of the 82
brain tumour entities (e.g., chordoma, hemangioblastoma, and meningioma) and 9 normal
control classes (e.g., normal chemispheric cortex, normal hypothalamus, and normal white
matter) were automatically mapped into corresponding lower-level clusters. And tumour
types belonging to the same upper-level class (e.g., glioblastoma, embryonal tumour,
and ependymal tumour) also formed into the corresponding upper-level clusters with
similar colours.

4.3. Tumour Classification

Instead of using the training Phase 1 individually as a dimensionality reduction
method and separately training the downstream task with other machine learning algo-
rithms, using all of the three training phases of OmiEmbed in an end-to-end manner is
more efficient, with better performance. Here, we first tested the classification performance
of OmiEmbed on the BTM dataset. There are two types of tumour type classification
systems in this brain tumour dataset: the histopathological tumour type labels defined by
the 2016 WHO classification [3] and the methylation tumour type labels defined by the
original paper of this dataset [5]. For each type of these two classification systems, the 3905
samples were divided into more than 90 classes, including different normal control types
(e.g., normal chemispheric cortex, normal hypothalamus, and normal white matter).

https://github.com/zhangxiaoyu11/OmiEmbed/
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Figure 2. The 128D latent space of the BTM dataset learnt by the unsupervised phase of OmiEmbed. The scatter graph was
visualised using t-SNE. Each label in the scatter graph was coloured by its methylation class label and the full name of each
class abbreviation can be found in Supplementary Table S2. Tumour types belonging to the same upper-level class were
marked in similar colours.

The classification performance was evaluated by five multi-class classification met-
rics: macro-averaged F1 score (Macro-F1), macro-averaged true positive rate (Macro-
TPR), macro-averaged positive predictive value (Macro-PPV), overall accuracy and macro-
averaged area under the receiver operating characteristic curve (Macro-ROCAUC). TPR is
also known as sensitivity or recall and PPV is also known as precision. Both of the FC-type
and CNN-type deep embedding modules of OmiEmbed were tested in the experiment.
To adapt and exploit the local connectivity feature of convolutional layers, the order of the
CpG sites in the input data was rearranged according to their targeting chromosome and
location in that chromosome. Nevertheless, as shown in Table 2 and Figure 3, the perfor-
mance of the CNN-type OmiEmbed was not as good as the performance of the FC-type
OmiEmbed with statistical significance, which may be because omics data (e.g., gene
expression and DNA methylation) do not meet the translation equivariance assumption of
CNNs. Thus, the FC-type deep embedding module was selected for OmiEmbed in all of
the following experiments.

Table 2. The classification performance on the BTM dataset using the histopathological tumour type labels (2016 WHO
classification) with 5-fold cross-validation, which was measured by macro-averaged F1 score (Macro-F1), macro-averaged
true positive rate (Macro-TPR), macro-averaged positive predictive value (Macro-PPV), overall accuracy and macro-averaged
area under the receiver operating characteristic curve (Macro-ROCAUC).

Method Macro-F1 Macro-TPR Macro-PPV Accuracy Macro-ROCAUC

UMAP + KSVM 0.2933 ± 0.0029 0.3334 ± 0.0012 0.2812 ± 0.0044 0.6725 ± 0.0067 0.9619 ± 0.0045
LLE + KSVM 0.6678 ± 0.0178 0.6807 ± 0.0189 0.6817 ± 0.0172 0.7987 ± 0.0089 0.9740 ± 0.0041
NMF + KSVM 0.7245 ± 0.0107 0.7228 ± 0.0110 0.7560 ± 0.0172 0.8266 ± 0.0057 0.9761 ± 0.0085
PCA + KSVM 0.7531 ± 0.0131 0.7588 ± 0.0155 0.7724 ± 0.0163 0.8477 ± 0.0078 0.9861 ± 0.0058
KPCA + KSVM 0.7544 ± 0.0135 0.7598 ± 0.0153 0.7755 ± 0.0199 0.8488 ± 0.0087 0.9863 ± 0.0058

KPCA + RF 0.7865 ± 0.0162 0.7844 ± 0.0129 0.8117 ± 0.0233 0.8537 ± 0.0122 0.9862 ± 0.0046
KPCA + NN 0.7893 ± 0.0120 0.7975 ± 0.0127 0.8056 ± 0.0134 0.8521 ± 0.0070 0.9940 ± 0.0015

DNN 0.7877 ± 0.0108 0.7991 ± 0.0128 0.8063 ± 0.0103 0.8459 ± 0.0112 0.9940 ± 0.0021
OmiEmbed-CNN 0.7807 ± 0.0138 0.7869 ± 0.0156 0.8026 ± 0.0193 0.8452 ± 0.0111 0.9943 ± 0.0017
OmiEmbed-FC 0.8323 ± 0.0174 0.8421 ± 0.0188 0.8429 ± 0.0152 0.8754 ± 0.0133 0.9943 ± 0.0016

The best results were marked in bold.
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Figure 3. Performance comparison of OmiEmbed and other eight methods for the tumour entity
classification task on the BTM dataset with the histopathological tumour type labels.

The result of OmiEmbed was first compared with the combination of five dimension-
ality reduction methods and kernel support vector machine (KSVM). The five different
dimensionality reduction methods included uniform manifold approximation and projec-
tion (UMAP) [33], locally linear embedding (LLE) [34], non-negative matrix factorization
(NMF), principal component analysis (PCA) and kernel principal component analysis
(KPCA) [35]. The original data from the BTM dataset were first reduced to 128D by the
aforementioned dimensionality reduction methods and then classified by the KSVM with a
radial basis function (RBF) kernel. The best results among them were achieved by KPCA,
therefore, other machine learning methods were evaluated along with KPCA, including
random forest (RF) [36] and neural network (NN). The NN used here was comprised of
two hidden layers with 128 neurons and 64 neurons, respectively. The deep neural network
(DNN) with the structure of 1024-512-256-128 was also compared with OmiEmbed in
an end-to-end manner. As illustrated in Table 2, Figure 3, Supplementary Table S4 and
Supplementary Figure S3, OmiEmbed achieved the best classification performance in all
the five metrics, with both types of classification systems.

In stratified medicine, the confidence of certain diagnostic prediction is as important as
the prediction itself. With the softmax layer in the classification downstream task module,
OmiEmbed is able to output the predicted diagnosis, as well as the probability of every
class for each input sample. Table 3 demonstrated three output examples from the testing
set of the histopathological tumour type classification task on the BTM dataset. For testing
samples like GSM2941340 and GSM2941792 which are difficult to determine the tumour
type, OmiEmbed is able to not only predict the correct diagnosis, but detect analogous
tumour entities (e.g., anaplastic astrocytoma IDH-mutant and diffuse astrocytoma IDH-
mutant) and rank them by class probability.
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Table 3. Three output examples from the testing set of histopathological tumour type classification on the BTM dataset.
Ground truth (GT) is the pathological diagnosis made by clinicians.

Sample ID Rank Class ID Class Name (2016 WHO Classification of CNS Tumours) Probability

GSM2941340

1st 4 Anaplastic ependymoma 75.3695%
2nd 5 Ependymoma 21.5774%
3rd 23 Myxopapillary ependymoma 0.0275%
4th 62 Anaplastic (malignant) meningioma 0.0008%
5th 31 Atypical meningioma 0.0004%
GT 4 Anaplastic ependymoma

GSM2941792

1st 6 Anaplastic astrocytoma, IDH-mutant 81.4425%
2nd 13 Diffuse astrocytoma, IDH-mutant 17.8859%
3rd 15 Oligodendroglioma, IDH-mutant and 1p/19q-codeleted 0.4496%
4th 10 Anaplastic oligodendroglioma, IDH-mutant and 1p/19q-codeleted 0.1553%
5th 54 Anaplastic astrocytoma, IDH-wildtype 0.0124%
GT 6 Anaplastic astrocytoma, IDH-mutant

GSM2405444

1st 0 Glioblastoma, IDH-wildtype 99.9995%
2nd 32 Gliosarcoma, IDH-wildtype 0.0001%
3rd 44 Anaplastic pilocytic astrocytoma 0.0001%
4th 52 Anaplastic pilocytic astrocytoma (unresolved status) 0.0001%
5th 20 Ganglioglioma 0.0001%
GT 0 Glioblastoma, IDH-wildtype

The ground truth diagnoses were marked in bold.

4.4. Multi-Omics Integration

Different types of omics profiles can be integrated into single latent representation and
used for different downstream tasks through the multi-omics deep embedding module of
OmiEmbed. In order to test the effect of multi-omics integration on the downstream task,
tumour type classifiers were trained on the GDC multi-omics dataset using OmiEmbed.
Three types of omics data in the GDC dataset were used in the experiments: RNA-Seq gene
expression, DNA methylation and miRNA expression. There are 33 tumour types and nor-
mal control class (34 classes in total) in the dataset. We trained the model with each omics
type alone and two different multiple omics type combinations. The classification perfor-
mance in each scenario was shown in Table 4. The performance metrics for each omics type
alone were close to each other and the best metrics were achieved with the combination
of all three omics types. This result indicates combining multiple omics data can yield
better insights into the underlying mechanisms of diseases. It can also be observed that the
classification performance using DNA methylation profile alone and miRNA expression
profile alone was almost identical and the performance of the two different multi-omics
combinations (i.e., gene expression+DNA mehyltaion and gene expression+DNA methy-
lation+miRNA expression) was not significantly different, which indicated that miRNA
expression profiles and DNA methylation profiles providing overlapping information for
the tumour type classification task [37,38].

Table 4. The performance of tumour type classification on the GDC multi-omics dataset with different omics type combinations.

Omics Type Macro-F1 Macro-TPR Macro-PPV Accuracy Macro-ROCAUC

Gene expression (a) 0.9518 ± 0.0053 0.9522 ± 0.0055 0.9558 ± 0.0069 0.9676 ± 0.0027 0.9982 ± 0.0003
DNA methylation (b) 0.9273 ± 0.0167 0.9253 ± 0.0192 0.9333 ± 0.0181 0.9650 ± 0.0040 0.9985 ± 0.0001
miRNA expression (c) 0.9274 ± 0.0140 0.9268 ± 0.0134 0.9320 ± 0.0148 0.9544 ± 0.0057 0.9983 ± 0.0004
Multi-omics (a + b) 0.9675 ± 0.0083 0.9669 ± 0.0077 0.9643 ± 0.0077 0.9753 ± 0.0040 0.9988 ± 0.0009
Multi-omics (a + b + c) 0.9683 ± 0.0020 0.9684 ± 0.0026 0.9705 ± 0.0047 0.9771 ± 0.0027 0.9991 ± 0.0002

The best results were marked in bold.
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4.5. Reconstruction of Demographic and Clinical Features

With both the classification and regression downstream networks built in OmiEmbed,
we were able to reconstruct a number of phenotype features from high-dimensional omics
data. Here, we tested the prediction performance of four different phenotype features in
the GDC dataset, including age, gender, the disease stage and primary site of the clinical
sample. Detailed information of each categorical features was listed in Supplementary
Table S5.

The disease stage is the clinical type of the sample, which consists of primary tumour,
metastatic tumour, recurrent tumour and normal control tissue. The primary site is the
place where the cancer starts growing. Samples in the GDC dataset are from 28 different
primary sites such as breast, kidney, lung, and skin. As for the gender of each sample,
since the molecular features targeting the Y chromosome were filtered in the preprocessing
stage, the model was required to classify the gender based on other molecular features.
The OmiEmbed classification performance of the three categorical phenotype features was
shown in Table 5, along with the results of a DNN with the structure of 1024-512-256-128.
The full comparison of all nine methods was illustrated in Supplementary Tables S6–S8
and Supplementary Figures S4–S6.

Table 5. The classification performance of predicting three categorical phenotype features on the GDC dataset.

Label Method Macro-F1 Macro-TPR Macro-PPV Accuracy Macro-ROCAUC

Disease stage DNN 0.7530 ± 0.0035 0.7552 ± 0.0090 0.7517 ± 0.0105 0.9782 ± 0.0014 0.9552 ± 0.0207
OmiEmbed 0.8173 ± 0.0401 0.8016 ± 0.0291 0.8610 ± 0.0816 0.9797 ± 0.0024 0.9540 ± 0.0320

Primary site DNN 0.9639 ± 0.0066 0.9638 ± 0.011 0.9576 ± 0.0123 0.9593 ± 0.0116 0.9987 ± 0.0006
OmiEmbed 0.9717 ± 0.0066 0.9711 ± 0.0046 0.9734 ± 0.0095 0.9812 ± 0.0023 0.9994 ± 0.0003

Gender DNN 0.8701 ± 0.0725 0.887 ± 0.0413 0.8713 ± 0.0705 0.8668 ± 0.079 0.962 ± 0.0102
OmiEmbed 0.9560 ± 0.0023 0.9558 ± 0.0024 0.9568 ± 0.0018 0.9561 ± 0.0022 0.9903 ± 0.0019

Since the label of age is numerical instead of categorical, the regression downstream
module was applied for the age prediction task. The performance of age prediction was
evaluated by the three regression metrics: median absolute error, mean absolute error, root
mean square error (RMSE) and coefficient of determination (R2), which was illustrated
in Table 6 and Figure 4. For median absolute error, mean absolute error and RMSE lower
values represent better regression performance, whereas for R2 score higher values indicate
better regression performance.

Table 6. The age prediction performance of OmiEmbed and eight other methods on the GDC dataset. For median absolute
error, mean absolute error and RMSE, lower values mean better regression performance. For R2 score, higher values mean
better regression performance.

Method Median Absolute Error Mean Absolute Error RMSE R2

UMAP + KSVR 8.8353 ± 0.1408 10.5292 ± 0.0621 13.2020 ± 0.0519 0.2003 ± 0.0065
LLE + KSVR 8.3977 ± 0.1910 10.0348 ± 0.0885 12.5742 ± 0.1075 0.2745 ± 0.0125
NMF + KSVR 8.6448 ± 0.1534 10.1268 ± 0.0589 12.6571 ± 0.0498 0.2649 ± 0.0069
PCA + KSVR 8.3691 ± 0.1646 9.9430 ± 0.0633 12.4547 ± 0.0669 0.2882 ± 0.0080
KPCA + KSVR 8.3674 ± 0.1544 9.9432 ± 0.0633 12.4561 ± 0.0666 0.2881 ± 0.0080

KPCA + RFR 8.2990 ± 0.1576 9.7939 ± 0.1225 12.2403 ± 0.1307 0.3125 ± 0.0148
KPCA + NNR 8.4269 ± 0.0917 9.9995 ± 0.0752 12.4907 ± 0.0649 0.2841 ± 0.0083

DNNR 7.2897 ± 0.2649 8.9247 ± 0.2101 11.4128 ± 0.2490 0.4020 ± 0.0273
OmiEmbed 6.9330 ± 0.1031 8.3694 ± 0.0648 10.6578 ± 0.1337 0.4788 ± 0.0137

The best results were marked in bold.
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Figure 4. Performance comparison of OmiEmbed and other eight methods for the age prediction task
on the GDC dataset. For root mean square error (RMSE), mean absolute error (MAE) and median
absolute error (MEDAE), lower values mean better regression performance. For R2 score, higher
values mean better regression performance.

The age prediction performance of OmiEmbed was first compared with the combi-
nation of the five aforementioned dimensionality reduction methods and kernel support
vector regressor (KSVR). The original data from the GDC dataset were first reduced to
128D and then fed to the KSVR with the RBF kernel. Other regression methods were also
evaluated along with KPCA, including random forest regressor (RFR) [36] and neural net-
work regressor (NNR). The NNR adopted here was comprised of two hidden layers with
128 neurons and 64 neurons, respectively. The deep neural network regressor (DNNR) with
the structure of 1024-512-256-128 was also compared with OmiEmbed in an end-to-end
manner. OmiEmbed achieved the best regression performance with the lowest distance
error and highest coefficient of determination.

4.6. Survival Prediction

With the survival prediction downstream module of OmiEmbed, we are able to predict
the survival function of each subject from corresponding high-dimensional omics data. Just
like other downstream tasks, OmiEmbed was trained by the three-phase training strategy
for the survival prediction task. Survival losses at each epoch on the training and testing
set were illustrated in Figure 5 with a step shape learning curve. The first ten epochs were
in Phase 1, where the embedding network was pretrained in an unsupervised manner.
In epoch 11 to epoch 40, the downstream network was trained individually when the
pre-trained embedding network was fixed, and in the last phase, the whole network was
fine-tuned for better performance, which is consistent with the learning curve.

The performance of the survival prediction downstream task was evaluated by concor-
dance index (C-index) and integrated Brier score (IBS), which are the most commonly used
metrics for survival prediction. A C-index value of 1 indicates the perfect prediction model
and a value of 0.5 signifies that the performance of the model is similar to expected at
random. The Brier score indicates the accuracy of a predicted survival function at a certain
time point, which is between 0 and 1. IBS is the average Brier score among all available
times, providing an overall calculation of the model performance.



Cancers 2021, 13, 3047 16 of 22

Figure 5. The learning curve of the survival prediction task with the three-phase training strategy of
OmiEmbed. Epoch 1 to 10 belong to Phase 1; epoch 11 to 40 belong to Phase 2; epoch 41 to 70 belong
to Phase 3.

The results of OmiEmbed were compared with methods that first reduced the dimen-
sionality of input omics data to 128D using UMAP [33], LLE [34], NMF, PCA or KPCA [35],
and then fed the 128D latent vectors to the survival prediction method Cox proportional
hazard model (CoxPH). Other survival prediction methods, including random survival
forest (RSF) [39], conditional survival forest (CSF) [40] and extra survival trees (EST) [41],
were also evaluated after being reduced to 128D latent vectors by KPCA. The survival
prediction performance of OmiEmbed was also compared with the state-of-the-art deep
learning method DeepSurv [42]. OmiEmbed got the best C-index (0.7715) and IBS (0.1657)
among all of the ten methods, as shown in Table 7 and Figure 6.

Table 7. The survival prediction performance of OmiEmbed and nine other methods on the GDC
dataset. For C-index, higher values mean better prediction performance. For IBS score, lower values
mean better prediction performance.

Mathod C-Index IBS

UMAP + CoxPH 0.6986 ± 0.0179 0.1847 ± 0.0258
LLE + CoxPH 0.6833 ± 0.0215 0.2108 ± 0.0255
NMF + CoxPH 0.7070 ± 0.0215 0.1822 ± 0.0277
PCA + CoxPH 0.7097 ± 0.0228 0.1783 ± 0.0248
KPCA + CoxPH 0.7096 ± 0.0233 0.1778 ± 0.0244

KPCA + RSF 0.6854 ± 0.0244 0.1896 ± 0.0104
KPCA + CSF 0.6909 ± 0.0255 0.1906 ± 0.0116
KPCA + EST 0.6931 ± 0.0286 0.1938 ± 0.0115

DeepSurv 0.7180 ± 0.0171 0.2468 ± 0.0269
OmiEmbed 0.7715 ± 0.0073 0.1657 ± 0.0224

The best results were marked in bold.
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Figure 6. Performance comparison of OmiEmbed and other nine methods for the survival prediction
task on the GDC dataset. For C-index, higher values mean better prediction performance. For IBS
score, lower values mean better prediction performance.

OmiEmbed is able to output the personalised survival function based on the corre-
sponding omics profile. As illustrated in Figure 7, we randomly selected ten subjects with
their observed death time from the testing set of the GDC dataset as examples and plotted
the survival curve for each of them. The actual death time of each subject was also marked
in the figure by the dashed vertical line with the corresponding colour.

Figure 7. Personalised survival curves of ten random subjects from the testing set of the GDC dataset.
The dashed vertical line with the corresponding colour indicates the death time of each subject.
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4.7. Multi-Task Learning

Instead of training each aforementioned downstream module separately, we can also
train multiple downstream modules together using the multi-task training strategy expati-
ated in the previous section. With the multi-task strategy, OmiEmbed is able to perform
diverse downstream tasks simultaneously and reconstruct a comprehensive phenotype
profile of each subject from high-dimensional omics data, using one unified network in one
forward propagation. In order to test the multi-task performance of OmiEmbed, we first
selected three typical downstream tasks belonging to three distinct categories, the survival
prediction task, the tumour type classification task and the age regression task, for the eval-
uation. Three downstream modules along with the deep embedding module were trained
collaboratively using the joint loss function Equation (7) and the GradNorm loss function
Equation (16). As shown in Table 8, the performance is higher in all three downstream
tasks when they were trained in a unified multi-task OmiEmbed network, compared with
being trained separately.

Table 8. Multi-task training performance of OmiEmbed with three typical downstream tasks. For C-index, macro-F1 and
accuracy, higher values mean better prediction performance. For IBS score, RMSE and median absolute error, lower values
mean better prediction performance.

Survival Tumour Type Age

C-Index IBS Macro-F1 Accuracy RMSE Median Absolute Error

Single task alone 0.7715 ± 0.0073 0.1657 ± 0.0224 0.9518 ± 0.0053 0.9676 ± 0.0027 10.6578 ± 0.1337 6.9330 ± 0.1031
Multi-task 0.7823 ± 0.0076 0.1590 ± 0.0212 0.9653 ± 0.0057 0.9733 ± 0.0029 10.6336 ± 0.1034 6.6759 ± 0.1195

Since different downstream networks shared the common deep embedding module
with the multi-task learning strategy, the latent representation learnt by multi-task OmiEm-
bed contained comprehensive information of each downstream task. The learnt omics
embedding reduced the dimensionality of each sample in the GDC dataset, which was
then visualised using t-SNE and illustrated in Figure 8. Each sample was coloured by its
tumour type, age and risk score in three corresponding scatter graphs with the same latent
representation, which revealed apparent patterns related to the three types of labels.
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Figure 8. Visualisation of the latent space learnt by the multi-task OmiEmbed. Each sample was colour by its tumour type
(A), age (B) and risk score (C) in three corresponding scatter graphs with the same latent representation. Apparent patterns
related to the three types of labels can be seen in the scatter graphs.

5. Conclusions

OmiEmbed is an open-source deep learning framework designed for multi-omics
data analysis, with tasks including dimensionality reduction, multi-omics data integration,
tumour type classification, disease stage prediction, demographic label reconstruction and
prognosis prediction. All of the aforementioned tasks can be performed individually or
collaboratively by a unified architecture, which is comprised of the deep embedding and
downstream task modules. OmiEmbed achieved promising results in each downstream
task outperforming state-of-the-art methods, and obtained a better performance with the
multi-task strategy comparing to training them individually. The multi-task OmiEmbed
learnt a single embedding for all of the downstream tasks, which contained comprehensive
information in the latent space. Our results indicated that OmiEmbed was able to recon-
struct a comprehensive profile of each subject, including demographic, diagnostic and
prognostic information from the multi-omics data, which has a great potential to facilitate
more accurate and personalised clinical decision making. OmiEmbed is publicly available
with modular code structures, predefined packages and easy-to-follow tutorials, which
make the unified framework applicable to any omics type and downstream task with
minimal modification. We believe that OmiEmbed will also become a framework for other
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researchers to analyse high-dimensional omics data using the deep learning and multi-task
learning methodology.

In the future work, we plan to apply a Gaussian mixture model (GMM) [43,44] as the
prior distribution of the latent variables in the deep embedding module. With the biological
network data including protein–protein interactions (PPI) networks [45], gene regulatory
networks (GRN) [46,47], gene co-expression networks [48], etc., we are going to apply the
emerging graph neural network (GNN) technologies [49] to improve the performance of
multi-omics integration. How to deal with biases in the model is a crucial issue for medical
applications of machine learning. We plan to adopt the latest intra-processing method [50]
to debias neural networks for a more trustworthy OmiEmbed. Model interpretability is
another potential improvement of the OmiEmbed framework. XOmiVAE [51] has taken
the step to implement and analyse the interpretability of multi-omics deep learning models,
which will be integrated to OmiEmbed in our future work to fully open the “black box”.
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embedding module in OmiEmbed, Figure S3: Performance comparison of OmiEmbed and other eight
methods for the tumour entity classification task on the BTM dataset with the methylation tumour
type labels, Figure S4: Performance comparison of OmiEmbed and other eight methods for the disease
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Detailed tumour type information of the BTM dataset with the methylation class labels, Table S3:
Detailed tumour type information of the BTM dataset with the pathological class labels defined by
the 2016 WHO classification of CNS tumours, Table S4: The classification performance on the BTM
dataset using the methylation tumour type labels with 5-fold cross-validation, Table S5: Detailed
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