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Rethinking the tools in the toolbox
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Abstract 

The commentary by Dr. Labruyere on the article by Kuo et al. (J Neuroeng Rehabil. 2021; 18:174) posits that rand-
omized trials evaluating the comparative efficacy of robotic devices for patients with neurological injury may not be 
needed. The primary argument is that researchers and clinicians do not know how to optimize training parameters 
to maximize the benefits of this therapy, and studies vary in how they deliver robotic-assisted training. While I concur 
with the suggestion that additional trials using robotic devices as therapeutic tools are not warranted, an alterna-
tive hypothesis is that future studies will yield similar equivocal results regardless of the training parameters used. 
Attempts are made to detail arguments supporting this premise, including the notion that the original rationale for 
providing robotic-assisted walking training, particularly with exoskeletal devices, was flawed and that the design of 
some of the more commonly used devices places inherent limitations on the ability to maximize neuromuscular 
demands during training. While these devices arrived nearly 20 years ago amid substantial enthusiasm, we have since 
learned valuable lessons from robotic-assisted and other rehabilitation studies on some of the critical parameters 
that influence neuromuscular and cardiovascular activity during locomotor training, and different strategies are now 
needed to optimize rehabilitation outcomes.
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The commentary by Dr. Labruyere focuses on the ques-
tion of how robotic rehabilitation devices should be uti-
lized or studied, and was instigated in part by the work of 
Kuo et al. [1] using the Lokomat, an exoskeletal robotic 
device introduced earlier this century. In citing the recent 
Cochrane review by Mehrholz et  al. [2] on locomo-
tor training using electrotechnical devices in individu-
als with stroke, Dr. Labruyere questions the conclusions 
that further trials are warranted, particularly for robotic-
assisted training paradigms. Rather, using the Kuo article 
as an example, he believes that robotic training param-
eters such as body weight support, treadmill speed, 
and the amount of robotic assistance vary substantially 
across and within different studies or between therapists, 
and these differences may influence the efficacy of the 

training delivered. The primary argument is that manipu-
lating these settings individually or in combination var-
ies the neuromuscular demands of walking training, and 
therapists and researchers should work towards opti-
mizing these training parameters to maximize patient 
outcomes. In referencing a concluding remark from the 
Cochrane review, Dr. Labruyere suggests that additional, 
larger randomized controlled trials using robotic devices 
are likely not needed, perhaps until we determine the 
best training conditions for specific patients.

Dr. Labruyere and I certainly share the opinion that, 20 
years ago, robotic devices were introduced amid substan-
tial enthusiasm that these new tools could provide greater 
amounts of walking practice for individuals with neuro-
logical injury, while simultaneously decreasing the physi-
cal burden on therapists. We also agree that, after two 
decades of evaluation of their potential efficacy, further 
randomized trials are not needed. However, we have very 
different opinions on why such studies are unwarranted.

My concern is that the results of further randomized 
trials using robotic-assisted training strategies will result 
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in similar equivocal results that we have witnessed over 
the past 20 years. Large randomized trials are often initi-
ated on the promise of findings from smaller trials that 
demonstrate a relative benefit (i.e., greater effect size) of 
an experimental intervention as compared to an alterna-
tive strategy. However, in published randomized trials 
using robotic devices, the results are consistently incon-
sistent and inconclusive. There are certainly some posi-
tive studies hinting towards the comparative efficacy of 
robotic-assisted training [3, 4], although those studies 
often utilize a comparison intervention that provides 
limited walking training (i.e., conventional therapy). 
That message is important; more walking practice often 
results in better walking outcomes [5, 6]. In many stud-
ies, however, there are no differences in primary or sec-
ondary walking outcomes. Rather, some authors often 
highlight small, non-significant differences that slightly 
favor robotic-assisted therapy [7, 8], emphasize various 
secondary outcomes that might be significant (gait sym-
metry or body composition) [9, 10], or use non-standard 
statistical procedures to achieve significant differences 
[11, 12]. That “spin” is often interpreted by clinicians and 
researchers as an indication of the superiority of robotic-
assisted training, despite the collective evidence dem-
onstrating limited comparative efficacy of such training 
(see [13, 14] for review). Conversely, in some of the early, 
larger randomized trials comparing robotic-assisted ther-
apy to alternative interventions, particularly those that 
focus on task-specific walking with therapist assistance, 
the results demonstrate statistically significant differ-
ences favoring the alternative strategy; that is, robotic-
assisted training is worse [15–17]. More recent studies 
still suggest no additional benefits of robotic-assisted 
training on mobility outcomes, even using more sophis-
ticated training algorithms (i.e., reduced guidance or 
path control) [18–21]. There is very little indication that 
additional, larger randomized trials would yield different 
results. Indeed, Dr. Labruyere and I reach the same con-
clusion, although our rationales are very different.

Where Dr. Labruyere and I disagree is whether the 
training parameters that can be manipulated during 
robotic-assisted training need to be further evaluated to 
optimize the efficacy of this therapy. Dr. Labruyere cites 
ample data to suggest that lower limb electromyographic 
(EMG) activity is modulated by varying training condi-
tions in the device used by Kuo and colleagues (i.e., Loko-
mat). Manipulation of specific parameters certainly can 
increase the neuromuscular demands of walking train-
ing, which should be the goal of therapy sessions. How-
ever, three of the important predictors in the Kuo study, 
including body-weight support, speed, and number of 
days to attend 12 sessions, are unrelated to the exoskel-
etal device. Importantly, the robotic exoskeletal device 

primarily provides compliant assistance for limb swing, 
with some stance-phase assistance [22]. While critical 
for successful ambulation, limb swing represents a rela-
tively minor fraction of the energetic demands of upright 
ambulation (10%) [23]. Rather, propulsion, stance con-
trol, and postural stability encompass a much larger 
percentage of the metabolic costs of walking [24–28]. 
Unfortunately, the Lokomat, which is a stationary exo-
skeletal device, does not provide compliant assistance 
for these biomechanical demands, or in selected cases 
restricts them such that volitional effort may be reduced. 
For example, manipulating body weight support modu-
lates the neuromuscular demands of extensor muscles for 
stance control [25,  29], with minor contributions from 
the exoskeleton, although such support is manipulated 
separately from the robotic device. Gait speed typically 
requires alterations in propulsive forces during nor-
mal treadmill walking [30, 31] and also can be manipu-
lated separately, although the anterior-posterior pelvic 
restraint of the exoskeleton limits the need to generate 
those forces. The neuromuscular demands required to 
maintain lateral postural stability are also minimized in 
the Lokomat with the lateral restraints. The combined 
restrictions in movements can substantially reduce the 
metabolic costs observed during standing in the robotic 
device as compared to standing without the exoskeleton 
[22]. During walking, previous data suggest that meta-
bolic costs are reduced even more dramatically in the 
Lokomat as compared to treadmill walking without phys-
ical assistance or therapist assistance only as needed [6, 
22, 32]. Reducing the guidance force for limb swing using 
more advanced training algorithms does not substantially 
alter the metabolic costs of walking [33], particularly as 
compared to unassisted conditions. Unfortunately, these 
findings are consistent during robotic-assisted stepping 
using an elliptical device [32]. Given the important role 
of increasing energetic demands during walking training, 
specifically with attempts to achieve higher cardiovascu-
lar intensities [13, 34, 35], reduced metabolic costs during 
robotic-assisted walking is likely a major factor limiting 
the efficacy of this strategy, and fine-tuning the robotic 
training parameters will likely not influence outcomes.

Dr. Labruyere’s overarching desire to optimize training 
parameters is important though, as he suggest research-
ers should direct efforts towards identifying the variables 
that will increase volitional neuromuscular demands. 
The primary difference in our opinions is how to achieve 
those higher neuromuscular, and subsequently cardio-
vascular, demands. One strategy would be to encourage 
participants to work as hard as they can during robotic-
assisted training, which was previously shown to result 
in equivalent metabolic demands early during a 10-min 
walking bout as compared to walking with therapist 
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assistance-as-needed [22]. In that study, however, abnor-
mal muscle patterns were observed during the swing-
phase of the gait cycle, and the metabolic costs gradually 
reduced over the 10-min bout [6, 22]; these data support 
the hypotheses of “slacking” [36, 37] or the “principle of 
laziness” [38] in which individuals reduce volitional effort 
when it is not required. Alternatively, therapists could 
remove patients from the robotic device but continue to 
focus on walking, particularly at higher cardiovascular 
demands. This latter strategy seems to improve walking 
outcomes fairly consistently across ambulatory or non-
ambulatory individuals with neurological injury [13, 34, 
35].

Given these limitations, the value of robotic-assisted 
training in the rehabilitation of patients with neurologi-
cal injury is questionable, particularly when compared to 
walking training with therapist assistance only as needed. 
When attempting to mobilize patients with substantial 
disability, the number of therapists could certainly be 
reduced with robotic assistance. However, given the exor-
bitant purchase and maintenance fees of these devices, 
their value is unclear, particularly when less expensive, 
elastic devices could also reduce therapist’s exertion [23–
25] A common counterargument is that robotic devices 
control kinematic trajectories, which was previously 
thought to be important for retraining ambulation [39]. 
However, data from therapist-assisted training studies 
focused on normalizing kinematics [40, 41], or exoskele-
tal-assisted training studies [42, 43], suggest gains in gait 
function and kinematics were not superior to, or worse 
than, walking training strategies that do not focus on kin-
ematics. Indeed, recent randomized trials [44, 45] and 
implementation efforts [35, 46, 47] in severely impaired 
patients post-stroke indicate that attempts to maximize 
the amount of stepping practice at higher cardiovascu-
lar intensities without focusing on kinematics results in 
significant gains in mobility outcomes and gait kinemat-
ics. If available, robotic-assisted devices may be helpful 
very early in the recovery process for individuals with 
substantial disability, although efforts should be made to 
remove the patients from the device as rapidly as possible 
to maximize volitional engagement [48].

Additional studies that evaluate techniques to enhance 
locomotor function for individuals with neurological 
injury are certainly needed to advance our field, but these 
studies should not use the same robotic tools that have 
not shown a clear benefit after 20 years of evaluation. We 
certainly learned valuable lessons from robotic-assisted 
training studies of what can improve walking, such as 
providing large amounts of task-specific (i.e., stepping) 
practice. We also learned valuable lessons from these 
tools of what not to do, including providing assistance 
to normalize kinematics and keeping cardiovascular 

intensities low. While most studies have focused on sta-
tionary robotic devices, the available data supporting the 
utility of mobile robotic devices are similarly inconsist-
ent.7,12,49−53. As such, a new generation of robotic devices 
are needed for our field to move forward. Such devices 
need to be far more agile, including the ability to seam-
lessly don or doff these devices to  allow independent 
ambulation and the capacity to navigate real-world envi-
ronmental barriers while maintaining postural stability. 
Such devices would transform the landscape of mobility 
options used in the home and community setting, rather 
than utilized primarily as therapeutic tools. Unfortu-
nately, such devices are not currently available and after 
two decades of evaluation of robotic-assisted training 
strategies, it’s time to rethink the tools in our toolbox. We 
need different tools.
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