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Abstract

Investigations using noninvasive functional magnetic resonance imaging (fMRI) have provided 

significant insights into the unique functional organization and profound importance of the human 

default mode network (DMN), yet these methods are limited in their ability to resolve network 

dynamics across multiple timescales. Electrophysiological techniques are critical to address these 

challenges, yet few studies have explored the neurophysiological underpinnings of the DMN. Here 

we investigate the electrophysiological organization of the DMN in a common large-scale network 

framework consistent with prior fMRI studies. We used intracranial EEG (iEEG) recordings, and 

evaluated intra- and cross-network interactions during resting-state and its modulation during a 

cognitive task involving episodic memory formation. Our analysis revealed significantly greater 

intra-DMN phase iEEG synchronization in the slow-wave (< 4 Hz), while DMN interactions with 

other brain networks was higher in the beta (12–30 Hz) and gamma (30–80 Hz) bands. Crucially, 

slow-wave intra-DMN synchronization was observed in the task-free resting-state and during 

both verbal memory encoding and recall. Compared to resting-state, slow-wave intra-DMN phase 

synchronization was significantly higher during both memory encoding and recall. Slow-wave 

intra-DMN phase synchronization increased during successful memory retrieval, highlighting its 
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behavioral relevance. Finally, analysis of nonlinear dynamic causal interactions revealed that 

the DMN is a causal outflow network during both memory encoding and recall. Our findings 

identify frequency specific neurophysiological signatures of the DMN which allow it to maintain 

stability and flexibility, intrinsically and during task-based cognition, provide novel insights into 

the electrophysiological foundations of the human DMN, and elucidate network mechanisms by 

which it supports cognition.

1. Introduction

The default mode network (DMN) is a large-scale distributed brain network which plays 

a critical role in cognition, including episodic memory formation and monitoring internal 

thoughts (Greicius MD et al. 2003; Buckner RL et al. 2008; Raichle ME 2015). DMN 

impairments are prominent in psychiatric disorders and this network is particularly sensitive 

to Alzheimer’s disease pathology and the ensuing loss of episodic memory and related 

cognitive functions (Greicius MD et al. 2004; Sheline YI et al. 2010; Staffaroni AM et 

al. 2018). In the past two decades, investigations using noninvasive functional magnetic 

resonance imaging (fMRI) techniques have provided significant insights into the unique 

functional organization of the human DMN. However, the electrophysiological basis and 

network properties of the DMN are poorly understood as fMRI does not have the requisite 

temporal resolution to address foundational questions in human systems neuroscience: 

what binds the DMN together as a network and segregates it from other large-scale brain 

networks? Here, we address this question using depth intracranial EEG (iEEG) recordings 

and investigate the neurophysiological foundations of the DMN, and its dynamic spectro-

temporal properties in resting-state and during cognition.

The DMN consists of a distributed set of brain regions, including the posterior cingulate 

cortex, medial prefrontal cortex, angular gyrus, anterior prefrontal cortex, lateral temporal 

cortex and medial temporal lobe (MTL). Investigations of the electrophysiological properties 

of the DMN have been hampered by challenges of obtaining high-quality iEEG data from 

large-scale brain networks spanning widely distributed nodes across multiple lobes (Menon 

V et al. 1996; Freeman WJ et al. 2009; Parvizi J and S Kastner 2018). Furthermore, 

few electrophysiological investigations of the DMN have examined cortical recordings 

simultaneously with the MTL, an important constituent node of the DMN (Greicius MD 

et al. 2003). Here we overcome these limitations using depth iEEG recordings spanning 

cortical and MTL nodes that constitute the DMN. Critically, the extensive distribution 

of electrodes allowed us to probe the spectro-temporal organization of the DMN in 

relation to six other large-scale cortical networks that have been consistently identified 

using fMRI: dorsal attention, ventral attention, frontoparietal, visual, motor, and limbic 

(Yeo BT et al. 2011). This approach allowed us to address critical questions regarding 

the electrophysiological properties of the DMN in relation to fMRI-derived functional 

architectures of the human brain.

Previous iEEG studies focusing on individual nodes of the DMN have demonstrated 

suppression of the posterior cingulate cortex during mental arithmetic (Dastjerdi M et al. 

2011; Daitch AL and J Parvizi 2018), and activation of the retrosplenial cortex during 
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autobiographical memory retrieval (Foster BL et al. 2013). iEEG studies have also reported 

resting-state correlations in high-frequency band power fluctuations between the posterior 

cingulate cortex and angular gyrus (Foster BL et al. 2015), and between the posterior 

cingulate cortex and medial prefrontal cortex nodes of the DMN (Kucyi A et al. 2018). 

However, other studies have failed to find such an association (Hacker CD et al. 2017), 

likely reflecting the small sample sizes and limited electrode coverage in prior studies 

(Fox KCR et al. 2018). In other related research, resting-state correlations in the ultralow 

(<0.5 Hz) frequency have been reported in surface electrocorticogram recordings over 

somatosensory and motor cortex (He BJ et al. 2008), but it is not known whether such a 

frequency-specific network coupling also extends to the large-scale functional organization 

of the DMN. The limited electrode coverage in extant iEEG studies has made it impossible 

to examine connectivity across the distributed nodes that comprise the DMN and identify 

neurophysiological properties that segregate it from other large-scale brain networks, as 

identified using whole-brain fMRI.

A different line of research using scalp EEG recordings with concurrent fMRI has also 

probed the relation between fMRI activity and band-limited EEG fluctuations, but no 

consensus has emerged about the spectro-temporal organization of the DMN as the 

frequency-specificity of the correlations has been inconsistent across studies (Laufs H et 

al. 2003; Moosmann M et al. 2003; Mantini D et al. 2007; Scheeringa R et al. 2008; Jann 

K et al. 2009; Wu L et al. 2010; Yuan H et al. 2010). Crucially, the use of scalp EEG to 

characterize intra- and inter-network synchronization of the DMN is highly problematic due 

to volume conduction (Freeman WJ et al. 2009) and the inability of scalp EEG recordings to 

capture localized subcortical DMN regions such as the hippocampus.

Beyond the resting-state, little is known about how the large-scale intrinsic spectro-temporal 

organization and dynamic causal interactions of the DMN is modulated by cognition. 

Episodic memory is thought to be an important function associated with the DMN (Greicius 

MD et al. 2003; Greicius MD and V Menon 2004; Buckner RL et al. 2008; Kragel 

JE and SM Polyn 2015; Raichle ME 2015), and iEEG recordings from individual brain 

regions have reported theta-band activity in the hippocampus and parahippocampal gyrus 

during recall of verbal, temporal and spatial information from recently encoded memories 

(Watrous AJ et al. 2013; Jacobs J et al. 2016; Goyal A et al. 2018). However, the large-scale 

electrophysiological organization of the DMN and causal network dynamics during memory 

encoding and retrieval are not known and, crucially, no intracranial studies have probed 

how the intrinsic organization of the DMN and its interaction with other large-scale brain 

networks is altered by task-related episodic memory processes. More generally, there is 

growing evidence from fMRI studies that the DMN has a direct role in cognition across 

multiple cognitive domains, as revealed by task-related modulation of its posterior cingulate 

cortex, angular gyrus and middle temporal gyrus nodes (Greicius MD and V Menon 2004; 

Crittenden BM et al. 2015; Murphy C et al. 2018; Smith V et al. 2018; Sormaz M et 

al. 2018; Murphy C et al. 2019). A deeper understanding of the role of the DMN during 

cognition requires clarification of the electrophysiological mechanisms that support task-

related network interactions in relation to its intrinsic spectro-temporal organization.
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A systematic analysis using depth iEEG recordings spanning distributed nodes of the DMN, 

including the PCC, MTL, angular gyrus, and anterior temporal cortex, in parallel with other 

large-scale brain networks is needed to resolve these discrepancies and address fundamental 

questions regarding the integrity of this critical brain network (Hacker CD et al. 2017). To 

address this challenge, we used iEEG data from the UPENN-RAM study (Solomon EA 

et al. 2019) that included depth recordings from 102 participants and 12,780 electrodes, 

from which we selected 36 participants with 879 electrodes spanning seven fMRI-derived 

brain networks (Yeo BT et al. 2011). This allowed us to probe intra-DMN connectivity 

and contrast it with DMN interactions with other brain networks in a common large-scale 

network framework consistent with prior whole-brain non-invasive fMRI studies.

The first main goal of our study was to probe the intrinsic spectro-temporal organization 

of the human DMN during a task-free resting-state and determine frequency-specific 

instantaneous phase synchronization measures that capture linear as well as nonlinear 

intermittent and nonstationary dynamics observed in iEEG data (Menon V et al. 1996; 

Lachaux JP et al. 1999). We hypothesized that intra-DMN network interactions would 

be significantly stronger than inter-network interactions in the slow frequency range (< 

4 Hz), based on the hypothesized role of the ultralow (< 0.5 Hz) and delta (0.5–4 Hz) 

frequency bands in large-scale network synchronization Buzsáki G (2000). The second 

major goal of our study was to extend our analysis and methodology to investigate DMN 

phase synchronization during an episodic memory task involving encoding and recall of a 

list of words. Investigations of intra- and cross-network interactions during verbal episodic 

memory is particularly relevant in the context of DMN function since the PCC, MTL, 

angular gyrus, and anterior temporal cortex have each been consistently implicated in 

verbal episodic and semantic memory (Binder JR and RH Desai 2011; Hasson U et al. 

2015). The final goal of our study was to determine how DMN synchrony changes during 

memory formation, when compared to rest. We hypothesized that intra-DMN network 

synchronization would increase during memory encoding and recall, when compared to 

the resting-state, while preserving the overall low-frequency-dependent synchrony of the 

DMN. Our study provides novel, behaviorally and functionally relevant, insights into the 

neurophysiological foundations of the human DMN and its role in cognition.

2. Results

2.1. Slow-wave intra-DMN synchronization during resting-state

We first examined intrinsic intra-network synchronization of the DMN and contrasted it 

with cross-network synchronization with six other brain networks, identified using the 

fMRI-based cortical network atlas (Yeo BT et al. 2011) (Figs. 1a, S1, S2, Tables S1-S4; 

Methods). iEEG data across the non-DMN networks were combined to limit multiple 

comparison testing, and more directly address our specific hypotheses (but see Figs. S3-S11 

for connectivity matrices between the seven brain networks corresponding to different 

frequency bands and task conditions). Analysis of instantaneous phase locking values 

(PLVs) revealed significantly greater intra-DMN phase synchronization, compared to DMN 

interactions with the other six networks, in the ultralow-delta band (< 4 Hz) (F(1, 7262) 

= 4.24, p < 0.05) (Fig. 2a). This pattern was reversed in the higher frequency beta band, 
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with stronger cross-network, compared to intra-DMN, synchronization (F(1, 7002) = 20.60, 

p < 0.001), however intra-DMN phase synchronization did not differ from cross-network 

synchronization of the DMN in the gamma frequency band (F(1, 6946) = 0.01, p > 

0.05) (Fig. 2a). Cross-network phase synchronization of the DMN was also higher than 

intra-DMN synchronization in the theta frequency band (F(1, 6764) = 43.18, p < 0.001). 

Intra-DMN phase synchronization did not differ from cross-network DMN synchronization 

in the alpha frequency band (F(1, 5934) = 0.32, p > 0.05). Direct statistical comparison 

revealed that intra-DMN phase synchronization in the ultralow-delta band was significantly 

higher compared to intra-DMN phase synchronization in the theta (F(1, 3210) = 1847.3, p 
< 0.001), alpha (F(1, 3214) = 1911.3, p < 0.001), beta (F(1, 3214) = 5981.8, p < 0.001), 

and gamma (F(1, 3212) = 5561.2, p < 0.001) bands. Note the gradual decrease in the PLV 

values from low to high frequency bands, consistent with the well-known 1/f spectral scaling 

in EEGs (He BJ et al. 2010).

These results demonstrate that intra-DMN connectivity is dominated by ultralow-delta 

(hereafter referred to as slow-wave) synchronization, and that cross-network interaction 

of the DMN is dominated by beta frequency, thus providing novel evidence for spectral 

segregation of the DMN in the resting-state.

2.2. Slow-wave intra-DMN synchronization during episodic memory formation

We then extended the above analysis to the memory encoding period of a verbal episodic 

memory task in which participants were presented with a sequence of words and asked 

to remember them for subsequent recall (Fig. 1b, Methods). Again, intra-DMN slow-wave 

phase synchronization was higher when compared to DMN interactions with the other 6 

networks (F)1, 7317) = 59.36, p < 0.001) (Fig. 2b). The reverse was true in higher frequency 

bands: DMN electrodes had higher phase synchronization with electrodes outside the DMN 

than intra-DMN electrodes in the beta (F(1, 7290) = 18.27, p < 0.001) and gamma (F(1, 

7303) = 42.31, p < 0.001) bands (Fig. 2b). DMN electrodes also had higher synchronization 

with electrodes outside the DMN than intra-DMN electrodes in theta (F(1, 7293) = 9.64, 

p < 0.01) and alpha (F(1, 7068) = 9.23, p < 0.01) frequency bands. Direct statistical 

comparison revealed that intra-DMN slow-wave phase synchronization was significantly 

higher compared to intra-DMN phase synchronization in the theta (F(1, 3211) = 3630.8, p < 

0.001), alpha (F(1, 3211) = 3627.6, p < 0.001), beta (F(1, 3213) = 5969.4, p < 0.001), and 

gamma (F(1, 3211) = 5773, p < 0.001) bands.

Next, we examined phase synchronization during the recall phase of the verbal episodic 

memory task in which participants recalled the words they had seen during the memory 

encoding phase. Here again, intra-DMN slow-wave phase synchronization was higher 

compared to DMN interactions with the other 6 networks (F(1, 7241) = 5.15, p < 0.05) 

(Fig. 2c). The reverse was again true in higher frequency bands: DMN electrodes had higher 

phase synchronization with electrodes outside the DMN than intra-DMN electrodes in the 

beta (F(1, 7091) = 7.35, p < 0.05) and gamma (F(1, 7128) = 4.62, p < 0.05) bands (Fig. 

2c). However, intra-DMN phase synchronization was higher than DMN synchronization 

with the other 6 networks in the theta frequency band (F(1, 6942) = 50.31, p < 0.001). Intra-

DMN phase synchronization did not differ from cross-network DMN synchronization in the 
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alpha frequency band (F(1, 6228) = 0.82, p > 0.05). Direct statistical comparison revealed 

that intra-DMN slow-wave phase synchronization was significantly higher compared to 

intra-DMN phase synchronization in the theta (F(1, 3214) = 2958, p < 0.001), alpha (F(1, 

3212) = 2785.3, p < 0.001), beta (F(1, 3215) = 5801.5, p < 0.001), and gamma (F(1, 3210) = 

5665.2, p < 0.001) bands.

These results demonstrate that intra-DMN connectivity is dominated by slow-wave 

synchronization, and that cross-network interaction of the DMN is dominated by beta and 

gamma frequencies, during both memory encoding and recall, thus providing evidence that 

spectral segregation of the DMN, observed intrinsically, is also maintained during memory 

processing.

2.3. Intra- and cross-network phase synchronization of the DMN sans hippocampus

Most human functional neuroimaging research on the DMN and fMRI-based atlases of 

brain networks have focused on its cortical nodes. We investigated the extent to which 

spectral segregation of the DMN was dependent on the hippocampus. We conducted 

additional analyses probing intra- and cross-network phase synchronization during resting-

state, memory encoding, and memory recall conditions excluding hippocampus electrodes 

from the DMN. This analysis revealed that intra-DMN slow-wave phase synchronization 

was higher compared to DMN interactions with the other 6 networks in all three conditions 

(F(1, 5491) = 11.45 for resting-state, F(1, 5520) = 49.45 for memory encoding, and F(1, 

5485) = 7.63 for memory recall, ps<0.001) (Figure S12). Cross-network interaction of 

the DMN was stronger than intra-DMN phase synchronization in the beta and gamma 

frequency bands during only memory encoding (F(1, 5503) = 5.72 for beta and F(1, 5520) = 

13.25 for gamma, ps<0.05), however intra-DMN phase synchronization did not differ from 

cross-network interactions of the DMN with the other 6 networks in the beta and gamma 

frequency bands during resting-state (F(1, 5328) = 2.57 for beta and F(1, 5304) = 0.51 for 

gamma, ps>0.05) and memory recall (F(1, 5429) = 0.0004 for beta and F(1, 5437) = 2.94 for 

gamma, ps>0.05) periods.

These results suggest that only intra-network phase synchronization properties of the DMN 

hold independent of the hippocampus, however cross-network properties of the DMN are 

dependent on the hippocampus.

2.4. Slow-wave increases in intra-DMN phase synchronization during memory encoding 
and memory recall, compared to resting state

We next investigated intra-DMN synchronization changes during memory encoding and 

recall, compared to the resting-state. The duration of task and rest epochs were matched to 

ensure that differences in network dynamics could not be explained by the differences in 

the duration of the epochs (Methods). Our analysis revealed that intra-network slow-wave 

phase synchronization of the DMN during both the encoding and recall phases of the 

verbal episodic memory task was higher than that during rest (F(1, 3210) = 22.66 for 

encoding and F(1, 3209) = 46.88 for recall, ps<0.001) (Fig. 3). These results demonstrate 

slow-wave-dependent increases in phase synchronization within the DMN during both 

memory encoding and recall.
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2.5. Increased slow-wave intra-DMN phase synchronization associated with successful 
vs. unsuccessful memory recall

Next, we sought to investigate the behavioral significance of intra-DMN slow-wave phase 

synchronization. We examined whether intra-DMN phase synchronization differed between 

trials that were subsequently recalled correctly versus those that were not. During the 

encoding phase of the memory task, intra-DMN slow-wave phase synchronization was 

higher for successfully, versus unsuccessfully, recalled words (F(1, 3211) = 4.75, p < 0.05) 

(Fig. 4a). This finding was replicated in the memory recall phase of the task (F(1, 3211) 

= 12.02, p < 0.01) (Fig. 4b). These results suggest that spectral integrity of the DMN is 

associated with successful memory performance.

2.6. Enhanced causal influences from the DMN to other networks during memory 
encoding and memory recall

To investigate the role of dynamic causal interactions of the DMN in episodic memory 

task performance, we used phase transfer entropy (PTE) (Lobier M et al. 2014) to compute 

the net causal outflow from the DMN to the other six networks (see Methods for details). 

During both the memory encoding and recall phases, the DMN showed greater net causal 

outflow to other networks than the reverse (F(1, 11,383) = 781.59 for encoding and F(1, 

11,421) = 684.75 for recall, ps<0.001) (Figs. 5a, b). These results demonstrate that the DMN 

plays an important causal role in interactions with other networks during episodic memory 

formation.

Finally, comparison of causal outflow from the DMN to other networks across conditions 

revealed greater causal outflow during both memory encoding and recall compared to 

resting-state (F(1, 11,420) = 309.9 for encoding and F(1, 11,421) = 365.24 for recall, 

ps<0.001) (Fig. 6). Causal outflow from the DMN was greater during memory encoding 

compared to recall (F(1, 11,413) = 21.02, p<0.001) (Fig. 6). These results demonstrate 

task-specific increases in causal influence of the DMN on other brain networks.

2.7. Surrogate data analysis of intra- and cross-network synchronization and causal 
dynamics of the DMN

We conducted surrogate data analysis to test the significance of the estimated PLV values 

compared to PLV expected by chance, for intra-DMN and cross-network interactions of 

the DMN with other networks (Methods). The estimated phases from the Hilbert transform 

for electrodes from pairs of brain areas were time-shuffled and PLV analysis was repeated 

on this shuffled data to build a distribution of surrogate PLV values against which the 

observed PLV was tested. This analysis revealed that phase synchronization for intra- and 

cross-network interactions of the DMN was significantly higher than those expected by 

chance in slow-wave, theta, alpha, beta, and gamma frequency bands and across resting-

state, memory encoding, and memory recall conditions (p<0.05 in all cases) (Figs. S13, 

S14). These results demonstrate that all reported phase synchronization effects in this study 

arise from synchronization that is significantly enhanced above chance levels.

We repeated the surrogate data analysis to test the significance of the estimated PTE values 

compared to PTE expected by chance for dynamic causal interactions of the DMN with 
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other networks (Methods). Similar to the surrogate analysis for PLV, the estimated phases 

from the Hilbert transform for electrodes from pairs of brain areas were time-shuffled 

and PTE analysis was repeated on this shuffled data to build a distribution of surrogate 

PTE values against which the observed PTE was tested. This analysis revealed that causal 

information flow from the DMN to the other 6 networks and the reverse were significantly 

higher than those expected by chance during resting-state, memory encoding, and memory 

recall conditions, indicating bidirectional causal information flow between the DMN and the 

6 other networks (p<0.05 in all cases) (Fig. S15). These results demonstrate that all reported 

effects in this study arise from causal signaling that is significantly enhanced above chance 

levels.

2.8. Power spectral density of DMN and other networks during rest

To examine whether intra-DMN synchronization and DMN synchronization with other 

networks was driven by differences in the amplitude of iEEG fluctuations, we compared 

power spectral density (see Methods for details) in the DMN and the other 6 large-scale 

networks. This analysis revealed that power in the DMN was higher than the power in 

the other six networks in the slow-wave frequency band (p<0.05), however power in the 

DMN did not differ from power in the other six networks in beta and gamma frequency 

bands (ps>0.05). These results suggest that DMN synchronization with other networks is not 

driven by differences in the amplitude of iEEG fluctuations.

2.9. Power spectral density of DMN and other networks during memory processing

Similar to our analysis of resting-state iEEG, we compared power spectral density in the 

DMN and the other 6 networks during memory encoding, and separately during memory 

recall phases of the episodic memory task. This analysis revealed that power in the DMN 

was higher than the power in the other six networks in the slow-wave frequency band during 

memory encoding (p < 0.01), however power in the DMN did not differ from power in the 

other six networks in beta and gamma frequency bands during memory encoding (ps>0.05). 

Furthermore, power in the DMN was lower than the power in the other six networks in the 

slow-wave frequency band during memory recall (p < 0.01), however power in the DMN did 

not differ from power in the other six networks in beta and gamma frequency bands during 

memory recall (ps>0.05). Together, these results suggest that DMN synchronization with 

other networks is not driven by differences in the amplitude of iEEG fluctuations during 

memory processing.

2.10. Spectral power density during memory processing does not differ from rest

We next compared the power spectral density during memory encoding or recall with power 

spectral density during resting-state in the slow-wave (< 4 Hz) frequency band. As with 

previous analyses, we randomly selected epochs from the resting-state periods to match 

their duration to those from the memory encoding or recall periods, thereby ensuring that 

differences in network dynamics could not be explained by the differences in the duration of 

the epochs (Methods). For the DMN, power during memory encoding or recall did not differ 

from power during rest (ps>0.05). This indicates that the increased phase synchronization 

during memory encoding/recall is not driven by differences in the amplitude of iEEG 

fluctuations.

Das et al. Page 8

Neuroimage. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.11. Spectral power density during successful memory encoding/recall does not differ 
from unsuccessful memory encoding/recall

We compared the power spectral density during successful memory encoding/recall with 

the power spectral density during unsuccessful memory encoding/recall in the slow-wave 

(< 4 Hz) frequency band for the DMN. This analysis revealed that power during successful 

memory encoding/recall did not differ from power during unsuccessful memory encoding/

recall (ps>0.05). This indicates that the increased intra-DMN phase synchronization during 

successful encoding/recall compared to unsuccessful encoding/recall in the slow-wave 

frequency band is not driven by differences in the amplitude of iEEG fluctuations.

2.12. Intra- and cross-network correlation of the DMN in high-gamma band amplitude 
fluctuations

Previous studies have suggested that low-frequency fluctuations in the high-gamma band 

(80–160 Hz) are correlated with fMRI BOLD signals (Leopold DA et al. 2003; Mantini D et 

al. 2007; Schölvinck ML et al. 2010; Hutchison RM et al. 2015; Lakatos P et al. 2019). Our 

analysis (Methods) revealed that intra-DMN correlation in high-gamma band fluctuations 

was higher than that of cross-network correlations of the DMN with other networks during 

memory encoding. However, intra-DMN and cross-network correlations of the DMN with 

other networks in high-gamma band fluctuations did not differ from each other in the 

resting-state and memory recall conditions (ps>0.05).

2.13. Elevated slow-wave intra-DMN phase synchronization is not related to inter-
electrode distance

We performed additional control analysis to rule distance out as a potential factor for the 

higher intra-DMN phase synchronization in the slow-wave frequency band. We calculated 

the Euclidean distance between all pairs of intra-DMN electrodes and for all pairs with 

one electrode in the DMN and the second in one of the six other networks. The distance 

of intra-DMN electrodes was, in fact, higher than the cross-DMN electrodes distance (p < 

0.001) (Figure S16). To further rule out the possibility that low-frequency synchronization 

may arise from greater inter-electrode distance within the DMN, we examined the relation 

between PLV and distance in resting-state iEEG. We found no significant correlation 

between the two (r = 0.02, p > 0.34, Pearson) (Figure S17). These results suggest that 

the intra-DMN spectral integration in the slow-wave frequency band is a reflection of the 

strong instantaneous phase coupling among the intra-DMN brain regions as captured by the 

phase locking values.

2.14. Intra- vs. cross-network synchronization of the six other networks

Finally, we conducted additional control analyses of intra- vs. cross-network phase 

synchronization of the other 6 networks: dorsal attention, ventral attention, frontoparietal, 

visual, motor, and limbic (Figures S18-S23 respectively). No other network showed any 

consistent intra-network phase synchronization in the slow-wave frequency band and cross-

network synchronization with other networks in the beta and gamma frequency bands, 

across the resting-state, memory encoding, and memory recall conditions (ps > 0.05). These 

control analyses suggest that the pattern of stronger intra-network phase synchronization 
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in the slow-wave frequency band and increased cross-network synchronization in the beta 

and gamma frequency bands across resting-state, memory encoding, and memory recall 

conditions is not consistently observed in the other six large-scale brain networks (Table S5).

3. Discussion

Using electrophysiological recordings spanning seven large-scale brain networks, we 

addressed the following key questions to probe DMN function in a common network 

framework with fMRI studies: (1) What foundational electrophysiological properties of the 

human DMN allow it to function as a coherent network? (2) What are the mechanisms 

underlying synchronization and causal interactions of the DMN with other networks during 

stimulus-driven cognition? To probe the spectro-temporal dynamics of the DMN, we 

examined phase locking and transfer entropy measures which are better suited to capturing 

nonlinear and nonstationary synchronization as well as causal dynamics associated with 

intra- and cross-network interactions (Menon V et al. 1996; Lachaux JP et al. 1999; Bruns 

A 2004; Sporns O et al. 2004; Lopour BA et al. 2013; Lobier M et al. 2014; Hillebrand A 

et al. 2016). Fig. 7 shows a schematic visualization of our main findings. We report three 

main findings: (1) Greater slow wave (<4 Hz) synchronization within the DMN compared 

to interactions between DMN and other networks. Interactions between DMN and other 

networks showed greater synchronization compared to intra-DMN connectivity in higher 

frequency bands (beta and gamma). These findings were observed across both rest and task 

conditions. Surrogate data analysis further revealed that phase synchronization for intra- 

and cross-network interactions of the DMN was significantly higher than those expected 

by chance in slow-wave, theta, alpha, beta, and gamma frequency bands and across resting-

state, memory encoding, and memory recall conditions. (2) Slow-wave intra-DMN phase 

synchronization was higher during memory encoding and recall compared to rest. Within 

task conditions, slow wave phase synchronization within the DMN was also greater during 

encoding and recall for successful versus unsuccessful retrieval. (3) The DMN showed 

greater causal outflow to other networks relative to inflow. Our findings provide novel 

evidence for frequency-specific segregation and integration of the DMN from other brain 

networks during rest and its maintenance during episodic memory task. More generally, our 

findings advance knowledge of the neurophysiological foundations of the DMN, and clarify 

dynamic neural mechanisms underlying its role in task-based cognition.

3.1. Intrinsic spectro-temporal network organization of the DMN

The first goal of our study was to characterize the intrinsic spectro-temporal organization 

of the DMN. Analysis of the spectral properties of the human DMN has been necessarily 

constrained by limited placement of iEEG electrodes, consequently previous work has 

mainly focused on activation and deactivation in isolated nodes of the network (Ossandon T 

et al. 2011; Lopour BA et al. 2013; Foster BL et al. 2015; Hacker CD et al. 2017; Daitch 

AL and J Parvizi 2018; Solomon EA et al. 2019). It is currently impossible to acquire iEEG 

data across the entire human brain with resolutions matching those of fMRI. This limitation 

motivated our approach of using the network atlas of Yeo et al. (Yeo BT et al. 2011), which 

allowed us to fill critical gaps in our knowledge of the neurophysiological underpinnings 

of the human DMN vis-a-vis the dorsal attention, ventral attention, frontoparietal, visual, 

Das et al. Page 10

Neuroimage. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



motor, and limbic networks. Importantly, for the purposes of the present study, this 7-

network atlas was coarse-grained enough to allow sampling of a large number of participants 

who had simultaneous iEEG recordings spanning the DMN as well as the six other cortical 

networks. Furthermore, such atlases have been widely used to investigate resting-state and 

task-based interactions using fMRI (Menon V 2015). Note that in contrast to previous iEEG 

studies (Dastjerdi M et al. 2011; Foster BL et al. 2015; Daitch AL et al. 2016; Daitch AL 

and J Parvizi 2018; Kucyi A et al. 2018; Raccah O et al. 2018; Kucyi A et al. 2020), we 

took an unbiased approach for assigning electrodes to individual brain networks and we did 

not select electrodes based on arbitrary task activation or deactivation profiles. Our approach 

thus allowed us to more directly probe the electrophysiological foundations of the DMN 

as identified in fMRI studies, in line with our study goals. Crucially, compared to subdural 

recordings, bipolar depth recordings in the UPENN-RAM dataset provide a more effective 

way to capture local iEEG signals (Ekstrom AD and AJ Watrous 2014; Jacobs J et al. 2016; 

Goyal A et al. 2018). These advances allowed us to probe intra- and cross-network dynamics 

of the DMN in a common framework with fMRI studies.

We evaluated inter-regional synchronization of iEEG time series using phase-locking values 

(PLVs), based on the notion that two connected brain areas generate signals whose 

instantaneous phases evolve together (Lopour BA et al. 2013; Lobier M et al. 2014). We 

contrasted intra- and cross-network phase synchronization of the DMN and found greater 

PLV among DMN electrodes in a combined slow-wave frequency band that encompasses 

the delta (0.5–4 Hz) and a lower ultralow (< 0.5 Hz) band. Control analysis revealed that 

this elevated slow-wave intra-DMN phase synchronization was not related to inter-electrode 

distance. As the length of each verbal memory trial was ~1.6 s (see Methods), which did 

not allow us to analyze the ultralow band separately, we combined these frequency bands 

into a single ultralow-delta (< 4 Hz) ‘slow-wave’ band (Dalal SS et al. 2011). Our findings 

are consistent with previous reports of synchronized delta frequency oscillations correlated 

with resting-state fMRI (Lu H et al. 2007), and with slow-wave resting-state correlations 

observed in electrocorticogram recordings over somatosensory and motor cortex (He BJ et 

al. 2008) and in iEEG recordings from the anterior insula and anterior cingulate cortex nodes 

of the salience network (Das A and V Menon 2020).

In contrast to slow-wave dominated iEEG synchronization within the DMN, we found 

that cross-network interactions of the DMN were dominated by the beta (12–30 Hz) 

frequency band. Based on these observations, we suggest that stronger intra-network phase 

synchronization in the slow-wave and stronger cross-network phase synchronization in the 

beta frequency band may enable the DMN to maintain a frequency-specific balance between 

stability and flexibility in its interactions with other large-scale brain networks.

3.2. Phase synchronization, rather than spectral power density, separates the DMN from 
other large-scale networks

Phase locking values as used in the present study provide a robust measure of instantaneous 

synchronization between electrode pairs (Menon V et al. 1996; Lachaux JP et al. 1999; 

Lopour BA et al. 2013; Lobier M et al. 2014). Previous findings using multielectrode array 

recordings in both humans and animal models have established that phase, rather than 
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amplitude, is responsible for both spatial and temporal encoding of information in the brain 

(Lachaux JP et al. 1999; Kayser C et al. 2009; Siegel M et al. 2009; Lopour BA et al. 2013; 

Ng BS et al. 2013). In line with this computation, we found no differences in overall power 

between the DMN and any of the other six cortical networks in beta and gamma frequency 

bands. These results suggest that high frequency phase synchronization of the DMN 

with other networks is not driven by differences in the amplitude of iEEG fluctuations. 

Rather, the spectro-temporal segregation of the DMN is a reflection of frequency-specific 

instantaneous phase as accurately captured by PLV measures.

3.3. DMN phase synchronization and spectral integrity is preserved during memory 
encoding and recall

The next goal of our study was to investigate the spectral integrity of the DMN during 

task. Episodic memory is one of the putative functions ascribed to the DMN (Greicius MD 

et al. 2003; Greicius MD and V Menon 2004; Buckner RL et al. 2008). Previous studies 

and theoretical viewpoints have suggested that the DMN is integral for autobiographical 

memory, thinking about episodic events from the past, and planning the future (Buckner 

RL et al. 2008; Binder JR and RH Desai 2011). A related line of research has shown that 

the posterior cingulate cortex, angular gyrus, and anterior temporal lobe nodes of the DMN 

are also involved in semantic associations that modulate the formation of new episodic 

associations (Long NM and MJ Kahana 2017). Despite considerable evidence for the 

involvement of individual DMN nodes in memory formation and recall, to our knowledge, 

no studies have examined network-level neurophysiological organization of the DMN and its 

interaction with other large-scale brain networks during memory processing.

To address this, we first examined frequency-specific iEEG phase synchronization during 

a verbal episodic memory task in which participants had to subsequently recall a list 

of visually-presented words (Solomon EA et al. 2019). We found that intra-DMN slow-

wave phase synchronization was significantly greater than DMN interactions with the six 

other large-scale networks. In contrast, the reverse was true with respect to cross-network 

interactions of the DMN, which showed greater synchronization of the DMN in the beta 

and gamma bands with other networks when compared to intra-DMN synchronization. We 

repeated this analysis with iEEG acquired during recall of the previously encoded words 

and uncovered the same pattern of frequency-specific synchronization: greater intra-DMN 

slow-wave synchronization and greater cross-network synchronization in higher frequencies 

(beta and gamma).

Taken together, findings demonstrate that intra-DMN connectivity is dominated by slow-

wave synchronization during both memory encoding and recall. Task-related phase locking 

patterns thus recapitulate and extend features observed with resting-state iEEG and points 

to a pattern of DMN organization that is stable under perturbations induced by episodic 

memory. In sum, our analysis demonstrates that the frequency-specific spectral integrity of 

the DMN and its segregation from other large-scale networks is at least partly maintained 

during task. We suggest that a unique combination of frequency-specific synchronization 

and desynchronization may facilitate formation and break-up of functionally relevant 

neuronal assemblies associated with the DMN (Ahn S and LL Rubchinsky 2013).
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3.4. DMN phase synchronization increases during memory formation, compared to rest, 
and is behaviorally relevant

The final goal of our study was to determine how DMN synchrony changes during episodic 

memory encoding and recall, when compared to rest. To address this, we compared slow-

wave intra-DMN synchronization during memory processing and the resting-state using 

PLVs. We found that intra-DMN slow-wave synchronization was significantly higher during 

both memory encoding and recall, compared to the resting-state. Crucially, these increases 

were not related to overall iEEG amplitude, as spectral power during both memory tasks 

did not differ from rest. This provides novel electrophysiological evidence that the DMN 

plays a critical role in episodic memory formation. Consistent with this view, analysis of 

phase transfer entropy revealed enhanced causal interactions from DMN to other large-scale 

networks during both memory encoding and recall.

The lack of concurrent recordings spanning multiple brain areas has limited our ability to 

characterize frequency-specific synchronization associated with large-scale brain networks 

such as the DMN. Previous investigators focusing on regional response during verbal 

memory recall have reported increased iEEG activity in multiple frequency bands along 

with increased synchronization within the MTL (Long NM and MJ Kahana 2017; Solomon 

EA et al. 2019). Greater synchronization has also been reported between the hippocampus 

and multiple lateral prefrontal cortex areas during spatial memory retrieval (Watrous AJ 

et al. 2013; Ekstrom AD and AJ Watrous 2014; Neuner I et al. 2014) and between the 

lateral temporal and fronto-parietal cortices during inward directed attention (Kam JWY et 

al. 2019). Extending these findings specifically to the DMN organization at a network-level, 

we found greater phase synchronization during both the encoding and retrieval phases of the 

verbal episodic memory task when compared to the resting-state.

Crucially, memory-related increase in DMN phase synchronization was behaviorally 

relevant. Phase synchronization was higher for words that were subsequently recalled 

correctly, and these increases were observed during both the memory encoding and 

recall phases of the task. Importantly, increased intra-DMN phase synchronization during 

successful encoding/recall compared to unsuccessful encoding/recall was not driven by 

differences in the amplitude of iEEG fluctuations. Memory success-related changes were 

observed only in the slow-wave spectral range, consistent with a previous report of 

frequency-specific network connectivity during spatial memory retrieval (Watrous AJ et 

al. 2013). Our findings are also consistent with reports of higher phase synchronization 

in the delta band associated with successful memory retrieval (Jacobs J et al. 2007; Fell 

J et al. 2008) and memory-related teleportation (Vass LK et al. 2016), although these 

recordings were solely confined to the hippocampus. In an advance over prior studies, 

frequency-specific increases in our analysis are based on iEEG recordings from the major 

cortical and MTL regions of the entire DMN providing novel evidence of network level 

signatures of successful memory retrieval in the human DMN. Findings support the view 

that network-wide synchronization is a key feature of memory formation and emphasize the 

role of the DMN in this process (Hebscher M and JL Voss 2020).
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3.5. Causal dynamics and directionality of information flow from the DMN

Finally, we examined the directionality of information flow between the DMN and other 

networks as regions whose activities are not instantaneously synchronized may interact 

via time-delayed causal influences. Granger causal analyses of fMRI time series suggest 

that multiple DMN nodes, including the posterior cingulate cortex and the ventromedial 

prefrontal cortex may exert influence on lateral frontoparietal cortex (Uddin LQ et al. 2009) 

rather than the other way around. However, it is unclear whether these results are an artifact 

of regional variations in hemodynamic response in fMRI which confound Granger causal 

measures, or whether they truly reflect an underlying neuronal process. Critically, previous 

iEEG studies have not examined causal interaction of the DMN with other large-scale brain 

networks during cognition. To address this question, we used phase transfer entropy (PTE), 

which provides a robust and powerful measure for characterizing information flow between 

brain regions based on phase coupling (Lobier M et al. 2014; Hillebrand A et al. 2016; Wang 

MY et al. 2017). PTE has several advantages over Granger causal analysis (Barnett L and 

AK Seth 2011) and transfer entropy (Schreiber T 2000; Lobier M et al. 2014), as it can 

capture nonlinear interactions, is more accurate than transfer entropy, and it estimates causal 

interactions based on phase, rather than amplitude, coupling. Taking advantage of the 1000 

Hz sampling rate of the UPENN-RAM cohort iEEG data, we examined causal outflow from 

the DMN to the other six networks and contrasted it with inflow into the DMN from the 

other networks.

Our analysis revealed that the DMN showed significantly greater net causal outflow to 

other networks, rather than the reverse, during both memory encoding and recall. Surrogate 

data analysis further revealed that causal information flow from the DMN to the six other 

networks and the reverse were significantly higher than those expected by chance during 

resting-state, memory encoding, and memory recall conditions, indicating bidirectional 

causal information flow between the DMN and the other networks. Our findings are 

consistent with and extend findings based on transcranial magnetic stimulation suggesting 

a causal role of key DMN nodes during episodic memory formation (Warren KN et al. 

2019). Our causal analysis also clarifies the question previously raised in fMRI studies 

hinting that the DMN exerts causal influences in the resting-state (Uddin LQ et al. 2009). 

We found that the DMN exerts strong causal influences on other brain networks intrinsically 

and causal outflow from the DMN to the other networks was greater during both memory 

encoding and recall compared to the resting-state. Together, these findings suggest that 

causal influences of the DMN may not be specific to task-induced memory encoding and 

recall processes, and that they may also underlie internal mental processes such as recall of 

autobiographical information and self-monitoring as hypothesized previously (Greicius MD 

et al. 2003; Greicius MD and V Menon 2004; Buckner RL et al. 2008; Raichle ME 2015). 

This pattern of causal network interactions may enable the DMN to broadcast signals to 

other networks and thereby function at the apex of a neural and cognitive representational 

hierarchy (Margulies DS et al. 2016).

3.6. Limitations

Two of the key nodes of the DMN, the PCC/precuneus and the ventromedial PFC had 

limited sampling (Fig. 1a). These are sites where electrodes are not typically implanted in 
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patients undergoing surgery for intractable epilepsy. Another limitation is that the 7-network 

atlas that we used to demarcate brain networks may be too coarse grained. Further research 

with denser sampling of electrodes in multiple cortical and subcortical regions, and a 

wider range of experimental tasks, are necessary to further probe the electrophysiological 

properties of the DMN and its interactions with other brain networks in internal and 

stimulus-driven cognition.

3.7. Conclusions

Our study advances foundational knowledge of the neural mechanisms underlying the large-

scale functional organization of the human DMN. Findings provide new insights into the 

neurophysiological basis and intrinsic spectro-temporal organization of the DMN as well 

as its integrity and cross-network dynamic interactions during episodic memory formation. 

Findings further demonstrate that the DMN supports external stimulus-driven cognition, and 

not just internal mental processes (Sormaz M et al. 2018; Turnbull et al., 2019; Turnbull 

A, HT Wang, JW Schooler, et al. 2019). More generally, our study provides a deeper 

understanding of the electrophysiological mechanisms underlying operation of the DMN 

during cognition and its behavioral relevance. Extensions of this work with denser iEEG 

recordings and more fine-grained brain parcellations will further help advance knowledge 

of its operating mechanisms and inform the neural basis of DMN function, aberrations 

in which impact almost all psychiatric and neurological disorders including Alzheimer’s 

disease, schizophrenia, epilepsy, anxiety, depression, autism, and ADHD Menon V (2011).

4. Methods

4.1. UPENN-RAM iEEG recordings

We examined iEEG recordings from 102 patients shared by Kahana and colleagues at the 

University of Pennsylvania (UPENN) (obtained from the UPENN-RAM public data release 

under release ID “Release_20171012”, released on 12 October, 2017) (Jacobs J et al. 2016).

Patients with pharmaco-resistant epilepsy underwent surgery for removal of their seizure 

onset zones. iEEG recordings of these patients were downloaded from a UPENN-RAM 

consortium hosted data sharing archive (http://memory.psych.upenn.edu/RAM). Prior to data 

collection, research protocols and ethical guidelines were approved by the Institutional 

Review Board at the participating hospitals and informed consent was obtained from the 

participants and guardians (Jacobs J et al. 2016). Details of all the recordings sessions 

and data preprocessing procedures are described by Kahana and colleagues (Jacobs J et 

al. 2016). Briefly, iEEG recordings were obtained using subdural grids and strips (contacts 

placed 10 mm apart) or depth electrodes (contacts spaced 5–10 mm apart) using recording 

systems at each clinical site. iEEG systems included DeltaMed XlTek (Natus), Grass 

Telefactor, and Nihon-Kohden EEG systems. Electrodes located in brain lesions or those 

which corresponded to seizure onset zones or had significant interictal spiking or had broken 

leads, were excluded from analysis (Ezzyat Y et al. 2018).

Anatomical localization of electrode placement was accomplished by co-registering the 

postoperative computed CTs with the postoperative MRIs using FSL (FMRIB (Functional 
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MRI of the Brain) Software Library), BET (Brain Extraction Tool), and FLIRT (FMRIB 

Linear Image Registration Tool) software packages. Preoperative MRIs were used when 

postoperative MRIs were not available. The resulting contact locations were mapped to MNI 

space using an indirect stereotactic technique and OsiriX Imaging Software DICOM viewer 

package. We used the Yeo cortical atlas (Yeo BT et al. 2011) in volumetric space (MNI 

volumetric coordinates) for mapping electrodes to the default mode, dorsal attention, ventral 

attention, frontoparietal, visual, motor, and limbic networks. We used the Brainnetome atlas 

(Fan L et al. 2016) to demarcate the hippocampus and incorporated electrodes from this 

region into the DMN, as the hippocampus is an important constituent subcortical node of 

the DMN (Greicius MD et al. 2003). Out of 102 individuals and 12,780 electrodes, data 

from 36 individuals and 879 electrodes were used for subsequent analysis based on electrode 

placement in these networks of interest. For intra-DMN connectivity analysis, at least one 

pair of electrodes needed to be available per patient for the given pair of DMN nodes (for 

example, hippocampus-PCC/precuneus). In the DMN, the range was 2–338, mean was 60. 

Similarly, for inter-DMN connectivity analysis, at least one pair of electrodes needed to 

be available per patient for the given pair of brain networks (for example, DMN-DAN). 

For inter-DMN, the range was 1–240, mean was 46. In addition, we required that data be 

available from at least 5 participants involving each pair of brain regions (Table S3). iEEG 

signals were sampled at 1000 Hz. The two major concerns when analyzing interactions 

between closely spaced intracranial electrodes are volume conduction and confounding 

interactions with the reference electrode (Burke JF et al. 2013). Hence bipolar referencing 

was used to eliminate confounding artifacts and improve the signal-to-noise ratio of the 

neural signals, consistent with previous studies using UPENN-RAM iEEG data (Burke JF 

et al. 2013; Ezzyat Y et al. 2018). Signals recorded at individual electrodes were converted 

to a bipolar montage by computing the difference in signal between adjacent electrode pairs 

on each strip, grid, and depth electrode and the resulting bipolar signals were treated as 

new virtual electrodes originating from the midpoint between each contact pair. Among the 

electrodes in the DMN, ~81% were depth electrodes, ~10% were grid electrodes, and ~9% 

were strip electrodes. For the non-DMN electrodes, these numbers were ~71%, ~17%, and 

~12% respectively, indicating that the distributions of the type of electrodes in the DMN and 

non-DMN brain regions were similar. Line noise (60 Hz) and its harmonics were removed 

from the bipolar signals and finally each bipolar signal was Z-normalized by removing mean 

and scaling by the standard deviation. A fourth order two-way zero phase lag Butterworth 

filter was used in all spectral analyses.

4.2. iEEG verbal memory encoding and recall, and resting-state conditions

Patients performed multiple trials of a free recall experiment, where they were presented 

with a list of words and subsequently asked to recall as many as possible from the original 

list (Fig. 1) (Solomon EA et al. 2017; Solomon EA et al. 2019). The task consisted of 

three periods: encoding, delay, and recall. During encoding, a list of 12 words was visually 

presented for ~30 sec. Words were selected at random, without replacement, from a pool 

of high frequency English nouns (http://memory.psych.upenn.edu/Word_Pools). Each word 

was presented for a duration of 1600 msec, followed by an inter-stimulus interval of 800 

to 1200 msec. After a 20 sec post-encoding delay, participants were instructed to recall as 

many words as possible during the 30 sec recall period. We analyzed iEEG epochs from the 
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encoding and recall periods of the free recall task. For the recall periods, iEEG recordings 

1600 msec prior to the vocal onset of each word were analyzed (Solomon EA et al. 2019).

Resting-state epochs consisted of intervals prior to each encoding block in which 

participants were asked to fixate on the screen and alerted to the upcoming task. This 

choice of resting-state epochs is consistent with previous iEEG and fMRI studies (Garrison 

KA et al. 2015; Kamp T et al. 2018; Smith V et al. 2018; Betzel RF et al. 2019; Das 

A and V Menon 2020). Moreover, in a previous study we showed that these epochs 

accurately reproduced findings from conventional resting-state iEEG data acquired from an 

independent cohort (Das A and V Menon 2020). For the resting-state epochs, we extracted 

10-second iEEG recordings (epochs) prior to the beginning of each encoding block. To 

reduce boundary and carry over effects, we discarded 3 seconds each of iEEG data from the 

beginning and end of each epoch, resulting in multiple 4 s epochs. Data from each epoch 

was analyzed separately and specific measures were averaged across trials. For comparison 

of memory encoding and recall with the resting-state (Figs. 3 and 6), the duration of memory 

encoding and recall, and resting-state epochs were matched to preclude trial-length effects.

4.3. iEEG analysis of intra- and cross-network phase synchronization

Intra-network phase synchronization was assessed between all electrode pairs across distinct 

brain regions within the network. To minimize potential bias from sampling of electrodes 

with a specific brain region, we did not include electrode pairs within individual brain 

regions which were determined using the Brainnetome atlas (Fan L et al. 2016) as noted 

above. For example, for intra-DMN analysis, we computed phase synchronization between 

the PCC/precuneus and hippocampus electrodes but not between electrodes within the PCC/

precuneus or the hippocampus. Cross-network phase synchronization was assessed between 

all electrode pairs across networks.

We used phase locking value (PLV) to compute phase synchronization between two time-

series (Lachaux JP et al. 1999). We first calculated the instantaneous phases of the two 

signals by using the analytical signal approach based on the Hilbert transform Bruns A 

(2004). Given time-series x(t), t = 1, 2, … M, its complex-valued analytical signal z(t) can 

be computed as

z(t) = x(t) + ix(t) = Ax(t)eΦx(t), (1)

where i denotes the square root of minus one, x(t) is the Hilbert transform of x(t), and Ax(t) 
and Φx(t) are the instantaneous amplitude and instantaneous phase respectively and can be 

given by

Ax(t) = [x(t)]2 + x(t) 2 and Φx(t) = arctan x(t)
x(t) . (2)

The Hilbert transform of x(t) was computed as
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x(t) = 1
πPV∫

−x

∞ x(τ)
t − τ dτ, (3)

where PV denotes the Cauchy principal value. MATLAB function “hilbert” was used to 

calculate the Hilbert transform in our analysis. Given two time-series x(t) and y(t), where t = 

1, 2, …, M, the PLV (zero-lag) can be computed as

PLV = E ei(Φx(t) − Φy(t)) , (4)

where Φy(t) is the instantaneous phase for time-series y(t), ∣ · ∣ denotes the absolute value 

operator, E[·] denotes the expectation operator with respect to time t, and idenotes the square 

root of minus one. PLVs were then averaged across trials to estimate the final PLV for each 

pair of electrodes.

4.4. iEEG analysis of power spectral density

To calculate average power, we first filtered the iEEG time-series in the frequency band of 

interest and power, after removing the linear trend, was calculated as the sum of the squares 

of the amplitudes of the iEEG time-series divided by the length of the time-series.

4.5. Correlation analysis of high-gamma band amplitude fluctuations

We investigated whether intra-DMN interactions showed a signature in the high-gamma 

band (80–160 Hz) amplitude fluctuations. iEEG signals were filtered between 80–90, 90–

100, …, 150–160 Hz and the amplitude of each narrowband signal was calculated by taking 

the absolute value of the analytic signal obtained from the Hilbert transform (Anderson 

KL et al. 2010; Foster BL et al. 2015). Each narrowband amplitude was then normalized 

with respect to the mean amplitude, i.e., expressed as fraction of the mean, to correct 

for 1/f decay. Normalized amplitude time-series from each band were then filtered in the 

slow-wave (< 4 Hz) band to generate a time series reflecting high-gamma band fluctuations 

in each electrode. The resulting time series was used to investigate intra- and inter-DMN 

interactions using Pearson correlations.

4.6. iEEG analysis of phase transfer entropy (PTE) and causal dynamics

Causal interactions between networks was assessed using phase transfer entropy (PTE) 

between all electrode pairs across networks. PTE is a nonlinear measure of the directionality 

of information flow between time-series (Lobier M et al. 2014). Given two time-series 

{xi} and {yi}, where i = 1, 2, …, M, instantaneous phases were first extracted using the 

Hilbert transform. Let {xi
p} and {yi

p}, where i = 1, 2, …, M, denote the corresponding phase 

time-series. If the uncertainty of the target signal {yi
p} at delay τ is quantified using Shannon 

entropy, then the PTE from driver signal {xi
p} to target signal {yi

p} can be given by

PTEx y = ∑
i

p(yi + τ
p , yi

p, xi
p) log

p(yi + τ
p ∣ yi

p, xi
p)

p(yi + τ
p ∣ yi

p)
, (5)
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where the probabilities can be calculated by building histograms of occurences of singles, 

pairs, or triplets of instantaneous phase estimates from the phase time-series (Hillebrand 

A et al. 2016). For our analysis, the number of bins in the histograms was set as 3.49 × 

ST D × M−1/3 and delay τ was set as 2M / M±, where ST D is average standard deviation 

of the phase time-series {xi
p} and {yi

p} and M± is the number of times the phase changes 

sign across time and channels (Hillebrand A et al. 2016). Note that PTE is robust against 

the choice of the delayτ and the number of bins for forming the histograms and variations 

in these parameters do not change the results much (Hillebrand A et al. 2016). For PTE 

estimation, we used the broadband signal rather than the filtered signal, since causality 

estimation is very sensitive to filtering (see (Barnett L and AK Seth 2011) for a detailed 

discussion on this).

4.7. Statistical analysis

Statistical analysis of intra- and cross-network interactions was conducted using mixed 

effects analysis with the lmerTest package (Kuznetsova A et al. 2017) implemented in R 

software (version 4.0.2, R Foundation for Statistical Computing). Mixed effects models 

are now the recommended procedure for iEEG studies (Das A and V Menon 2021; 

Hoy CW et al. 2021;Salamone PC et al. 2021). Because PLV data were not normally 

distributed, we used BestNormalize (Peterson RA and JE Cavanaugh 2018) which contains 

a suite of transformation-estimating functions that can be used to optimally normalize data. 

The resulting normally distributed data were subjected to mixed effects analysis with the 

following model: PLV ~ Condition + (1∣Subject), where Condition models the fixed effects 

(condition differences) and (1∣Subject) models the random repeated measurements within 

the same participant. Analysis of variance (ANOVA) was used to test the significance 

of findings with FDR-corrections for multiple comparisons (p < 0.05). For intra- and 

cross-network comparisons of phase synchronization of DMN for different frequency and 

task conditions, p-values were corrected for 15 comparisons. Similarly, for comparison of 

PLV/PTE for task vs. rest conditions, p-values were corrected for 3 comparisons. For phase 

synchronization comparison related to successful vs. unsuccessful memory encoding and 

recall, p-values were corrected for 2 comparisons. For comparison of PTE for DMN→Other 

and Other→DMN interactions, p-values were corrected for 2 comparisons. Similar mixed 

effects statistical analysis procedures were used for analysis of PTE and power spectral 

density across task conditions.

Finally, we conducted surrogate analysis to test the significance of the estimated PLV values 

(Hillebrand A et al. 2016). The estimated phases from the Hilbert transform for electrodes 

from a given pair of brain areas were time-shuffled so that the synchronization between 

the two time-series is destroyed, and PLV analysis was repeated on this shuffled data to 

build a distribution of surrogate PLV values against which the observed PLV was tested (p < 

0.05). Similar surrogate analysis was conducted to test the significance of the estimated PTE 

values. The estimated phases from the Hilbert transform for electrodes from a given pair 

of brain areas were time-shuffled so that the predictability of one time-series from another 

is destroyed, and PTE analysis was repeated on this shuffled data to build a distribution of 

surrogate PTE values against which the observed PTE was tested (p<0.05).
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Fig. 1. 
(a) iEEG recording sites for the 7 fMRI-derived brain networks investigated in this study. 

The Yeo cortical atlas was used to map the default mode (DMN), dorsal attention (DAN), 

ventral attention (VAN), frontoparietal (FPN), visual (VISN), somatomotor (SMN), and 

limbic (LIMN) networks. In addition to cortical areas, the DMN also included hippocampal 

regions determined using the Brainnetome atlas (Figs. S1, S2). (b) Cognitive task 
structure. Participants performed multiple trials of a “free recall” experiment, where they 

were first presented with a list of words and later asked to recall as many as possible from 

the original list (see Methods for details).

Das et al. Page 26

Neuroimage. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Intra-DMN phase synchronization during (a) Resting-state, (b) Memory encoding, and 

(c) Memory recall. In all three conditions, intra-DMN connectivity was characterized by 

synchronization in the slow-wave frequency band (< 4 Hz) while cross-network interaction 

of the DMN was dominated by higher frequencies. Intra-DMN denotes phase locking values 

(PLVs) between DMN electrodes and DMN-Other denotes PLV between DMN electrodes 

and electrodes in the 6 other brain networks. Data from each trial was analyzed separately 

and PLVs were averaged across trials for each condition (see Methods for more details). 
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Error bars denote standard error of the mean (SEM) across all pairs of electrodes. *** p < 

0.001, * p < 0.05 (FDR-corrected q < 0.05, two-way ANOVA).
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Fig. 3. 
Intra-DMN phase synchronization during memory encoding and memory recall, compared 

to resting-state. Intra-DMN phase synchronization, assessed using phase locking values 

(PLVs), was higher during both memory encoding and recall compared to resting-state, in 

the slow-wave frequency band. Intra-DMN phase synchronization was also higher during 

memory recall compared to memory encoding. The duration of memory encoding and recall, 

and resting-state epochs were matched to preclude trial-length effects (see Methods for more 

details). Error bars denote standard error of the mean (SEM) across all pairs of electrodes. 

*** p < 0.001, ** p < 0.01 (FDR-corrected q < 0.05, two-way ANOVA).
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Fig. 4. 
Intra-DMN phase synchronization during (a) successful vs. unsuccessful memory encoding 

and (b) successful vs. unsuccessful memory recall. Intra-DMN phase synchronization was 

higher during successful encoding/recall compared to unsuccessful encoding/recall in the 

slow-wave frequency band. Error bars denote standard error of the mean (SEM) across all 

pairs of electrodes. ** p < 0.01, * p < 0.05 (FDR-corrected q<0.05, two-way ANOVA).
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Fig. 5. 
Causal network influences, measured using phase transfer entropy (PTE), during (a) 

Memory encoding and (b) Memory recall. The DMN showed significantly higher net causal 

outflow to the 6 other networks, than the reverse. DMN→Other denotes PTE from DMN 

electrodes to electrodes in the 6 other brain networks; Other→DMN denotes PTE from 

electrodes in the 6 other networks to the DMN. Error bars denote standard error of the 

mean (SEM) across all pairs of electrodes. *** p < 0.001 (FDR-corrected q < 0.05, two-way 

ANOVA).
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Fig. 6. 
Causal network influences of the DMN on other networks during resting-state, memory 

encoding, and memory recall. Causal outflow from the DMN was higher during both 

memory encoding and memory recall compared to resting-state. Causal outflow from the 

DMN was also higher during memory encoding compared to memory recall. The duration of 

memory encoding and recall, and resting-state epochs were matched to preclude trial-length 

effects (see Methods for more details). Error bars denote standard error of the mean (SEM) 

across all pairs of electrodes. *** p < 0.001 (FDR-corrected q<0.05, two-way ANOVA).
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Fig. 7. 
Visualization of the main results reported in this study. (a) Intra-DMN connectivity 

was dominated by synchronization in the slow-wave frequency band (< 4 Hz) while 

cross-network interaction of the DMN was dominated by beta and gamma frequencies. 

Phase locking value (PLV) was used determine frequency-specific instantaneous phase 

synchronization that capture linear as well as nonlinear intermittent and nonstationary 

dynamics observed in iEEG data. (b) Causal network influences between the DMN and the 

6 other networks was characterized by significantly higher net causal outflow from the DMN 

to the 6 other networks, than the reverse. Phase transfer entropy (PTE), which provides a 

robust and powerful measure for characterizing nonlinear information flow between brain 

regions based on phase coupling, was used to estimate causal network interactions. (See 

Results and Methods for details).
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