
Frontiers in Oncology | www.frontiersin.org

Edited by:
David S. P. Tan,

National University of Singapore,
Singapore

Reviewed by:
Sarah Taylor,

University of Pittsburgh, United States
Asima Mukhopadhyay,

Newcastle University, United Kingdom

*Correspondence:
Wen-Fang Cheng

wenfangcheng@yahoo.com

Specialty section:
This article was submitted to

Gynecological Oncology,
a section of the journal
Frontiers in Oncology

Received: 04 March 2021
Accepted: 17 September 2021

Published: 14 October 2021

Citation:
Chiang Y-C, Lin P-H and Cheng W-F
(2021) Homologous Recombination

Deficiency Assays in Epithelial
Ovarian Cancer: Current

Status and Future Direction.
Front. Oncol. 11:675972.

doi: 10.3389/fonc.2021.675972

REVIEW
published: 14 October 2021

doi: 10.3389/fonc.2021.675972
Homologous Recombination
Deficiency Assays in Epithelial
Ovarian Cancer: Current Status
and Future Direction
Ying-Cheng Chiang1, Po-Han Lin2,3 and Wen-Fang Cheng1,4,5*

1 Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan, 2 Department of
Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, 3 Graduate Institute of Medical Genomics and
Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan, 4 Graduate Institute of Clinical Medicine, College
of Medicine, National Taiwan University, Taipei, Taiwan, 5 Graduate Institute of Oncology, College of Medicine, National
Taiwan University, Taipei, Taiwan

Epithelial ovarian cancer (EOC) patients are generally diagnosed at an advanced stage,
usually relapse after initial treatments, which include debulking surgery and adjuvant
platinum-based chemotherapy, and eventually have poor 5-year survival of less than 50%.
In recent years, promising survival benefits from maintenance therapy with poly(ADP-
ribose) polymerase (PARP) inhibitor (PARPi) has changed the management of EOC in
newly diagnosed and recurrent disease. Identification of BRCA mutations and/or
homologous recombination deficiency (HRD) is critical for selecting patients for PARPi
treatment. However, the currently available HRD assays are not perfect predictors of the
clinical response to PARPis in EOC patients. In this review, we introduce the concept of
synthetic lethality, the rationale of using PARPi when HRD is present in tumor cells, the
clinical trials of PARPi incorporating the HRD assays for EOC, the current HRD assays,
and other HRD assays in development.

Keywords: homologous recombination deficiency, epithelial ovarian cancer, PARP inhibitor, genomic scar, RAD51
foci formation, mutational signatures
INTRODUCTION

Epithelial ovarian cancer (EOC) is a major cause of death in women worldwide (1–5). Due to a lack
of specific symptoms and biological markers for early diagnosis, most ovarian cancer patients are
diagnosed at an advanced stage in which the disease has spread beyond the pelvis, with an associated
5-year survival of less than 50% (6). The primary standard treatment, debulking surgery, and
adjuvant chemotherapy with a platinum and paclitaxel regimen, can achieve good initial response
rates, but the majority of ovarian cancer patients eventually relapse (7). Based on the evidence to
date, antiangiogenic agents and poly-adenosine diphosphate ribose polymerase (PARP) inhibitors
(PARPis) are the most promising targeted therapies for EOC in the past decade (8, 9). Maintenance
therapy with PARPis has rewritten the management of EOC in newly diagnosed and recurrent
disease (10–15). In the era of precision medicine, it is important to select the appropriate patients to
benefit from the targeted therapy. Evaluating homologous recombination deficiency (HRD) in
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tumor cells as a potential predictor of the response to a PARPi is
an important clinical issue. Identification of BRCA mutations
and/or HRD status in clinical specimens is critical to selecting
EOC patients for PARPi treatment, which has been evaluated in
several clinical trials (10–15). The US Food and Drug
Administration (FDA) has also approved companion
diagnostic tests for PARPi use based on these trials. Cost-
effective analysis has shown that PARPi therapy should
preferably be reserved for HRD-positive EOC patients until the
cost is significantly reduced (16, 17). The measurement of HRD
is important for the appropriate use of PARPis in EOC patients,
and understanding the various HRD assays will aid clinical
practice (18). The HRD and HRD assay terminology should be
intrepreted with caution as it might appear to be somewhat
confusing (Table 1). In general, HRD is different from HRD test
positive. HRD test positive means that the tumors or patients
have deficiency of homologous recombination repair pathway,
including those with germline and somatic BRCA mutations.
HRD test negative actually means that the tumors or patients
have intact homologous recombination repair pathway,
indicating homologous recombination repair (HRR) proficient.
However, the currently available HRD assays are not perfect
predictors of the PARPi response because, in previous trials,
HRD-positive and HRD-negative patients defined by the current
assays both benefited from PARPi. In this review, we introduce
the concept of synthetic lethality, the rationale of using PARPis
when HRD is present in tumor cells, the clinical trials of PARPis
incorporating the HRD assays for EOC, the current HRD assays,
and other HRD assays in development (Figure 1).
SYNTHETIC LETHALITY

DNA damage in cells may result from exogenous or endogenous
sources, such as oxidative damage, radiation, ultraviolet light,
Frontiers in Oncology | www.frontiersin.org 2
cytotoxic materials, and replication errors, among others (19).
Accumulation of unrepaired DNA damage is harmful to cells,
leading to genomic instability and, eventually, apoptosis. Several
DNA damage response (DDR) pathways are present in cells to
fix single-strand breaks (SSBs) or double-strand breaks (DSBs) in
the damaged DNA. Dysregulation of the DDR during the cell
cycle is associated with carcinogenesis (20). HRR is an important
DDR pathway for the repair of DNA DSBs that generally acts in
the S and G2 phase of the cell cycle. HRR is an error-proof repair
mechanism in which the original sequence at the DSB site is
restored by homologous recombination. In HRR, DSBs are
detected and bound by the MRE11-RAD50-NSB1 (MRN)
complex, which in turn recruits ATM and BRCA1. A small
part of the DNA sequence at the DSB site is removed to expose
the single-stranded DNA. With localization of BRCA1, BRCA2,
and PALB2 at the exposed DNA, the DNA recombinase RAD51
binds to the single-stranded DNA and invades the DNA
sequence on a homologous sister chromatid, which is used as a
template for synthesizing the new DNA strand, effectively
preserving the original genetic information (21, 22).
Homologous recombination deficiency (HRD) occurs when
HRR is impaired and DSBs are repaired by another, error-
prone repair pathway, such as nonhomologous end joining
(NHEJ), microhomology-mediated end joining, or single-
strand annealing, which may cause point mutations, small
insertions or deletions, and even large-scale chromosomal
rearrangements in the repaired DNA strands (23–25).

PARP plays multiple roles in repairing both SSBs and DSBs,
such as binding to DNA breaks, recruiting repair proteins, and
resolving collapsed replication forks (26–30). The small molecule
inhibitors of PARP (i.e., PARPis) trap PARP at the sites of SSBs,
stalling the replication fork. When the stalling replication fork is
encountered by the DNA replication machinery, it creates a DSB.
The PARPi-induced DSB undergoes HRR in normal cells.
However, in cells with HRD, PARPi-induced DSBs are repaired
TABLE 1 | Terminology of homologous recombination.

HRR Homologous
recombination
repair

An important error-proof DNA damage repair pathway to restore the original sequence at DNA double-strand break site generally in S and
G2 phases of cell cycle by homologous recombination. In the process, DNA double-strand breaks are detected by MRE11-RAD50-NSB1
complex, which in turn recruit ATM and BRCA1. Then, a small part of the DNA sequence at the DNA double-strand break site is removed to
expose the single-strand DNA. Through BRCA1, BRCA2, and PALB2 localizing to the exposed single-strand DNA, RAD51 binds to the
single-strand DNA and invades the DNA sequence on a homologous sister chromatid, which is used as a template for synthesizing the new
DNA stand.

HRP Homologous
recombination
proficient

The cells are able to repair DNA damage, especially DNA double-strand breaks, by homologous recombination repair pathway to preserve
the original genetic information.

HRD Homologous
recombination
deficiency

The condition that homologous recombination repair pathway is impaired in the cells and the DNA double-strand breaks are repaired by
another error-prone repair pathways, such as nonhomologous end joining (NHEJ), microhomology-mediated end joining or single-strand
annealing, which may cause point mutations, small insertions or deletions, and even large-scale chromosomal rearrangements in the repaired
DNA strands. The HRD can be defined by various HRD assays in clinical trials, and the consensus of the cutoff value of the various assays to
define HRD is needed to be determined.

HRD
positive

Homologous
recombination
deficiency
positive

HRD positive by a HRD assay indicates that the tumors are deficient in the error-proof homologous recombination repair pathway, and the
DNA double-strand breaks are predominantly repaired by other error-prone repair pathways.

HRD
negative

Homologous
recombination
deficiency
negative

HRD negative by a HRD assay indicates that the tumors are proficient in the error-proof homologous recombination repair pathway, and the
DNA double-strand breaks are predominately repaired by homologous recombination repair pathway. The “HRD negative” is synonymous
with HR proficient or HR competent.
October 2021 | Volume 11 | Article 675972

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chiang et al. HRD Assays in Ovarian Cancer
FIGURE 1 | Homologous recombination deficiency assays in epithelial ovarian cancer. Homologous recombination repair (HRR) is an important pathway for repairing
DNA double-strand breaks (DSBs). In HRR, DSBs are detected and bound by BRCA1/2 and other HRR protein complexes to localize RAD51 to the exposed single-
strand DNA, which then invades the DNA sequence on a homologous sister chromatid to synthesize the new DNA strand. Homologous recombination deficiency
(HRD) occurs when HRR is impaired, especially by BRCA mutation. DSBs are repaired by other error-prone repair pathways, including nonhomologous end joining
(NHEJ), which may cause point mutations, small insertions or deletions, and even large-scale chromosomal rearrangements in the repaired DNA strands. In the S
phase of the cell cycle, the replication forks stop when encountering DNA damage to allow DNA repair before replication continues. After the damage is repaired, the
stalled fork resumes replication. If the damage cannot be repaired, the stalled replication fork undergoes fork collapse, comprising fork degradation to cell apoptosis.
In general, HRD assays have three main categories: germline or somatic mutations of genes in the HRR pathway, genomic scars or mutational signatures
representing the patterns of genomic instability, and checking the functional status of HRR. Germline and somatic BRCA tests should be performed in all patients
with newly diagnosed epithelial ovarian cancer (EOC). The current HRD assays based on SNP-based microarray technologies measure loss of heterozygosity (LOH),
telomeric allelic imbalance (TAI), and large-scale state transitions (LSTs). The genomic instability score (GIS) combines the information derived from the LOH, TAI, and
LST to represent the degree of genomic instability. Functional assays of HRR status include RAD51 foci assays and DNA fiber assays. The RAD51 subnuclear foci is
generally present after DNA damage in normal cells, but HRD cells cannot form RAD51 foci. The DNA fiber assay was developed to evaluate the dynamics of the
replication fork. Mutational signatures describe distinct patterns of nucleotide transitions with the surrounding nucleotide context from next-generation sequencing
(NGS) data for human tumors. The developing comprehensive genomic scar assays include whole genome sequencing (WGS), whole exome sequencing (WES), and
target gene panels consisting of variable sizes of selected cancer-susceptible genes. PARPi maintenance therapy benefits newly diagnosed advanced stage and
platinum-sensitive recurrent EOC patients. The current genomic scar-based HRD assays can identify additional wild-type BRCA patients who may benefit from
PARPi therapy. However, some issues need to be resolved. For tissue retrieval, multistep sampling to obtain archival and pretreatment tumor tissues over the clinical
course has the potential to guide the therapy. For precision medicine, it is ideal to develop a comprehensive model to integrate clinical platinum sensitivity, genomic
scar/mutational signatures, and functional tests to provide both past evidence of HRD and the current functional ability of HRR.
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by the error-prone pathways, leading to genomic instability,
apoptosis, and cell death, the so-called synthetic lethality (26–31).
The development of PARPis for clinical management is based on
the increasing sensitivity of BRCA-mutated cancer cells to PARPis
(32, 33). Cancers with HRD are also more sensitive to platinum
drugs and topoisomerase inhibitors (26, 34). Although platinum
sensitivity has been considered a marker of PARPi sensitivity, the
correlation is unsatisfactory (35). In contrast, homologous
recombination-proficient (HRP) cells are often resistant to
PARPis or platinum drugs.
CLINICAL TRIALS OF PARP INHIBITORS
IN RELAPSED OR NEWLY DIAGNOSED
OVARIAN CANCER

DDR pathways are a potential target for cancer therapy based on
the concept of synthetic lethality, with the aim of specifically
killing cancer cells dependent on a compensatory DNA repair
pathway for survival (20). In recent decades, several phases II and
III clinical trials have demonstrated the survival benefits of
PARPi use in the treatment of EOC, especially high-grade
serous type, in recurrent and newly diagnosed disease. In these
trials, BRCA gene mutation tests and/or HRD assays were
investigated using a primary study design or retrospective
exploratory analysis to determine the predictive value of these
assays in stratifying EOC patients that benefit from PARPi
therapy. Table 2 summarizes several important trials of
PARPis in the setting of recurrent and newly diagnosed disease.

Salvage Monotherapy With PARP Inhibitor
in Recurrent EOC Patients After Multiple
Prior Lines of Therapy
In the phase II study 42 trial (36, 37), the objective response
rate (ORR) to olaparib in patients with germline BRCA1/2
(gBRCA1/2)-mutated advanced ovarian cancer who had
received ≥3 prior lines of chemotherapy was 34% (95% CI,
26–42) and median duration of the response (DoR) was
7.9 months (95% CI, 5.6–9.6). The median DoR for platinum-
sensitive and platinum-resistant disease was 8.2 months (95% CI,
5.6–13.5) and 8.0 months (95% CI, 4.8–14.8), respectively. These
findings suggest that olaparib monotherapy has antitumor
activity in patients with gBRCA1/2-mutated advanced ovarian
cancer following more than three prior lines of chemotherapy.

In the phase II ARIEL2 (Part 1) trial (38), the status of
homologous recombination was determined by the Foundation
Focus CDx BRCA loss of heterozygosity (LOH) assay. HRD was
defined as more than 14% genomic LOH based on the TCGA
dataset. Themedian progression-free survival (PFS) after rucaparib
treatment was 12.8 months in the BRCA-mutated subgroup, 5.7
months in the LOH-high subgroup, and 5.2 months in the LOH-
low subgroup. PFS was significantly longer in the BRCA-mutated
(HR = 0.27; 95% CI, 0.16–0.44; p < 0.0001) and LOH-high (HR =
0.62; 95% CI, 0.42–0.90; p = 0.011) subgroups compared with the
LOH-low subgroup. Thus, ARIEL2 (Part 1) concluded that
rucaparib provides significant PFS benefits in platinum-sensitive
Frontiers in Oncology | www.frontiersin.org 4
relapsed EOC patients with BRCA-mutated or BRCA wild-type
LOH-high. The findings suggest that tumor LOH can be used to
identifyplatinum-sensitiveEOCpatientswithBRCAwild-typewho
might benefit from rucaparib. The LOH threshold was adjusted to
≥16% in a post-hoc analysis to improve the selection of patientswho
will benefit from rucaparib (39).

In the phase II QUADRA trial (40), a clinical benefit of
niraparib was observed in heavily pretreated EOC patients
(median of four previous lines of therapy), including platinum-
sensitive, platinum-resistant, and platinum-refractory patients.
In BRCA-mutated patients, niraparib was more active in patients
who were platinum sensitive to last line platinum-based
chemotherapy (39%) compared with platinum-resistant (33%)
and platinum-refractory (19%) patients. In the BRCA wild-type
HRD-positive cohort, 20% of platinum-sensitive patients
achieved a response, but only 2.4% of platinum-resistant and
refractory patients had a response similar to the HRD-negative
or unknown cohort (3%) (40–42).

In the phase III SOLO3 trial (43), monotherapy olaparib
resulted in significant and clinically relevant improvements in
ORR (72.2% vs. 51.4%) and PFS (13.4 vs. 9.2 months) compared
with nonplatinum chemotherapy in patients with gBRCA-
mutated platinum-sensitive recurrent EOC patients with at
least two prior lines of platinum-based chemotherapy.

Second-Line Maintenance Monotherapy
With PARP Inhibitor in Platinum-Sensitive
Recurrent EOC Patients
In the phase II study 19 trial (44), the median PFS was
significantly longer in the olaparib group than in the placebo
group among the BRCA-mutated cohort (11.2 vs. 4.3 months;
HR = 0.18; 95% CI, 0.10–0.31; p < 0.0001) and BRCA wild-type
cohort (7.4 vs. 5.5 months; HR = 0.54; 95% CI, 0.34–0.85; p =
0.0075). Study 19 concluded that platinum-sensitive recurrent
serous ovarian cancer patients with a BRCAmutation receive the
greatest benefits from olaparib maintenance therapy.

In the phase III NOVA trial (13), the status of homologous
recombination was determined by the BRCA mutation or
myChoice assay with a genomic instability score (GIS) ≥42.
The median PFS was significantly longer in the niraparib group
than in the placebo group among the gBRCA-mutated cohort
(21.0 vs. 5.5 months; HR = 0.27; 95% CI, 0.17–0.41; p < 0.001),
the non-gBRCA-mutated HRD-positive cohort (12.9 vs. 3.8
months; HR = 0.38; 95% CI, 0.24–0.59; p < 0.001), and the
non-gBRCA-mutated cohort (9.3 vs. 3.9 months; HR = 0.45; 95%
CI, 0.34–0.61; p < 0.001). NOVA concluded that the median PFS
was significantly longer among the platinum-sensitive recurrent
EOC patients receiving niraparib maintenance therapy
regardless of the gBRCA mutation or HRD status.

In the phase III SOLO2 trial, the median PFS was significantly
longer in the olaparib group than in the placebo group among
the BRCA-mutated cohort (19.1 vs. 5.5 months; HR = 0.30; 95%
CI, 0.22–0.41; p < 0.0001) (15). The median overall survival was
significantly longer in the olaparib group than in the placebo
group among the BRCA-mutated cohort (51.7 vs. 38.8 months;
HR = 0.74; 95% CI, 0.54–1.00; p = 0.054) (45). SOLO2 concluded
that olaparib maintenance therapy provides significant PFS
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TABLE 2 | Clinical trials of PARPi in recurrent or newly diagnosed epithelial ovarian cancer (EOC).

Recurrent EOC,
multiple prior
lines of therapy

PARPi Assays (genetic biomarkers) Analysis subgroups PARPi

n ORR DoR or PFS
(months)

Study 42 (EOC n = 193)
(NCT01078662)

Olaparib Local BRCA gene test (gBRCA
mutation)

ITT (gBRCAmut) 193 31.1% 7
gBRCAmut, ≥3 prior lines of chemotherapy
and measurable disease

137 34% 7.9

ARIEL2 (part 1) (n = 204)
(NCT01891344)

Rucaparib Foundation Focus CDx BRCA
LOH assay

HRD-p (g/sBRCAmut) 40 85% 12.8
HRD-p (BRCAwt and LOH-high) 82 44% 5.7
HRD-n (BRCAwt and LOH-low) 70 20% 5.2
BRCAwt and LOH unclassified 12 58% N.A.

QUADRA (n = 463)
(NCT02354586)

Niraparib Germline BRCA testing Myriad
myChoice HRD

All 463 28% 5.5
BRCA mutated 63 29% 9.2
HRD positive 189 15% 9.2
HRD negative or unknown 230 3% 10.1

SOLO3 (n = 266)
(NCT00628251)

Olaparib vs. nonplatinum
chemotherapy

Germline BRCA mutation by
Myriad testing

Olaparib in patients with measurable disease 151 72.2% N.A.
Chemotherapy in patients with measurable
disease

72 51.4% N.A.

Olaparib in patients with ≥2 prior lines of
treatment

121 84.6% 13.4

Chemotherapy in patients with ≥2 prior lines
of treatment

59 61.5% 9.2
Recurrent EOC,
platinum-sensitive

PAR

Study19 (n = 265)
(NCT00753545)

Olap
place

NOVA (n = 553)
(NCT01847274)

Nirap
place

SOLO2 (n = 295)
(NCT01874353)

Olap
place

ARIEL3 (n = 564)
(NCT01968213)

Ruca
vs. p

TABLE 2 |

Newly diagnosed
EOC

PARP

SOLO1 (n = 391)
(NCT01844986)

Olapa

PRIMA (n = 733)
(NCT02655016)

Nirapa

Frontiers in Oncology | www.
Pi Assays (genetic b

arib vs.
bo

Foundation Medici

arib vs.
bo

Myriad BRACAnaly
myChoice® HRD (

arib vs.
bo

Myriad BRACAnaly

parib
lacebo

Foundation Medici
mutation, 28 HRR

i A

rib vs. placebo M

rib vs. placebo M
(tB

frontiersin.org
iomarkers)

ne (tBRCA mutation)

sis test (gBRCA mutation),
GIS)

sis test (gBRCA mutation)

ne T5 NGS assay (g/s BRCA
gene mutation, LOH)

ssays (genetic biomarkers)

yriad (gBRCA mutation)

yriad myChoice® HRD Plus assay
RCA mutation and GIS)

5

Analysis
subgroups

PFS

PARPi Pla

ITT (all patients) 10.8 (n = 136) 5.4 (
HRD-p (BRCAmut) 11.2 (n = 74) 4.3
HRD-n (BRCAwt) 7.4 (n = 57) 5.5
HRD-p (gBRCAmut) 21 (n = 138) 5.5
HRD-p (gBRCAwt
and GIS ≥42)

12.9 (n = 106) 3.8

HRD-n (gBRCAwt) 9.3 (n = 234) 3.9 (
HRD-n (gBRCAwt
and GIS <42)

6.9 (n = 92) 3.8

ITT (gBRCAmut) 19.1 (n = 196) 5.5

ITT (all patients) 10.8 (n = 375) 5.4 (
HRD-p (g/
sBRCAmut)

16.6 (n = 130) 5.4

HRD-p (g/
sBRCAmut or
LOH-high)

13.6 (n = 236) 5.4 (

HRD-n (BRCAwt) 8.2 (n = 245) 5.4 (
HRD-p (BRCAwt
and LOH-high)

9.7 (n = 106) 5.4

HRD-n (BRCAwt
and LOH-low)

6.7 (n = 107) 5.4

Analysis
subgroups

PFS

PARPi Pla

ITT (gBRCAmut) NR (n = 260) 13.8

ITT (all patients) 13.8 (n = 487) 8.2 (
HRD-p
(tBRCAmut)

22.1 (n = 152) 10.9

HRD-p
(tBRCAmut or GIS
≥42)

21.9 (n = 247) 10.4

19.6 (n = 95) 8.2

October 2021 |
(mon

cebo

n = 12
(n = 6
(n = 6
(n = 6
(n = 5

n = 11
(n = 4

(n = 9

n = 18
(n = 6

n = 11

n = 12
(n = 5

(n = 5

(mon

cebo

(n = 1

n = 24
(n = 7

(n = 1

(n = 5

Volum
ths)

H

9) 0.3
2) 0.
1) 0.5
5) 0.2
6) 0.3

6) 0.4
2) 0.5

9) 0.3

9) 0.
6) 0.2

8) 0.3

3) 0.4
2) 0.4

4) 0

ths)

H

31) 0.

6) 0.
1) 0.

26) 0.4

5) 0.

e 11 | A
R (95% CI)

5 (0.25–0.49)
18 (0.1–0.31)
4 (0.34–0.85)
7 (0.17–0.41)
8 (0.24–0.59)

5 (0.34–0.61)
8 (0.36–0.92)

0 (0.22–0.41)

36 (0.3–0.45)
3 (0.16–0.34)

2 (0.24–0.42)

4 (0.34–0.56)
4 (0.29–0.66)

.58 (0.4–0.8)

R (95% CI)

3 (0.23–0.41)

62 (0.5–0.76)
4 (0.27–0.62)

3 (0.31–0.59)

5 (0.31–0.83)
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TABLE 2 | Continued

Newly diagnosed
EOC

PARPi Assays (genetic biomarkers) Analysis
subgroups

PFS (months)

PARPi Placebo HR (95% CI)

HRD-p (tBRCAwt
and GIS ≥42)
HRD-n (tBRCAwt
and GIS <42)

8.1 (n = 169) 5.4 (n = 80) 0.68 (0.49–0.94)

VELIA (n = 1140)
(NCT0247058)

PTV + veliparib vs. PT +
veliparib vs. PT + placebo

Myriad myChoice® HRD Plus assay
(tBRCA mutation and GIS)

ITT (all patients) 23.5 (n = 382) 17.3 (n = 375) 0.68 (0.56–0.83)
HRD-p
(tBRCAmut)

34.7 (n = 108) 22 (n = 92) 0.44 (0.28–0.68)

HRD-p
(tBRCAmut or GIS
≥33)

31.9 (n = 214) 20.5 (n = 207) 0.57 (0.43–0.76)

HRD-p (tBRCAwt
and GIS ≥33)

15.0 (n = 120) 11.5 (n = 130) 0.74 (0.52–1.06)

HRD-n (tBRCAwt) 18.2 (n = 245) 15.1 (n = 254) 0.8 (0.64–1.00)
HRD-n (tBRCAwt
and GIS <33)

15.0 (n = 125) 11.5 (n = 124) 0.81 (0.6–1.09)

PAOLA-1 (n = 806)
(NCT02477644)

Olaparib + bevacizumab vs.
placebo + bevacizumab

Myriad myChoice® HRD Plus assay
(tBRCA mutation and GIS)

ITT (all patients) 22.1 (n = 537) 16.6 (n = 269) 0.59 (0.49–0.72)
HRD-p
(tBRCAmut)

37.2 (n = 157) 21.7 (n = 80) 0.31 (0.2–0.47)

HRD-p
(tBRCAmut or GIS
≥42)

37.2 (n = 255) 17.7 (n = 132) 0.33 (0.25–0.45)

HRD-p (tBRCAwt
and GIS ≥42)

28.1 (n = 97) 16.6 (n = 55) 0.43 (0.28–0.66)

HRD-n (tBRCAwt) 18.9 (n = 380) 16 (n = 189) 0.71 (0.58–0.88)
HRD-n (GIS <42/
unknown)

16.9 (n = 283) 16 (n = 134) 0.92 (0.72–1.17)

BRCAmut, BRCA mutation; BRCAwt, BRCA wild-type; gBRCAmut, germline BRCA mutation; gBRCAwt, germline BRCA wild type; g/sBRCAmut, germline/somatic BRCA mutation;
tBRCA mutation, tumor BRCA mutation; CI, confidence interval; GIS, genomic instability score; HR, hazard ratio; HRD-p, homologous recombination deficiency-positive; HRD-n,
homologous recombination deficiency-negative; HRR, homologous recombination repair; ITT, intention to treat; LOH, loss of heterogeneity; ORR, objective response rate; DoR, duration of
response; PARPi, PARP inhibitor; PFS, progression-free survival.
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benefits and a median overall survival benefit of 12.9 months
compared with placebo in platinum-sensitive recurrent EOC
patients with BRCA mutation.

In the phase III ARIEL 3 trial (14), the status of homologous
recombination was determined by the Foundation Focus CDx
BRCA LOH assay with the threshold ≥16% genomic LOH. The
median PFS was significantly longer in the rucaparib group than in
the placebo group among the BRCA-mutated cohort (16.6 vs. 5.4
months;HR=0.23; 95%CI, 0.16–0.34; p< 0.0001), theHRDcohort
(13.6 vs. 5.4months; HR = 0.32; 95%CI, 0.24–0.42; p < 0.0001), and
the intention-to-treat population (10.8 vs. 5.4 months; HR = 0.36;
95% CI, 0.30–0.45; p < 0.0001). The benefit was greatest in BRCA-
mutated patients, followed by the HRD-positive (defined as BRCA
mutated or LOH-high), HRD-positive (defined as BRCAwild-type
and LOH-high), and HRD-negative (defined as BRCA wild-type
and LOH-low) cohorts. ARIEL3 concluded that maintenance
rucaparib significantly improves PFS in platinum-sensitive
relapsed EOC patients following a complete or partial response to
second-line or later platinum-based chemotherapy.

First-Line Maintenance Therapy With
PARP Inhibitor in Newly Diagnosed
EOC Patients
In the SOLO1 trial (12), newly diagnosed advanced stage EOC
patients with germline or somatic BRCA mutations receiving
Frontiers in Oncology | www.frontiersin.org 6
olaparib maintenance therapy had a significant improvement in
PFS than the placebo group (median not reached vs. 13.8
months; HR = 0.30; 95% CI, 0.23–0.41; p < 0.001). In a 5-year
follow-up, the median PFS was significantly longer in patients
who received olaparib than those who received placebo (56.0 vs.
13.8 months; HR = 0.33; 95% CI, 0.25–0.43) (46).

In the PRIMA trial (11), the status of homologous
recombination was determined by the BRCA mutation or
myChoice assay with GIS ≥42. The median PFS was
significantly longer in the niraparib group than in the placebo
group among the HRD cohort (21.9 vs. 10.4 months; HR = 0.43;
95% CI, 0.31–0.59; p < 0.001) and the intention-to-treat
population (13.8 vs. 8.2 months; HR = 0.62; 95% CI, 0.50–0.76;
p < 0.001). Analyses of GIS in the BRCA wild-type cohort was a
preplanned exploratory analysis. The results showed a benefit in
all BRCA wild-type patients regardless of the GIS, though it was
higher in the GIS-high subgroup compared with the GIS-low
subgroup (HR = 0.5; 95% CI, 0.31–0.83 vs. HR = 0.68; 95% CI,
0.49–0.94). PRIMA concluded that niraparib maintenance
therapy significantly prolonged the PFS in newly diagnosed
advanced stage EOC patients who responded to platinum after
primary treatment regardless of homologous recombination
status (11).

In the VELIA trial (10), the status of homologous
recombination was determined by the BRCA mutation or
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myChoice assay with GIS ≥33. The median PFS was significantly
longer in the veliparib-throughout group than in the control
group among the BRCA-mutated cohort (34.7 vs. 22.0 months;
HR = 0.44; 95% CI, 0.28–0.68; p < 0.001), the HRD-positive
cohort (31.9 vs. 20.5 months; HR = 0.57; 95% CI, 0.43–0.76; p <
0.001), and the overall population (23.5 vs. 17.3 months; HR =
0.68; 95% CI, 0.56–0.83; p < 0.001). VELIA concluded that a
regimen of carboplatin, paclitaxel, and veliparib induction
therapy followed by veliparib maintenance therapy leads to
significantly longer PFS than carboplatin plus paclitaxel
induction therapy alone. The PFS benefit was less pronounced
in VELIA than in the other frontline studies, possibly because the
HRD cohort contained more false positives, with a higher
percentage of patients classified as having HRD (55%) despite
a lower percentage of BRCA-mutated patients (26%).

In the PAOLA-1 trial (47), the status of homologous
recombination was determined by tumor BRCA mutations or
myChoice assay with GIS ≥42. The median PFS was significantly
longer in the olaparib plus bevacizumab group than in the placebo
plus bevacizumabgroup among theoverall population (22.1 vs. 16.6
months; HR = 0.59; 95% CI, 0.49–0.72; p < 0.001), the BRCA-
mutated cohort (37.2 vs. 21.7 months; HR = 0.31; 95% CI, 0.20–
0.47), the BRCAwild-type cohort (18.9 vs. 16.0 months; HR = 0.71;
95% CI, 0.58–0.88), the BRCA-mutated HRD-positive cohort (37.2
vs. 17.7months;HR=0.33; 95%CI, 0.25–0.45), and theBRCAwild-
typeHRD-positive cohort (28.1 vs. 16.6months;HR=0.43; 95%CI,
0.28–0.66). PAOLA-1 concluded that maintenance olaparib
provides a significant PFS benefit in advanced EOC patients
receiving first-line standard chemotherapy with bevacizumab,
especially in patients with HRD-positive tumors, including those
without a BRCA mutation. In the HRP cohort, the addition of
olaparib to bevacizumab did not improve the PFS (16.6 vs. 16.2
months; HR = 0.43; 95% CI, 0.75–1.35). The findings indicate that
the GIS has the potential to identify HRD-negative EOC patients
who do not derive a benefit from olaparib in combination with
bevacizumab (15).

Based on these trials, PARPis were approved by the US FDA
and European Medicines Agency (EMA) in the management of
EOC patients: (1) salvage monotherapy in BRCA mutant or
HRD-positive disease after multiple prior lines of therapy,
(2) second-line maintenance therapy in recurrent platinum-
sensitive disease regardless of BRCA mutation or HRD status,
and (3) first-line maintenance therapy for newly diagnosed
advanced stage platinum-sensitive disease with/without BRCA
mutation or HRD-positive status (Table 3). The homologous
recombination status of EOC patients is critical to achieving
survival benefits from PARPi treatment. Therefore, how to define
the homologous recombination status of EOC patients using
HRD assays is an important issue for clinicians.
HOMOLOGOUS RECOMBINATION
DEFICIENCY ASSAYS

In general, HRD assays are of three main categories: germline or
somatic mutations in genes in the HRR pathway, genomic scars
or mutational signatures representing patterns of genomic
Frontiers in Oncology | www.frontiersin.org 7
instability, and checking the function of RAD51 localization to
sites of DNA damage (18, 21, 34, 48–50).
Germline or Somatic Mutations in Genes
in the HRR Pathway
BRCA1/2 Gene Mutation Tests
BRCA1/2 mutation tests are well known in the clinical
management of EOC patients. The gBRCA tests with genetic
counseling should be performed near the time of diagnosis for all
patients with newly diagnosed EOC (51–53). Both germline and
tumor BRCA tests can identify EOC patients who would benefit
from PARPi maintenance therapy. Notably, a somatic test
cannot substitute for a germline test because 5% of gBRCA-
mutated patients test negative for tumor BRCA. Approximately
11%–18% of patients have a gBRCA mutation. The gBRCA test
not only informs the patient but can also identify family
members at risk of possible associated malignancies, which will
be helpful for early detection or prevention (51, 52, 54). In
patients with negative gBRCA tests, somatic BRCA tests can
identify another 6%–7% of patients with somatic BRCA
mutations (34, 48, 55–57).

The majority of clinical trials have demonstrated that
advanced stage, mainly high-grade serous type, EOC patients
with gBRCA or somatic BRCA mutations derive the greatest
benefit from PARPi maintenance therapy in primary first-line
management or in platinum-sensitive recurrent disease (10–15,
44, 47). The tumor BRCA status, including germline and somatic
BRCA mutations, was generally used as a response predictor in
these trials (14, 44, 47). A few studies presented data on PARPi
treatments only for EOC patients with somatic BRCAmutations.
The PFS benefit of PARPi compared with placebo in EOC
patients with somatic BRCA mutations and platinum-sensitive
recurrent disease was similar to the benefit in those with gBRCA
mutations in study 19 (olaparib, HR = 0.23 vs. 0.17, respectively)
(58), NOVA (niraparib, HR = 0.27 vs. 0.27, respectively) (13),
and ARIEL2 Part 1 (rucaparib, response rate 74% vs. 85%,
respectively) (38). For newly diagnosed advanced disease, a
similar trend was noted for patients with somatic and gBRCA
mutations (veliparib, HR = 0.35 vs. 0.5, respectively) in the
VELIA trial (10). However, patients with BRCA wild-type had
a smaller, but still significant, benefit from PARPi use in primary
first-line management or in platinum-sensitive recurrent disease
(13–15). This indicated a poor negative predictive value of the
BRCA mutation status as a predictor of the PARPi response.

Non-BRCA Gene Mutation Tests in the
HRR Pathway
In addition to BRCA1/2 genes, non-BRCA genes involved in the
HRR pathway include ATM, BRIP1, NBN, PALB2, RAD51B,
RAD51C, and RAD51D (34, 56, 59–62). Patients with germline or
somatic mutations in non-BRCA HRR genes also derive a
survival benefit from DNA repair inhibitors (34, 63–66).
However, the prevalence of non-BRCA HRR gene mutations is
quite low, making it difficult to determine the association of
individual genes with clinical outcomes, and all non-BRCA HRR
gene mutations are usually pooled together for interpretation in
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these studies. For example, in study 19, 21 platinum-sensitive
recurrent patients with non-BRCA somatic mutations, including
BRIP1, CDK12, RAD54L, and RAD51B, derived a similar PFS
benefit as those with BRCA mutations (HR = 0.21 and 0.18,
respectively) (67). In ARIEL2, non-BRCA HRR gene mutations
were noted in 20 patients (10%), including ATM, BRIP1, CHEK2,
FANCA, FANCI, FANCM, NBN, RAD51B, RAD51C, and
RAD54L. The sensitivity of non-BRCA HR gene mutations in
discriminating the rucaparib response was only 11%.
Furthermore, how many non-BRCA HRR genes should be
included in the testing list is still unclear. A major challenge
for HRR gene testing is the annotation of variants of uncertain
significance (VUS) (68–70). In the broader gene panel tests, the
functional and clinical impacts of most individual mutations in
the genomic loci have not been well characterized. In many
cancers, the somatic VUS are more numerous and diverse than
germline VUS (71). There is a difference in the reporting rate of
Frontiers in Oncology | www.frontiersin.org 8
BRCA VUS (3%–50%), the protocols for detection, and the
strategies for management between individual laboratories
(72). Currently, the evidence is not sufficient to determine
which individual or panel of non-BRCA HRR genes could be
used to predict the PARPi response.

Genomic HRD Assays
Current HRD Assays: Genomic Instability Score or
Percent Genomic LOH
Defects in the HRR pathway generate genetic variations,
chromosome structural abnormalities, and genomic instability.
These so-called genomic scars or mutational signatures are
permanent even if the function of the HRR pathway is
restored, which represents a record of DNA damage repair
through different pathways in response to harmful exposure in
cells (26). Genetic variations generally consist of single
nucleotide variants, small insertions and deletions (indels),
TABLE 3 | FDA and EMA approval of PARP inhibitors in epithelial ovarian cancer.

Approval PARPi Indication Category of
therapy

Patient restrictions (FDA-approved
companion diagnostic)

Evidence

2014
FDA

Olaparib Recurrent patients after 3 or more lines of chemotherapy Salvage
monotherapy after
multiple prior lines of
therapy

Germline BRCA mutation (Myriad
BRACAnalysis CDx)

Study 42

2014
EMA

Olaparib Maintenance in recurrent patients in complete or partial
response to platinum-based chemotherapy

Second-line
maintenance
monotherapy

High-grade cancers Study 19

2017
FDA

Olaparib Maintenance in recurrent patients in complete or partial
response to platinum-based chemotherapy

Second-line
maintenance
monotherapy

No restriction SOLO-2
Study 19

2017
FDA

Niraparib Maintenance in recurrent patients in complete or partial
response to platinum-based chemotherapy

Second-line
maintenance
monotherapy

No restriction NOVA

2017
FDA

Rucaparib Recurrent patients after 2 or more lines of chemotherapy Salvage
monotherapy after
multiple prior lines of
therapy

Germline or somatic BRCA mutation

(FoundationFocus™ CDx BRCA)

ARIEL2

2018
FDA

Olaparib Maintenance in newly diagnosed advanced stage patients
after complete or partial response to first-line platinum-based
chemotherapy

First-line
maintenance
monotherapy

Germline or somatic BRCA mutation
(FoundationOne CDx; Myriad BRACAnalysis
CDx)

SOLO-1

2018
EMA

Rucaparib Recurrent patients after 2 or more lines of chemotherapy Salvage
monotherapy after
multiple prior lines of
therapy

Platinum-sensitive relapsed cancers; Unable
to tolerate further platinum therapy;
Germline or somatic BRCA mutation

ARIEL2

2018
FDA

Rucaparib Maintenance in recurrent patients in complete or partial
response to platinum-based chemotherapy

Second-line
maintenance
monotherapy

No restriction ARIEL3

2019
EMA

Olaparib Maintenance in newly diagnosed advanced stage patients
after complete or partial response to first-line platinum-based
chemotherapy

First-line
maintenance
monotherapy

High grade cancers; Germline or somatic
BRCA mutation

SOLO-1

2019
FDA

Niraparib Recurrent patients after 3 or more lines of chemotherapy Salvage
monotherapy after
multiple prior lines of
therapy

Germline or somatic BRCA mutation; HRD-
positive (Myriad myChoice CDx)

QUADRA

2020
FDA

Olaparib Maintenance combined with bevacizumab in newly diagnosed
advanced stage patients after complete or partial response to
first-line platinum-based chemotherapy

First-line
maintenance
combined therapy

Germline or somatic BRCA mutation; HRD-
positive (Myriad myChoice CDx)

PAOLA-1

2020
FDA

Niraparib Maintenance in newly diagnosed advanced stage patients
after complete or partial response to first-line platinum-based
chemotherapy

First-line
maintenance
monotherapy

No restriction PRIMA
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copy number variations (CNVs), and large chromosomal
rearrangements. Single nucleotide variants (SNVs) are base
substitutions that may lead to deleterious missense or nonsense
mutations. Indels less than 1,000 kbp in length may cause
frameshift mutations. CNVs with DNA insertions or deletions
more than 1 kb in size may lead to increased expression of
oncogenes or decreased expression of tumor suppressor genes.
Large chromosomal rearrangements, such as translocations, are a
common cause of LOH. The current methods of detecting
“genomic scars” use SNP-based microarray technologies to
measure somatic CNV, including LOH, telomeric allelic
imbalance (TAI), and large-scale state transitions (LSTs) (73).
LOH indicates permanent loss of an allele copy in DNA of more
than 15 Mb, which renders the tumor cell homozygous at that
locus (74). TAI refers to different allele copy numbers of more
than 11 Mb in the subtelomere but not crossing the centromere
(75, 76). An LST indicates chromosomal breaks between
adjacent genomic regions of more than 10 Mb as a result of
translocations, copy gains, and copy losses (77). The degree of
HRD highly correlates with the LOH, TAI, or number of LSTs in
the chromosomes. The GIS combines the information derived
from LOH, TAI, and LSTs to represent the degree of genomic
instability (76).

The myChoice CDx (Myriad Genetics) and Foundation Focus
CDx BRCA LOH (Foundation Medicine) are currently the most
common commercial assays (78, 79). The myChoice CDx
(Myriad Genetics) includes a tumor BRCA mutation test and
GIS. The Foundation Focus CDx BRCA LOH (Foundation
Medicine) includes a tumor BRCA mutation test and genomic
LOH. Both assays use next-generation sequencing (NGS)
platforms to identify SNVs, indels, and large rearrangements in
genes of tumor tissue (42, 78), and the BRCA gene mutation
results are concordant in these two assays (67). In the myChoice
CDx assay, GIS ≥42 is regarded as “HRD positive” (78). Briefly,
tumor tissue is sequenced with a panel of single-nucleotide
polymorphisms (SNPs) to generate allele-specific copy number
profiles to calculate the sum of LOH, TAI, and LST, resulting in a
continuous score from 0 to 100, the GIS. A score of 42 is the 5th
percentile in a cohort of ovarian and breast cancers in which
HRD was defined as biallelic loss of BRCA1/2 (78). In the
Foundation Focus CDx assay, the percent genomic LOH,
calculated as the fraction of genome regions with LOH
determined by sequencing SNPs in tumor DNA, is used to
measure HRD status. The LOH cutoff value is determined
independent of tumor BRCA status, and 14% genomic LOH
was considered to indicate HRD-positive cells in the ARIEL2
trial (38). In the subsequent ARIEL3, this was adjusted to 16%
genomic LOH as the threshold (14). However, the compatibility
between HRD defined by the GIS and percent genomic LOH
needs to be determined.

FDA has approved companion diagnostic HRD assays for
salvage monotherapy in recurrent disease after multiple prior
lines of therapy and in first-line maintenance therapy. In the
first-line maintenance setting, ESMO suggests that germline and
somatic BRCA mutation tests are routinely recommended to
identify EOC patients who should receive PARPi therapy. A
validated HRD assay is reasonable to stratify BRCA wild-type
Frontiers in Oncology | www.frontiersin.org 9
EOC patients who would benefit from PARPi therapy (21)
although PARPis were approved as maintenance therapy for all
platinum-sensitive recurrent EOC patients regardless of BRCA
mutation or HRD status. The PFS benefits of PARPi
maintenance therapy decrease incrementally from BRCA-
mutated to HRD-positive to HRD-negative cohorts according
to the current HRD assays. It may be helpful for the platinum-
sensitive relapsed EOC patients to choose bevacizumab or PARPi
as maintenance therapy. ESMO suggests that BRCA mutation
tests and validated genomic scar-based HRD assays are
reasonable for predicting the benefits of PARPi use in
platinum-sensitive recurrent disease (21). An unmet need is
determining whether the HRD assays can consistently identify
a subgroup of patients who do not benefit from PARPi therapy.
The HRD-negative (BRCA wild-type and GIS <42) subgroup
constituted approximately 50% of all participants in these trials
(10, 11, 47). All of these trials showed a benefit in the intention-
to-treat population, which is not sufficient to determine whether
the HRD-negative EOC patients benefitted from maintenance
PARPi therapy. None of these trials were prospectively designed
to stratify the patients into subgroups by HRD assay, and the
clinical benefit of PARPi maintenance therapy in HRD-related
cohorts was obtained from exploratory analyses.

The cost-effective analysis in platinum-sensitive recurrent
EOC showed that maintenance PARPi therapy is the preferred
strategy over a treat-all strategy for patients with BRCA
mutations or in HRD-positive patients (16). In the model,
mean costs and progression-free quality-adjusted life years
were $827 and 3.4 months for observation, $46,157 and 5.7
months for a BRCA-only strategy, $109,368 and 8.5 months for a
gBRCA and HRD-positive strategy, and $169,127 and 8.8
months for a treat-all strategy. Another cost-effective analysis
of “PARPi-for-all” compared with an HRD assay-directed
strategy using the models established from the PRIMA,
VELIA, and PAOLA-1 trials showed that front-line PARPi
maintenance therapy should be reserved for HRD-positive
EOC patients until the cost of PARPi is significantly reduced
(17). In the analysis, the mean cost per patient for the “PARPi-
for-all” strategy was $166,269, $286,715, and $366,506 for the
PRIMA, VELIA, and PAOLA-1 trials, respectively. For the HRD
assay-directed strategy, the mean cost per patient was $98,188,
$167,334, and $260,671 for the PRIMA, VELIA, and PAOLA-1
trials, respectively. However, to the best of our knowledge, a cost-
effective analysis between HRD assays is currently lacking
for EOC.

The current HRD assays have some limitations (Table 4).
Multiple causes of discordance between clinical PARPi responses
and HRD assay results are possible, including timing, quality and
quantity of samples, tumor heterogeneity, reversion mutations,
and non-HRD-related PARPi resistance mechanisms. The assays
define HRD based on genomic scars, but these assays are unable
to represent dynamic changes in the homologous recombination
function of the cells. For example, in ARIEL2 (38), pretreatment
biopsies and archival tumor biopsies (median time lapse: 2.7
years) were both used for genomic LOH assays in 117 patients.
Approximately 34% of patients with LOH-low in the initial
archival tissue biopsy turned out to be LOH-high in the
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pretreatment biopsy, and 30% of these patients had partial
responses to rucaparib, which is similar to the LOH-high
cohort. Fresh tumor samples may differ from archival tissue
samples due to tumor heterogeneity and clonal evolution, and
assays using fresh samples more accurately reflect the current
status of the tumor (80, 81).

A BRCA or HRR mutation may form a genomic scar detected
by HRD assays, but the tumor could restore the HRR function
through reversion or secondary mutations, causing resistance to
chemotherapy or PARPis over time (82–84). Reversion or
secondary somatic mutations have been identified in BRCA1/2,
RAD51C, RAD51D, and PALB2 in platinum-resistant EOC
tumors (85–87). BRCA reversion mutations have been
identified in 10%–30% of tumors after platinum exposure,
which could lead to platinum or PARP resistance (85, 88). The
HRD assays are unable to account for reversion mutations
because the original gene mutations have resulted in a
permanent, irreversible genomic scar. In platinum-resistant
EOC patients, the current HRD assays may be inadequate for
predicting PARPi responses, as in the QUADRA trial. However,
the reversion mutations may be found only in fresh tissue
samples and are difficult to detected in germline or archival
samples. For tumor suppressor genes, retention of one wild-type
allele reduces the effect of a somatic or gBRCA1/2 mutation (89);
however, current HRD assays are unable to report the status of
both alleles. In addition, there are other mechanisms of
treatment resistance that cannot be detected by HRD assays,
including upregulation of membrane drug transporters,
modulation of DSB end resection, protected stalled replication
forks, and stabilization of the BRCA1 C-terminal domains (90–
94). Intratumor heterogeneity, clonal adaptation, and cancer
evolution are challenges for precision medicine (95). The
current HRD assays were developed to stratify EOC patients
by PARPi benefit and it is uncertain that these assays could be
utilized for other inhibitors targeting other genes or molecules
Frontiers in Oncology | www.frontiersin.org 10
involved in the DNA repair pathway. The genomic scar-based
HRD assays cannot provide a real-time dynamic evaluation of
the current status of the tumor, which may limit the predictive
ability, especially when the testing samples are obtained from
archival tissue.

HRD Assays in Development: Targeted Gene Panel,
Whole Exome Sequencing, and Whole
Genome Sequencing
Several HRD assays are in development and are summarized in
Table 5. Tumor NGS assays by targeted gene panel are clinically
available mutation tests with panels consisting of variable sizes of
select cancer-susceptible genes to identify SNVs, small indels,
CNVs, and large chromosomal rearrangements by NGS
techniques (96). Larger panels provide more clinically useful
information but increase the VUS rates (97). However,
mutations or variants identified on tumor NGS assays may not
correlate with the clinical response (98). Tumor NGS assays
using whole genome sequencing (WGS) or whole exome
sequencing (WES) are also in development to assess the tumor
HRD status. WGS identifies the whole genome, whereas WES
identifies all protein coding regions of tumor DNA, which
comprise 1%–2% of the genome but approximately 85% of all
disease-causing mutations (99, 100). The raw data generated by
WGS is, on average, 30 times larger than the raw data generated
by WES; thus, WGS is more time consuming and expensive
(101, 102).

Mutational signatures describe distinct patterns of nucleotide
transitions with the context of the surrounding nucleotides from
the WGS data of human tumors (71). Different DNA damage
processes, such as aging, UV light, radiation, cytotoxic drugs, and
DNA repair pathway defects, have been correlated with different
patterns of mutations, which can generate characteristic
mutational signatures using computational methodologies
(103, 104). “Signature 3” is associated with BRCA1/2 mutations
and BRCA1 promoter methylation in breast, ovarian, pancreatic,
and stomach cancers (71, 105, 106). This is a pattern of single-
base substitutions in which mutations are distributed among the
six possible types (e.g., C > A, C > G, C > T, T > A, T > C, T > G)
and the surrounding sequence contexts (bases on either side of
the mutated base). Signature 3 has been proposed as a biomarker
of HRD, but some challenges make it unsuitable for guiding
PARPi therapy in EOC (50, 107). The majority of high-grade
serous EOCs contain some contribution from signature 3, and it
probably lacks specificity as a HRD biomarker. In addition,
signature 3 remains a static representation of HRD on the
genome rather than the functional state. HRDetect is a WGS-
based assay based on aggregating six HRD-associated signatures
into a single score, including microhomology-mediated
deletions, base substitution signature 3, rearrangement
signature 3, rearrangement signature 5, HRD index, and base
substitution signature 8 (105). HRDetect has been shown to
predict BRCA deficiency with a sensitivity of 98.7% in 560 breast
cancers (including the training cohort), 86% in a validation
breast cancer cohort (n = 80), and nearly 100% in validation
ovarian cancer (n = 73) and pancreatic cancer (n = 96) cohorts.
TABLE 4 | Limitations of the current HRD assays.

Technique aspects
• Adequacy and quality of tumor portion of tissue samples
• Intratumor heterogeneity between specimen biopsy site and other tumor-

invasive or metastatic sites
• Unable to report specific forms of DNA abnormalities or underlying

mechanism
• Define HRD status based on the “genomic scars” but not reflect the current

HR functions
• Indeterminate cutoff threshold to define HRD status

Tumor aspects
• Intratumor heterogeneity between specimen biopsy site and other tumor-

invasive or metastatic sites
• Unable to report secondary variations in HR genes, especially in archival

tumor samples:
- Reversion mutations of BRCA1/2, RAD51C, RAD51D, or PALB2

- Reverse promotor hypermethylation of BRCA1 or RAD51C

- Alternative translation initiation or splicing of BRCA1
• Unable to detect non-HRR gene-related PARPi resistance:

- Upregulation of membrane drug transporters (e.g., ABCG, MDR1)

- Modulation of DSB end resection

- Stabilization of stalled replication forks
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However, the ability of HRDetect to predict the PARPi response
in EOC has not been confirmed (108–110). The major
limitations of HRDetect include requiring fresh frozen tissue
with >50% tumor cells, higher expense, and longer time to carry
out the assay (111). Another limitation is that it represents the
historical existence of a genomic scar but not the current
HRR status.

HRD Assays in Development: Gene
Promoter Methylation
Promoter methylation results in decreased gene transcription,
and an association of gene promoter methylation in BRCA1 and
RAD51C with HRD had been reported. However, clinical studies
of HRR gene methylation have reported conflicting results, and
its role in predicting PARPi responses in EOC patients is
controversial (38, 56, 112–115). For example, BRCA1 promoter
hypermethylation was detected in 13% of tumors and RAD51C
promoter hypermethylation in 2% of tumors in ARIEL2.
Genomic LOH (test sensitivity 78%) performed better than
non-BRCA HRR gene mutations (sensitivity 11%, p < 0.001) or
promotor hypermethylation (sensitivity 48%, p < 0.02) in
predicting a response to rucaparib. Some technical problems
still need to be resolved, including sample purity, quantitative
Frontiers in Oncology | www.frontiersin.org 11
methylation assays, and gene copy number changes (112, 113,
116–118)

Functional HRD Assays
RAD51 Foci Formation Assay
In order to define HRD in real time, the tests should theoretically
check an important downstream factor integrating multiple
upstream HRR pathways to provide a dynamic evaluation of
the actual HRD status (119). RAD51 encodes a recombinase that
plays an important role in HRR and replication fork processing
(119, 120). In HRR of DSBs, RAD51 units are localized to the site
of the DNA break with the help of numerous mediator protein
complexes, including BRCA1 and BRCA2, to facilitate DNA
strand invasion into the sister chromatid. The RAD51
subnuclear foci is generally present after DNA damage in
normal cells, but cells with HRD cannot form RAD51 foci.
Therefore, measurement of RAD51 subnuclear foci is a
functional assay for detecting HRD in tumor samples (121, 122).

Studies have demonstrated that the absence or decrease of
subnuclear RAD51 foci correlates with BRCA mutations, the
response to chemotherapy or PARPi treatment, and clinical
prognosis (123–129). Immunofluorescence has been used for
evaluation of RAD51 foci formation in live cells derived from
TABLE 5 | Main strengths and weaknesses of the HRD assays.

Platform Strengths Weaknesses

Genomic HRD assay
BRCA mutation + GIS
score (or LOH score)

• FDA-approved companion test
• Rapid analysis

• Unable to detect non-BRCA HRR gene mutations
• Indeterminate cutoff threshold defining HRD status
• Intratumor heterogeneity between specimen biopsy site and other tumor-

invasive or metastatic sites
• Unable to represent the functional HR

Targeted gene panel • Customized gene panel
• More rapid analysis
• Fewer variant of uncertain significance (VUS)

results

• Report limited to the customized genes of the panel
• Unable to detect noncoding and structural variants
• Heterogeneous coverage based on library preparation and enrichment method
• Unable to represent the functional HR

Whole exome
sequencing

• Analysis of all coding exons (2% of genome)
• Detection of novel somatic mutations

• Unable to detect noncoding and structural variants
• Heterogeneous coverage based on library preparation and enrichment method
• Unable to represent the functional HR

Whole genome
sequencing

• Analysis of all coding and noncoding regions in
the genome

• Detect CNV, variants, and structural
rearrangements with high sensitivity

• Mutational signatures: “Signature 3” is associated
with BRCA mutations in ovarian cancer

• Expensive and time consuming
• Difficult interpretation of results (much VUS)
• Unable to represent the functional HR

Promoter methylation • Hypermethylation of BRCA1 and RAD51C in
association with HRD has been reported

• Unable to detect HRR gene mutations
• Conflicting results for HRR gene methylation in predicting PARPi response
• Unresolved technical problems, including sample purity, quantitative protocols,

and definition of gene copy number changes
• Unable to represent the functional HR

Functional HRD assay
RAD51 foci formation
assay

• Represents the functional HR • Unable to detect HRR gene mutations
• Unresolved technical problems, including timing, tissue sampling, DNA damage

induction, methods of measurement, and definition of HRD
• Unsuitable for slowly proliferating tumors
• Unable to identify defects in RAD51 downstream or RAD51-independent

mechanisms
DNA fiber assay • Represents the functional HR • Unable to detect HRR gene mutations

• Requires fresh, viable tissues
• Indeterminate definition of replication fork degradation
• Indeterminate correlation with clinical response
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tumors, ascites, or patient-derived xenograft models in which
DNA damage was induced by irradiation, platinum, or PARPis
(126, 128, 130, 131). Mukhopadhyay et al. reported the first
functional assay from live cells/tumor tissue from a prospective
series of consecutive EOC patients. The functional assay for HRD
usingRAD51 foci formation correctly predicted that approximately
50%ofEOCareHRDaheadof theTCGApublication in2011 (130);
the series was subsequently expanded by the same group to show its
validity inavarious live cell storageand sample transport conditions
(132). The homologous recombination Repair CAPacity (RECAP)
assay developed by Meijer et al. measures RAD51 foci in
proliferating cells from fresh breast cancer tissue after ex vivo
radiation. They found a strong correlation between RECAP-
defined HRD and BRCA mutations. Thus, the RECAP assay
could identify HRP tumors that developed BRCA reversion
mutations in patients with gBRCA mutations (133).
Immunohistochemistry of RAD51 foci was demonstrated in
formalin-fixed paraffin-embedded (FFPE) samples of breast
cancer, and positive RAD51 foci correlated with resistance to
platinum or PARPi (110, 124, 134). Waks et al. found that the
positive RAD51 foci were also associated with BRCA reversion
mutations, through which the HRR pathway was restored and
correlated with platinum resistance (134).

Hill et al. developed another method of checking RAD51
expression and replication fork stability in organoid cultures
(124). The organoids derived from ascites or EOC tumors were
checked for the numbers of cells with RAD51 foci after irradiation.
They also stained gH2AX and geminin to mark DNA damage and
the S/G2 phase of the cell cycle. The HRD score was generally
calculated as the number of RAD51-positive cells over the number
of cells in S/G2 (marked by geminin or cyclin A2). Samples were
defined as HR-low (<10%–20% RAD51-positive cells), HR-
intermediate (10%–20% to 35%–50% RAD51-positive cells), or
HR-proficient (>35%–50% RAD51-positive cells). However, the
correlation of the clinical response with the organoid RAD51 foci
by immunohistochemistry needs to be determined (135).

DNA Fiber Assay
The DNA fiber assay was developed to evaluate the dynamics of
the replication fork (136–139). The chromosome unzips the
intertwined DNA strands to make copies during S phase of the
cell cycle, forming the replication fork. The replication fork stops
when encountering DNA damage to allow DNA repair before
replication continues. Stalled replication forks require numerous
proteins, such as BRCA1, BRCA2, and RAD51, to protect from
degradation by nucleases. After damage is repaired, the stalled
fork resumes its progress. If the damage cannot be repaired to
resume DNA synthesis, the stalled replication fork undergoes
degradation, with the fork collapse leading to cell apoptosis
(140–143). Extensive replication fork degradation is associated
with chemosensitivity in BRCA-mutated tumors (91, 119). Briefly,
the DNA fiber assay evaluates the dynamics of replication forks by
incorporating DNA with two labeled thymidine analogs,
iododeoxyuridine (IdU) and chlorodeoxyuridine (CldU), which
can be visualized by an immunofluorescence-based approach (139,
144, 145). Degradation of the stalled forks leads to shortening of the
thymidine-labeled tract (124, 144, 145), and it is commonly
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detected in the absence of key factors, such as BRCA1 or BRCA2
(91, 146–148). A preclinical study showed that DNA fiber assays
correlate better with platinum sensitivity than PARPi sensitivity
(124). Further studies are needed to verify the feasibility of DNA
fiber assays in predicting PARPi sensitivity.

The challenges with the RAD51 foci assay include exam
timing (pre- or posttreatment), tissue resources (primary
tumor, ascites, or FFPE), methods of inducing DNA
damage (radiation, platinum, or PARPi), methods of detection
(immunofluorescence or immunohistochemistry), measurement
of RAD51 foci (numbers or percentages), intratumor
or interobserver variability, and the definition of HRD in
correlation with the clinical response (125, 126, 149). In
addition, RAD51 foci assays are not suitable for slowly
proliferating tumors and are unable to identify defects in the
HRR pathway downstream of RAD51 or RAD51-independent
mechanisms (150–155). The challenges of DNA fiber assays
include requiring fresh viable tissues, the definition of
replication fork degradation, and the correlation with clinical
responses (135). The RAD51 foci assay and DNA fiber assay are
both potential functional HRD assays, but when the commercial
assays will be available is unclear.
CONCLUSION

PARPi maintenance therapy has made great progress in the
management of EOC, with the successful translation of the
concept of “synthetic lethality” into clinical practice. PARPis
are expensive, and the cost-effective analysis showed that PARPi
therapy for BRCA-mutated or HRD-positive EOC patients is a
preferable strategy over a treat-all strategy. Although FDA-
approved companion HRD assays are available for PARPi use,
an important unmet problem is that the current HRD assays are
unable to consistently identify a subgroup of patients that does
not benefit from PARPis, which will lead to increasing medical
expenses and possible resistance to PARPi therapy. There are still
some issues that need to be resolved, including the quality of
tissue samples, intratumor heterogeneity, the cutoff threshold for
the definition of HRD, functional HRD status, reversion or
secondary mutations of HRR genes, discordance with the
clinical response, and cancer evolution. Ongoing development
of new comprehensive HRD assays, such as WES/WGS-based
assays or functional RAD51 foci/DNA fiber assays, will improve
our ability to select appropriate EOC patients who benefit from
PARPi. The comprehensive genomic scar assays based on WGS
or WES could provide the HRR gene mutations, mutational
signatures, and reversion mutations simultaneously. For tissue
retrieval, multistep sampling to obtain archival and pretreatment
tumor tissues has the potential to disclose the cancer
evolutionary changes over the clinical course to guide the
therapy. For precision medicine, it is necessary to develop a
comprehensive model integrating the clinical factors, genomic
mutational signatures, and functional tests to provide both past
evidence of HRD and the current functional ability of HRR.
Prospectively designed head-to-head comparison between the
various HRD assays incorporating into clinical trials of PARPi
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monotherapy or in combination with traditional chemotherapy,
antiangiogenetic agents, checkpoint inhibitors, or other DNA
repair inhibitors is important to establish the optimal clinical
implications of HRD assays.
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