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Implicit and explicit systems 
differently predict possible dangers
Eugenio Manassero1, Ludovica Mana1, Giulia Concina1, Annamaria Renna1 & 
Benedetto Sacchetti1,2

One strategy to address new potential dangers is to generate defensive responses to stimuli that 
remind learned threats, a phenomenon called fear generalization. During a threatening experience, the 
brain encodes implicit and explicit memory traces. Nevertheless, there is a lack of studies comparing 
implicit and explicit response patterns to novel stimuli. Here, by adopting a discriminative threat 
conditioning paradigm and a two-alternative forced-choice recognition task, we found that the implicit 
reactions were selectively elicited by the learned threat and not by a novel similar but perceptually 
discriminable stimulus. Conversely, subjects explicitly misidentified the same novel stimulus as the 
learned threat. This generalization response was not due to stress-related interference with learning, 
but related to the embedded threatening value. Therefore, we suggest a dissociation between implicit 
and explicit threat recognition profiles and propose that the generalization of explicit responses stems 
from a flexible cognitive mechanism dedicated to the prediction of danger.

Encountering a novel stimulus demands an organism to predict its emotional implications to properly react. A 
possible strategy is to generate defensive responses to stimuli that remind an individual of threatening events, a 
phenomenon called fear generalization1–4. Stimuli perceived as dissimilar from a threat can be detected as neutral 
or not dangerous, thus eliciting a discriminative response. Survival requires an adaptive balance between gener-
alization and discrimination1,5. When this delicate mechanism undergoes dysregulation, the resulting behavior 
can be maladaptive, and overgeneralization has been proposed as a pathogenetic marker of the anxiety disorders 
spectrum6–10. Hence, understanding which mechanisms underlie threat identification would represent a funda-
mental advance to approach pathologies such as posttraumatic stress disorder, panic disorder and generalized 
anxiety disorder.

According to a recent conception5, fear generalization is an active process that arises from the integration of 
signals deriving from two sources of information, a threat-identification mechanism and an ambiguity-based 
uncertainty-evaluation mechanism. The tuning of behavioral and autonomic responses similarly adjusts to a 
perceptual gradient, and these responses could be predicted by combining these representations rather than being 
passively shaped by physical resemblances5.

During a threatening experience, the human brain encodes implicit and explicit memory traces that are 
mediated by different neural circuits11,12. In this framework, fear generalization dynamics have been character-
ized by recording implicit autonomic indicators (for example, skin conductance responses, SCRs). Some studies 
have employed US-expectancy ratings (for example5,13,14) or episodic recognition15 as explicit parameters of fear 
expression. However, there are relatively few studies reporting a direct comparison between implicit and explicit 
gradients in fear generalization (e.g.5,8,13,16). Thus, whether explicit generalized behavior is mirrored by a defen-
sive response at the implicit level or whether these two patterns diverge is far from being defined. In other words, 
whether fear generalization arises from an active process that yields an integrated implicit-explicit outcome, or 
alternatively, it originates from the activity of multiple systems that trigger dissociable reactions in response to an 
incoming stimulus is poorly understood. In this study, we intended to address this issue.

Results
Different implicit and explicit behavioral responses to novel stimuli.  To examine the tuning curves 
of either implicit or explicit fear responses, we adopted a discriminative auditory fear conditioning paradigm in 
which participants learned to associate a tone (conditioned stimulus, CS+, 370 Hz) with a mild electrical shock 
(unconditioned stimulus, US, individually calibrated intensity) and another tone (nonreinforced stimulus, CS−, 
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784 Hz) with the absence of shock. Twenty-four hours after training, we tested the implicit and explicit ability 
to recognize the encoded stimuli as well as the reactions to novel cues in separate groups. One group (n = 18) 
underwent an implicit two-alternative forced-choice (2AFC) test, in which subjects were presented with a pseu-
dorandom sequence of tone pairs, each composed of a conditioned stimulus (CS+ or CS−) and a novel stimulus 
similar to the CS+ (NS+, 466 Hz) or to the CS− (NS−, 1046 Hz). NSs were selected to be harmonically and sim-
ilarly higher-pitched than the CSs. In line with previous studies5,13,14, event-related skin conductance responses 
(SCRs) were recorded for the assessment of autonomic responsiveness. Another group (n = 18) underwent an 
explicit 2AFC task in which participants heard the same sequence of CS−NS pairs used during the implicit test, 
and they had to identify which stimulus of each pair was the one previously paired with the US (i.e., the CS+) 
or the one previously learned as not associated with the US (i.e., the CS−). Subjects were also asked to provide a 
subjective confidence level for each choice, using an analog scale from 0 (completely unsure) to 10 (completely 
sure). Compared to a one-stimulus-per-trial new/old judgment task, the 2AFC task improves performance by 
discouraging response biases such as the familiarity-based decision bias17. No US shocks were delivered during 
the implicit and explicit tests (Fig. 1A).

In the implicit task, participants exhibited a highly precise threat identification pattern (Fig. 1B), as SCR 
levels showed the highest peak to the CS+ (Friedman test, χ2

(3) = 20.07, P < 0.001) and were weaker to the NS+ 
(Dunn’s post hoc comparison, P = 0.001), CS− (P = 0.008) and NS− (P < 0.001) stimuli, which did not differ 
from each other (P > 0.05 in each comparison). We also found no correlation between the magnitude of the auto-
nomic responses to the CS+ and to the NS+ and trait or state anxiety scores assessed with the State-Trait Anxiety 
Inventory (STAI-Y) scale (see Table S2).

Unexpectedly, the explicit recognition of threatening and novel stimuli displayed a different tuning profile 
(Fig. 1C,D). In fact, the participants were more likely to misidentify the NS+ as the learned threatening stimulus, 
and recognition rates approximated the 50% chance level (51.1% of correct CS+ and 48.9% of incorrect NS+ 
choices; Wilcoxon signed-rank test, Z = −0.15, P > 0.05). Importantly, the discrimination of the nonreinforced 

Figure 1.  Implicit and explicit threat recognition profiles. (A) Schematic diagram depicting the experimental 
procedures. Participants underwent a discriminative threat conditioning in which a conditioned tone (CS+, 
370 Hz) was paired with a mild electrical shock (US) and a non-reinforced tone (CS−, 784 Hz) was never paired 
with the US. Twenty-four hours later, subjects underwent either an implicit or explicit 2AFC recognition task 
which consisted of tone-pairs composed by a conditioned stimulus (CS− or CS+) and a novel stimulus similar 
to the CS− (NS−, 1046 Hz) or to the CS+ (NS+, 466 Hz). (B) Implicit threat recognition profiles (n = 18) 
demonstrated a high level of discrimination. (C,D) Explicit threat recognition profiles (n = 18) showed a 
threat-selective generalization, as subjects almost equally identified the CS+ and misidentified the NS+ as CS. 
Vice versa, the CS− was correctly detected over the NS−. (E) Confidence levels in the explicit recognition task 
indicated that subjects were more confident when identifying than when misidentifying the CS− but equally 
confident in the case of the CS+. (F) Discriminative threat conditioning and 2AFC recognition test in which the 
auditory frequencies of CSs and NSs were inverted (CS−, 370 Hz, NS−, 466 Hz; CS+, 784 Hz; NS+, 1046 Hz). 
(G) High specificity of implicit threat recognition profiles for inverted tone-frequencies (n = 18). (H, I) In 
the explicit threat recognition test with inverted tone-frequencies (n = 18) subjects tended to misidentify the 
NS+ as CS while correctly detected the CS− as CS. (J) Subjects were more confident for correct than incorrect 
responses for the CS− but not for the CS+. *P < 0.05, **P < 0.01, ***P < 0.001. All data are mean and SEM. 
Friedman test followed by Dunn’s post-hoc tests [(B,G)]; Wilcoxon signed-rank tests [(C,H)]; Mann–Whitney U 
tests [(E,J)].
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stimulus (CS−) demonstrated higher levels of precision, as participants were able to correctly identify it in 
most cases (78.3% of correct CS− and 21.7% of incorrect NS− choices; Wilcoxon signed-rank test, Z = −3.28, 
P = 0.001). Subjects were more confident when correctly identified than when misidentified the CS− (Mann–
Whitney test, U = 60.50, P = 0.022) whereas they were equally confident when correctly identifying or misiden-
tifying the CS + (Mann–Whitney test, U = 143.00, P > 0.05) (Fig. 1E). Additionally, in this case, we found no 
correlation between the explicit threat generalization (CS+ versus NS+ choice rate) and trait or state anxiety 
levels (see Table S2).

In two subsets of subjects from the Experiment 1 (standard tone frequencies, n = 8) and from the Experiment 
2 (inverted tone frequencies, n = 9), we also tested the ability to perceptually discriminate as different the sen-
sory stimuli employed as CSs and NSs. These participants underwent a 2AFC discrimination task in which we 
collected binary ‘same or different’ judgments. The accuracy rates of the sensory comparisons were high and 
comparable for both tones in the Experiment 1 (CS+ versus NS+: 95% ± 2.67 SEM with a mean confidence 
level of 9.25 ± 0.41 SEM; CS− versus NS−: 100% ± 0.00 SEM with a mean confidence level of 9.49 ± 0.29 SEM; 
Wilcoxon signed-rank test, Z = −1.63, P > 0.05) and in the Experiment 2 (CS+ versus NS+: 100% ± 0.00 SEM 
with a mean confidence level of 9.57 ± 0.16 SEM; CS− versus NS−: 98.9% ± 1.11 SEM with a mean confidence 
level of 9.75 ± 0.12 SEM; Wilcoxon signed-rank test, Z = −1.00, P > 0.05), thus ensuring that these stimuli were 
clearly discriminable.

To explore the possibility that the explicit generalization we observed to stimuli resembling the CS+ but 
not the CS− may be related to the auditory frequency of the tones employed as CS+ and CS−, we repeated the 
experiment by inverting the tone frequencies (i.e., CS−, 370 Hz; NS−, 466 Hz; CS+, 784 Hz; NS+, 1046 Hz) 
(Fig. 1F). In this condition, in the implicit task (n = 18), strong autonomic responses were triggered to the CS+ 
(χ2

(3) = 23.25, P < 0.001) but not to the NS+ (P = 0.040), CS− (P = 0.002) and NS− (P < 0.001) stimuli (Fig. 1G). 
In the explicit task (n = 18), participants failed to detect the threatening stimulus by almost equally choosing the 
CS+ (55%) and the NS+ (45%) (Z = −0.70, P > 0.05). Again, the participants successfully identified the nonre-
inforced stimulus by mostly choosing the CS− (66.1%) over the NS− (33.9%) (Z = −2.46, P = 0.014) (Fig. 1H,I). 
The confidence ratings were higher for correct than incorrect responses for the CS− (U = 92.50, P = 0.045) but 
not for the CS+ (U = 143.50, P > 0.05) (Fig. 1J).

These findings uncovered a dissociation between the implicit and explicit response patterns. Implicit reactions 
exhibited a sharp discrimination profile resulting in the precise detection of the learned threat. In contrast, the 
test of explicit recognition showed that subjects generalized the memory representation of the learned threat 
(CS+) to the novel but similar stimulus (NS+), while they discriminated the nonreinforced stimulus (CS−) from 
the novel but similar stimulus (NS−), irrespective of the tone frequencies.

Next, we investigated the physical boundaries (i.e., tone frequencies) to which the explicit generalization phe-
nomenon could be extended. To this end, we shifted the auditory frequency of the NS+ away from that of the 
CS+. Because in previous experiments we had adopted a 466-Hz tone as the NS+, to not generate a NS+ that was 
too similar to the CS− (784 Hz), in one group (n = 12), we harmonically reversed the frequency of the NS+ to 
obtain a tone that was equally distant but symmetrically lower-pitched than the 370-Hz CS+ (i.e., CS−, 784 Hz; 
NS−, 1046 Hz; CS+, 370 Hz; NS+, 294 Hz) (Fig. 2A). In these conditions, we observed a comparable level of 
threat-specific generalization behavior in the explicit 2AFC task (Fig. 2B,C). Subjects identified the nonrein-
forced stimulus (CS−, 79.2% versus NS−, 20.8%, Z = −3.08, P = 0.002) but failed to recognize the threatening 
stimulus (CS+, 55.8% versus NS+, 44.2%, Z = −0.63, P > 0.05). Confidence judgments were higher for correct 
than incorrect responses for the CS− (U = 18.50, P = 0.009), whereas no differences were found between the 
CS+ and the NS+ (U = 35.50, P > 0.05) (Fig. 2D). This finding pointed to a symmetrical two-sided frequency 
range of the threat-selective generalization effect. We then proceeded to downshift the oscillation frequency of 
the NS+ by harmonically doubling the interval that separated it from the CS+. We repeated the fear conditioning 
and the recognition task (n = 12) with this new set of stimuli (CS−, 784 Hz; NS−, 1046 Hz; CS+, 370 Hz; NS+, 
233 Hz) (Fig. 2E). In these conditions, we obtained a twofold discrimination (Fig. 2F,G). Participants succeeded in 
identifying both the nonreinforced (CS−, 87.5% versus NS−, 12.5%, Z = −2.99, P = 0.003) and the conditioned 
fear (CS+, 80% versus NS+, 20%, Z = −2.85, P = 0.004) stimuli, with no differences in the subjective confidence 
levels (CS− versus NS−, U = 28.50, P > 0.05; CS+ versus NS+, U = 37.50, P > 0.05) (Fig. 2H). These experiments 
showed a generalization of explicit recognition for stimuli perceptually close to but not perceptually distant from 
the CS+ and a lack of generalization to stimuli closely resembling the CS−. Therefore, the generalization of 
explicit responses was specifically connected with the aversive experience and occurred only with stimuli that 
may resemble the CS+.

The generalization of explicit responses is not due to a degradation of memory processes.  Our 
results led to the question of which factors contributed to the fear generalization we observed in the explicit rec-
ognition test. One possibility is that this form of generalization may be related to a stress-based interference 
on explicit associative processes that occur during learning. In fact, stressful stimuli, such as painful stimula-
tions, might interfere with long-term memory18–20. Notably, the analysis of the SCRs revealed that, even if stress 
would have interfered with learning, it occurred only on the explicit processes, whereas it did not affect implicit 
memory. To better elucidate this point, we performed a control experiment during which painful stimuli were 
delivered at the same intensity as in previous experiments but not associated with a specific tone. Subjects were 
exposed to the identical sequence of two stimuli as in previous experiments, where one stimulus corresponded 
to the tone previously employed as CS+ (370 Hz) and the other stimulus corresponded to the tone previously 
adopted as CS− (784 Hz), and painful stimuli were delivered at pseudorandom intertrial intervals. On the test 
day, recognition patterns were collected by exposing subjects to the same sequence of tone-pairs composed of 
learned and novel stimuli similar to the CS+ (NS+, 466 Hz) or to the CS− (NS−, 1046 Hz) through the 2AFC 
task (Figs 3A and S1A). In the implicit test (n = 12), we found no significant differences in SCR levels among 
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the four tones (χ2
(3) = 2.50, P > 0.05) (Fig. S1B). In the explicit test (n = 12), we found that the detection lev-

els of the CS+ (70.8%) over the NS+ (29.2%) (Z = −2.77, P = 0.006) were high and comparable to that of the 
CS− (77.5%) over the NS− (22.5%) (Z = −2.58, P = 0.01) (Fig. 3B,C). The confidence ratings were similar for 
CS+ versus NS+ (U = 51.00, P > 0.05) and CS− versus NS− (U = 33.50, P > 0.05) (Fig. 3D). These data showed 
that a painful experience during stimuli encoding did not impair the discrimination of explicit responses. More 
importantly, these results suggested that the generalization of explicit responses, when present, may be related to 
the CS predictivity of the US. To test this possibility, we established an experimental paradigm in which painful 
stimuli were delivered concurrently with the CS+ but without allowing this tone to be predictive of the threat. 
We performed an experiment (n = 12) in which the delivery of the shock was set 2 s prior to the CS+ onset while 
it never preceded the CS− (Fig. 3E). In the 2AFC recognition test, subjects mostly identified the CS+ (76.7%) 
over the NS+ (23.3%) stimulus (Z = −2.95, P = 0.003) as well as the CS− (74.2%) over NS− (25.8%) (Z = −2.16, 
P = 0.031) (Fig. 3F,G). Additionally, in this case, there were no significant differences in confidence levels (CS− 
versus NS−, U = 30.00, P > 0.05; CS+ versus NS+, U = 36.50, P > 0.05) (Fig. 3H). Taken together, these findings 
suggested that any stress-related effect due to the administration of the painful stimuli did not interfere with the 
ability to encode the CS+. More importantly, these data revealed that the generalization of explicit fear responses, 
when present, was specifically related to associative processes connecting sensory stimuli to threatening events.

The generalization of explicit fear responses is driven by the valence of the stimulus and the 
learning context.  The data collected thus far suggested that the generalization of explicit responses may have 
been specifically connected to a function dedicated to the prediction of danger. To clearly assess this possibility, 
we performed a series of experiments. First, we tested whether the generalization depended on the threaten-
ing value of the CS+. To this end, we probed whether a postlearning manipulation of the CS-paired emotional 

Figure 2.  Explicit threat recognition of a symmetric and a distant new tone. (A) Discriminative threat 
conditioning (CS+, 370 Hz; CS−, 784 Hz) was followed, twenty-four hours later, by the explicit 2AFC 
recognition task with the auditory frequency of the NS+ symmetrically lower-pitched than the CS+ (NS+, 
294 Hz; NS−, 1046 Hz). (B,C) In the explicit recognition task subjects (n = 12) failed to identify the CS+ but 
correctly detected the CS−. This pattern highlighted a symmetrical two-sided frequency range of the threat-
selective generalization of explicit responses. (D) Subjects expressed higher confidence levels for correct 
versus incorrect recognitions of the CS− but not of the CS+. (E) Participants underwent a threat conditioning 
(CS+, 370 Hz; CS−, 784 Hz) and an explicit 2AFC recognition task in which the harmonic distance between 
the NS+ and the CS+ was doubled, yielding a highly different new tone (NS+, 233 Hz; NS−, 1046 Hz). (F,G) 
Explicit recognition profiles (n = 12) indicated that subjects successfully detected both the CS− and the CS+, 
thus showing a twofold discrimination. (H) Subjects were similarly confident when responding to both CSs. 
*P < 0.05, **P < 0.01, ***P < 0.001. All data are mean and SEM. Wilcoxon signed-rank tests [(B,F)]; Mann–
Whitney U tests [(D,H)].
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content interfered with the observed generalization of the explicit responses. We adopted the postconditioning US 
devaluation technique21, which allows modulation of the valence of the US representation without affecting the 
learned CS-US association22. This procedure consisted of attenuating the aversiveness of the US, after the CS-US 
pairings, through the delivery of shocks alone at a lower intensity than that employed during the conditioning. 
Shortly after the threat learning (~1–2 min), one group of participants (devaluation group, n = 12) was repeatedly 
administered the US at a lower intensity (Fig. 4A), while another group of participants (control group, n = 12) 
received the US alone at the same intensity as in the conditioning phase (Fig. 4E). To validate the effectiveness of 
this procedure in devaluating the US representation, subjects were required to evaluate the aversiveness of the US 
on the same analog scale used in the pre- and post-conditioning phases. We obtained significantly lower ratings 
in the devaluation group (Z = −3.08, P > 0.002) but not in the control group (Z = −1.81, P > 0.05) than those 
provided after the conditioning phase (see Table S1). The day after this procedure, both groups were tested in the 
2AFC recognition task. Critically, the devaluation group successfully detected the CS+ (70.8%) over the NS+ 
(29.2%) (Z = −2.57, P = 0.01), as well as the CS− (80%) over the NS− (20%) (Z = −2.95, P = 0.003) (Fig. 4B,C). 
In contrast, the control group displayed the threat-specific generalization pattern that we observed earlier by sim-
ilarly recognizing the CS+ (56.7%) and the NS+ (43.3%) as the CS (Z = −1.93, P > 0.05) and correctly identifying 
the CS− (75%) and not the NS− (25%) as the CS (Z = −2.55, P = 0.011) (Fig. 4F,G). In the devaluation group, 
confidence levels were higher for correct than incorrect responses for the nonreinforced (U = 17.00, P = 0.007) 
but not for the threatening (U = 58.00, P > 0.05) stimulus (Fig. 4D). In the controls, there were no differences in 
confidence levels (CS− versus NS−, U = 39.00, P > 0.05; CS+ versus NS+, U = 49.00, P > 0.05) (Fig. 4H). These 
data demonstrated that decreasing the threatening value of the US after the conditioning prevented the explicit 
generalization that we had otherwise observed. Thus, the generalization of explicit responses may have stemmed 

Figure 3.  Recognition patterns after a stress-based unpaired learning. (A) Participants (n = 12) underwent an 
unpaired learning (CS+, 370 Hz; CS−, 784 Hz) in which painful stimuli pseudo-randomly occurred during the 
inter-trial-intervals, and not in association with a specific tone. Twenty-four hours later, subjects performed 
the 2AFC recognition task (NS+, 466 Hz; NS−, 1046 Hz). (B,C) Explicit detection levels were similarly high 
for both the CS− and the CS+, thus indicating that painful stimuli during learning trials did not interfere with 
encoding processes. (D) Subjects were similarly confident for both CSs recognition choices. (E) Participants 
(n = 12) encoded two tones (CS+, 370 Hz; CS−, 784 Hz) and painful stimuli were delivered 2 s prior to the 
CS+ onset and never before the CS−. This unpaired learning was aimed at reproducing the temporal proximity 
between painful stimuli and the CS+ without forming a CS-US predictive association. Twenty-four hours later 
subjects performed the explicit 2AFC test (NS+, 466 Hz; NS−, 1046 Hz). (F,G) Subjects highly recognized 
both the CS− and the CS+, thus indicating that the generalization of explicit responses is specifically related 
to the CS-US predictive association. (H) Confidence ratings did not differ between CS− and NS− or between 
CS+ and NS+ recognition choices. *P < 0.05, **P < 0.01, ***P < 0.001. All data are mean and SEM. Wilcoxon 
signed-rank tests [(B,F)]; Mann–Whitney U tests [(D,H)].
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Figure 4.  The role of stimulus-embedded valence and learning context in driving the generalization of explicit 
threat responses. (A) Shortly after the threat conditioning (CS+, 370 Hz; CS−, 784 Hz), participants (n = 12) 
were repeatedly administered with solely USs whose intensity was lower than in the conditioning phase. This 
procedure was aimed at devaluating the threatening value embedded into the CS+. Twenty-four hours later, 
they performed the 2AFC recognition task (NS+, 466 Hz; NS−, 1046 Hz). (B,C) In the explicit recognition task 
subjects successfully identified both the CS− and the CS+, thus indicating that devaluating the fearful outcome 
predicted by the CS+ limits the generalization of explicit responses. (D) Confidence judgments were higher 
for correct than incorrect responses for the CS− but not for the CS+. (E) In the control condition, participants 
(n = 12) were repeatedly exposed to USs whose intensity was kept constant from the conditioning phase. (F,G) 
Controls explicitly recognized the CS− but generalized the identification of the CS+ to the NS+, thus showing 
the threat-specific generalization pattern. (H) Confidence levels did not differ for both CSs recognition choices. 
(I) Twenty-four hours after the threat conditioning (CS+, 370 Hz; CS−, 784 Hz), subjects (n = 12) performed 
the explicit 2AFC test (NS+, 466 Hz; NS−, 1046 Hz) within a new physical context which was located inside 
of another building. (J,K) Participants exhibited a successful recognition of both the CS− and the CS+, 
thus indicating that encountering the CS+ in a different environment from the conditioning phase shifted 
the explicit threat-recognition pattern from generalization (old context) to discrimination (new context). 
(L) Participants were more confident when identifying than when misidentifying the CS− but not the CS+. 
*P < 0.05, **P < 0.01, ***P < 0.001. All data are mean and SEM. Wilcoxon signed-rank tests [(B,F,J)]; Mann–
Whitney U tests [(D,H,L)].
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from an adaptive and flexible function of the explicit system that might be able to actively generalize an explicit 
stimulus representation based on its learned threatening valence. If a subsequent experience reshapes this mean-
ing, this mechanism updates its predictions and may actively limit the generalization process.

To examine the flexible nature of this predictive mechanism in depth, we sought to probe whether this mech-
anism was also influenced by the environmental context where the threatening experience has occurred. In fact, 
the surrounding context may shape and define the perception of sensory traces and memories of past episodes23. 
In particular, we were interested in whether a shift in context may change the prediction of the danger-related 
mechanism and modulate the level of generalization. To address this idea, one group of participants (n = 12) 
underwent the same conditioning procedure as in the previous experiments, but on the following day, the 
2AFC explicit task was performed in a completely different environment (Fig. 4I). In this new situation, subjects 
detected the CS+ (65%) over the NS+ (35%) (Z = −2.07, P = 0.039) and the CS− (73.3%) over the NS− (26.7%) 
(Z = −2.50, P = 0.013), thus indicating a successful recognition of the nonreinforced as well as the threatening 
stimuli (Fig. 4J,K). Participants were more confident with correct than incorrect responses for the nonreinforced 
stimulus but not for the threatening one (CS− versus NS−, U = 33.00, P = 0.044; CS+ versus NS+, U = 57.50, 
P > 0.05) (Fig. 4L). This result indicated that when the individuals were placed in a context that was different from 
that where the aversive experience had occurred, they did not show generalization of the explicit responses. This 
evidence is consistent with the idea that the explicit identification of a learned threat also depends on the cogni-
tive evaluation of contextual sensory cues. Overall, these data supported the idea that the explicit generalization 
was related to a cognitive mechanism that was able to predict the occurrence of danger in a flexible manner by 
using information about the embedded emotional content and the surrounding context where the threatening 
experience occurred.

Discussion
In this study, we investigated whether the implicit and explicit response patterns to novel stimuli overlapped or 
diverged after learning about a threat. By using discriminative auditory fear conditioning, we found a striking dis-
sociation between implicit and explicit threat recognition patterns. The evoked autonomic responses, analyzed by 
SCRs, were strong and selective in response to the CS+ and weak in response to the NS+, the CS− and the NS−. 
Conversely, the explicit recognition profile revealed that subjects were highly prone to misidentify the NS+ as the 
encoded CS+, thus showing a generalization of responses that approximated the chance level. Critically, the CS− 
was explicitly recognized and correctly discriminated from the NS−. Moreover, the generalization phenomenon 
did not occur when the NS+ was very different from the CS+.

These findings suggest that implicit reactions are highly sensitive to detecting a cue learned as dangerous, 
whereas explicit responses are more inclined to express a generalization pattern that is selective for the threat 
stimuli and does not extend to safe stimuli. Hence, implicit and explicit profiles are dissociable and seem to not 
exert any reciprocal influence when encountering a new stimulus that reminds an individual of a learned threat.

A possible alternative interpretation of our data is that the generalization of explicit responses may be due to 
a degradation in memory processing induced by stress-related interference during the learning trial. Previous 
studies have found that exposure to a stressor affects long-term memory18–20. To disentangle between these pos-
sibilities, we performed two experiments in which the painful stimuli were delivered independent of a specific 
stimulus, and we found that participants explicitly discriminated between the learned threatening stimuli and the 
novel stimuli. Thus, the generalization of explicit recognitions, when present, was related to the learned CS-US 
association and not due to a degradation of memory processes. These data led us to test whether the generali-
zation of explicit reactions may have represented a predictive mechanism dedicated to inferring the potential 
danger of incoming stimuli. Through a US devaluation procedure21 and a context shift from the learning to the 
testing phase, we showed that this form of generalization is driven by the valence of the threatening stimulus and 
by contextual sensory cues.

Previous studies22,24 have found an attenuating effect of US devaluation on conditioned implicit responses but 
a lack of effect on explicit expectancy ratings. Here, we did not adopt an expectancy-based task, but we adopted a 
recognition-based task to test the explicit response pattern. In other words, we did not investigate how much sub-
jects expected the US when exposed to the CSs and the NSs because this index would have not allowed a proper 
differentiation of the CS− from the NS−. Rather, we tested the ability to explicitly recognize both CSs and distin-
guish them from the NSs. To the best of our knowledge, whether and how a modification in the US representation 
affects the explicit recognition of the CS+ had never been investigated before.

We also found that testing subjects in a context different from that of the conditioning phase enabled the dis-
crimination between the CS+ and the NS+. In line with our results, previous studies showed that conditioned 
responses can be triggered by sensory stimuli and the surrounding context paired to aversive events25. Indeed, 
contexts may be useful to disambiguate uncertain situations to guide adaptive behavior23. A context-dependent 
specificity effect in fear conditioning was found in an earlier human study where implicit cued fear to the CS+ 
compared to the CS− was evident when subjects were tested in the same conditioning context and not when 
tested in a novel context26.

Concerning the specificity of the explicit generalization, previous studies27–30 have indicated that sensory acu-
ity is shaped following aversive learning. This effect is thought to be due to the plastic modification of sensory 
discrimination thresholds (28,30–32; but see33,34). This effect is unlikely to explain our data since we adopted stimuli 
that were highly perceptually discriminable at both the explicit and implicit levels. In our experiments, therefore, 
participants seemed to explicitly respond on the basis of a generalized representation of the threatening stimulus.

It has been previously reported that fear reactions at explicit (US-expectancy) and implicit (SCR) levels were 
a reflection of a perceptual continuum, even if the reactions are predicted by distinct patterns of neuronal tuning 
in the anterior insula (aIC) and the inferotemporal cortex (ITC)5. Our results provide new evidence on how fear-
ful recognition at the behavioral level may not be mirrored in a defensive response at the autonomic level, thus 
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adding further complexity to the circuits involved in threat detection processes. Hence, these data are inconsistent 
with the idea that fear generalization arises from a unitary implicit-explicit process. Rather, the data support the 
idea that the source of fear generalization is related to multiple systems, where the explicit responses to stimuli 
resembling a learned threat do not influence nor are influenced by the implicit processes. These differential pat-
terns indicate that these systems may activate dissociable reactions towards the same stimulus. These observations 
seem to be in line with a recently proposed two-system framework35 that includes a defensive survival circuit, 
supporting behaviors and physiological reactions to threats, and a cognitive circuit, supporting subjective expe-
riences of fear, and may be dissociable.

Several lines of evidence have shown that dissociable neural systems encode the implicit and explicit memo-
ries of a threatening experience11,12. Dissociations between implicit and explicit learning in threat conditioning 
have been found in brain-damaged patients36, in studies reporting implicit fear learning in the absence of explicit 
contingency awareness37–40, during implicit fear discrimination for consciously indiscriminable stimuli41,42 and 
in fear reduction through a procedure that eludes conscious exposure to the learned threat43,44. In humans, non-
human primates and rats, many brain regions have been identified as involved in implicit fear generalization and 
discrimination processes1,45, such as the prefrontal and auditory cortices46–50, the amygdala51,52, and the insular 
cortex5,53. However, explicit associative recognition relies on the hippocampal and medial temporal lobe (MTL) 
networks54. An earlier study found that rats with a lesion to the hippocampus showed better fear discrimina-
tion55. The authors hypothesized that the generalization within different memory systems may exhibit distinct 
gradients, where the hippocampus may be less finely tuned than other systems (such as thalamo-amygdala and 
thalamo-cortico-amygdala memory systems). This divergence may be due to the hippocampus’s role in extracting 
generalities from associative threatening experiences56–60. Thus, hippocampal processing may result in a general-
ized response55. Our findings in humans seem to support this hypothesis by providing evidence that individuals 
may tend to generalize the explicit identification of a learned threat even when they are capable of implicitly 
detecting differences.

The relevance of these results also applies to the potential dysregulation of these flexible mechanisms in PTSD 
and fear-related disorders. Traumatic events may affect the cognitive and highly adaptive explicit evaluation of 
incoming stimuli, such as the context-dependent shift or the ability to actively limit the generalization process 
that we have described here, thereby leading to dysfunctional cognitive predictions. Previous studies have high-
lighted the relevance of context information processing for fear-related disorders, such as PTSD or panic dis-
order61–63. Indeed, a dysregulation in the ability to contextualize information may lead to inaccurate percepts, 
improper attributions of meaning to stimuli and rigid behaviors23. As such, PTSD patients show a markedly 
greater contextual fear than non-PTSD individuals64,65 and exhibit a compromised ability to use contextual infor-
mation to limit defensive responses to stimuli that are no longer predictive of aversive consequences66.

In conclusion, our findings reveal a divergence between the implicit and the explicit tunings in threat identifi-
cation processes. Moreover, they highlight the operations of a cognitive mechanism that is able to flexibly evaluate 
incoming stimuli to develop adaptive predictions of potential dangers.

Methods
Participants.  All participants (n = 176) were healthy university students (mean age: 21.61 ± 2.49 S.D., 50 
males and 126 females) with no history of psychiatric disorders, neurological illnesses, cardiovascular diseases 
and illegal drug use. During the pre-experimental screening phase, each participant was also administered with 
the State-Trait Anxiety Inventory Form Y67,68. Participants who showed a score >80 in the sum of the two sub-
scales (State + Trait anxiety) were not included in the sample. Musicians and individuals who reported a past or 
current musical training were not included in the sample (see Table S1 for all groups’ mean age and State-Trait 
Anxiety Inventory scores). After this preliminary phase, participants were randomly assigned to each experi-
mental condition. We discarded five participants because of excessively low SCRs, and three participants because 
they did not understand the task, leaving a total of 168 participants. Each participant provided written informed 
consent after receiving a complete description of the experimental procedures. All experimental procedures were 
performed in accordance with the ethical standards of the Declaration of Helsinki and were approved by the 
Bioethics Committee of the University of Turin.

Auditory stimuli.  Auditory stimuli were pure sine wave tones with oscillation frequencies of 233 Hz, 294 Hz, 
370 Hz, 466 Hz, 784 Hz and 1046 Hz, lasting 6 s with onset/offset ramps of 5 ms. Tones were digitally generated 
using Audacity 2.1.2 software (Audacity® freeware), and binaurally delivered through headphone speakers 
(Beyerdynamic DT770 Pro) at ~50 dB intensity. Experiments were conducted in a dimly lit room, and all experi-
mental scenarios were controlled by Presentation® 17.2 software (NeuroBehavioral Systems, Berkeley, CA).

Two-alternative forced-choice (2AFC) perceptual discrimination test.  The task consisted in com-
paring 20 pairs of auditory stimuli (370 Hz, 466 Hz, 784 Hz and 1046 Hz) which were presented with a 1000-ms 
intra-pair-interval in a pseudorandom sequence (inter-pair-interval of 24 s). For each pair, subjects were asked 
to refer whether the two tones were “the same tone or different tones”, and to provide a confidence rating on an 
analog scale from 0 (completely unsure) to 10 (completely sure). No feedback was supplied.

Unconditioned stimulus calibration procedure.  Before starting with the calibration procedure, systolic 
and diastolic blood pressure was measured in order to prevent possible hypoarousal reactions caused by a basal 
hypotension. The unconditioned stimulus (US) consisted of a mild electrical shock (train pulse at 50 Hz lasting 
200 ms, with a single pulse duration of 1000 µs) generated with a direct current stimulator (DS7A Constant 
Current Stimulator, Digitimer). Impulses were delivered through a bar stimulating electrode connected by a 
Velcro strap on the upper surface of the dominant hand’s index finger. The electrical stimulation intensity was 
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individually calibrated through a staircase procedure69, starting with a low current near the perceptible tactile 
threshold (~0.5 mA). Participants were asked to rate the aversiveness of each train-pulse on a scale ranging from 0 
(not painful at all), 1 (pain threshold) to 10 (highly painful if protracted in time). At the end of the procedure, the 
US amplitude was set at the current level (mA) corresponding to the mean rating of ‘7’ on the subjective analog 
scale.

Pre-conditioning habituation.  This phase followed the US calibration and consisted in the presentation 
of 4 stimuli: 2 CS− (784 Hz) and 2 CS+ (370 Hz) tones with an inter-trial-interval (ITI) of 24 s, in absence of any 
US. In the experiment showed in Fig. 1F–J, the frequencies of tones were inverted (i.e. 370 Hz served as CS− and 
784 Hz served as CS+). At the end of this phase, participants were asked to confirm whether the tones were easily 
audible but not too loud or annoying.

Conditioning and unpaired learning.  Conditioning.  After a 5-min resting period, participants under-
went a discriminative fear conditioning, which consisted in the presentation of 30 stimuli: 15 CS+ (370 Hz) and 
15 CS− (784 Hz) in a pseudorandom sequence, with an inter-trial-interval (ITI) of 24 s. The CS+ co-terminated 
with the US 12 times (80% reinforcement rate), while the CS− was never paired with the US. In the experiment 
showed in Fig. 1F–J, the frequencies of tones were inverted (i.e. 370 Hz served as CS− and 784 Hz served as CS+).

Unpaired learning.  After 5 min of resting, participants underwent the identical pseudorandom sequence of 
tones (CS+: 370 Hz, CS−: 784 Hz) as in the paired conditioning protocol, but the US was not associated to an 
auditory stimulus. In the unpaired learning (Fig. 3A), 12 USs pseudo-randomly occurred during the 24-s ITI at 
9 s, 12 s or 15 s from the tone offset. In the concurrent unpaired learning (Fig. 3E), the US was delivered 2 s before 
the CS+ onset with a 80% scheduling (i.e., for 12 times the CS+ started 1.8 s after the 200-ms shock offset) and 
never preceded the CS−.

In all acquisition procedures, subjects were not informed about any possible CS-US contingency. To validate 
the emotional learning, immediately following this phase subjects rated the aversiveness of the US using the same 
analog scale as in the pre-conditioning calibration procedure (see Table S1 for all groups’ US current intensity 
and US analog ratings).

Unconditioned stimulus devaluation.  Immediately after the conditioning session (~1–2 min), sub-
jects were administered with 6 US trials in absence of tones (1-ms pulses, 50 Hz, train duration 200 ms) with a 
29.8 s inter-trial-interval (reproducing the exact time-pattern of shock delivery as in the conditioning phase). 
Participants were not informed about any possible modification in the electrical stimulation intensity. In the 
devaluation group, the US amplitude (mA) was decreased to the mean rating of ‘2’ on each participant’s subjective 
scale. In the control condition, the US amplitude was maintained constant as in the conditioning phase. At the 
end of the procedure, each participant was asked to give a post-revaluation rating of the US aversiveness on the 
subjective scale (See Table S1).

Two-alternative forced-choice (2AFC) recognition test.  This procedure involves the presentation of 
two stimuli on each trial and was preferred over a yes-no paradigm (which involves one stimulus on each trial and 
a new/old judgment task) since it improves performance and discourages response bias in a recognition memory 
task, such as a familiarity-based decision bias17.

Throughout all the testing phases, the stimulating electrode was kept attached as in the conditioning phase in 
order to create the expectation to receive the US. Differently from other generalization paradigms which involve 
the delivering of the US in order to prevent extinction3,5,13,42, here no shocks were delivered, i.e. the CS+ was 
never paired with the US, in order to avoid any reacquisition effect.

After a 5-min resting period, participants underwent a two-alternative forced-choice (2AFC) task, which con-
sisted in the presentation of 20 pairs of auditory stimuli, each composed by a conditioned stimulus (CS− or CS+) 
and a new stimulus similar to the CS− (NS−, 1046 Hz in Figs 1A–E, 2, 3 and 4; 466 Hz in Fig. 1F–J) or to the CS+ 
(NS+, 466 Hz in Figs 1A–E, 3 and 4; 1046 Hz in Fig. 1F–J; 294 Hz in Fig. 2A–D; 233 Hz in Fig. 2E–H) in a pseu-
dorandom sequence: 5 × CS− vs NS−, 5 × NS− vs CS−, 5 × CS+ vs NS+, 5 × NS+ vs CS+. On each trial, the 
two stimuli were presented with an intra-trial-interval of 1000 ms. After 5 s from the pair offset, a 60-s auditory 
interference (see next section) and a 24-s silent ITI occurred. In the implicit test, SCRs were recorded throughout 
this phase. In the explicit test, participants were explained that in each couple of sounds there was a tone that they 
had heard on the day before, and a new tone. Participants were then instructed to recognize and verbally refer 
which one (the first or the second) was the tone heard on the day before, paired (CS+) or not paired (CS−) with 
the US-shock. Participants were further asked to verbally provide a confidence rating about each response, on a 
scale from 0 (completely unsure) to 10 (completely sure). No feedback was supplied. In the experiment showed 
in Fig. 4I–L, this procedure was performed in a context different from that of the conditioning phase. This new 
setting consisted in room whose sensory features were highly dissimilar from those of the conditioning room, and 
which was located inside of another building. Notably, in the new environment subjects still wore the electrode, 
an important predictor signaling the possible occurrence of a shock25.

Auditory working memory interference.  When hearing a serial sequence of tones subjects can actively 
take advantage of a pitch comparison mechanism due to the auditory working memory (AWM) rehearsal pro-
cess70,71. In our testing protocol, if participants were not prevented from rehearsing during the inter-trial-interval, 
each response (except for the first one) might be affected by the sensory comparison of each pair of tones with the 
previous one in the sequence, thus introducing cognitive biases in the recognition process. Given that a method to 
interfere with the rehearsal process is filling the inter-trial-interval with a series of additional tones72,73, we created 
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an auditory retroactive interference in order to prevent possible cognitive biases during the recognition test. The 
interference consisted in 60 s of 10-s mixed samples of pop music.

Psychophysiological recording and analysis.  Event-related skin conductance responses (SCRs) were 
used as an implicit index of fear responses. In order to record the autonomic signal, two Ag-AgCl non-polarizable 
electrodes filled with isotonic paste were attached to the index and middle fingers of the non-dominant hand by 
Velcro straps. The transducers were connected to the GSR100C module of the BIOPAC MP-150 system (BIOPAC 
systems, Goleta, CA) and signals were recorded at a channel sampling rate of 1000 Hz. SCR waveforms were 
analyzed offline using AcqKnowledge 4.1 software (BIOPAC systems, Goleta, CA). Each SCR was evaluated as 
event-related if the trough-to-peak deflection occurred 1–6 s after the stimulus onset, the duration was comprised 
between 0.5 and 5.0 s, and the amplitude was greater than 0.02 microsiemens (μS). Responses that did not fit 
these criteria were scored as zero. Because the implicit test was configured as 2AFC with a 1-s ITI, the range of 
the analysis was restricted to 1–7 s following the onset of the first stimulus of the pair. That is, given the sequence 
of 6 s (1st tone), 1 s (intra-trial-interval) and 6 s (2nd tone) which defined the structure of each pair, a temporal 
cut-off was established upon the onset of the second stimulus of the pair, in order to avoid summing effects in the 
event-related responses. Raw SCR data of each subject were standardized through a Z-score transformation74,75 
and averaged by stimulus type (CS−, NS−, CS+, NS+).

Statistical analyses.  Since several variables did not pass the Shapiro-Wilk test for the normality of the dis-
tribution, non-parametric statistics were adopted in each experiment. Friedman test followed by Dunn’s post-hoc 
multiple comparison tests were used for autonomic data analyses. Explicit recognition choice rates, perceptual 
judgments and US ratings were analyzed by performing Wilcoxon signed-rank tests. In the analysis of confidence 
ratings, participants who exhibited a perfect (100%) recognition of one or both CSs in the 2AFC task generated 
missing cells for the respective NS or NSs tones. Because a paired comparison would have excluded all the confi-
dence judgments of these participants, we performed unpaired Mann-Whitney U tests in order to include all the 
available data in the analysis. In order to compute the correlation between STAI-Y scores and implicit/explicit rec-
ognition levels, the Spearman’s rank correlation coefficient was adopted. The null hypothesis was rejected at P < 0.05 
significance level. All statistical analyses were performed using SPSS Statistics 22 (IBM) and Prism 6.05 (GraphPad).
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