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A B S T R A C T   

Microbial cell factories (bacteria and fungi) are the leading producers of beneficial natural products such as 
lycopene, carotene, herbal medicine, and biodiesel etc. These microorganisms are considered efficient due to 
their effective bioprocessing strategy (monoculture- and consortial-based approach) under distinct processing 
conditions. Meanwhile, the advancement in genetic and process optimization techniques leads to enhanced 
biosynthesis of natural products that are known functional ingredients with numerous applications in the food, 
cosmetic and medical industries. Natural consortia and monoculture thrive in nature in a small proportion, such 
as wastewater, food products, and soils. In similitude to natural consortia, it is possible to engineer artificial 
microbial consortia and program their behaviours via synthetic biology tools. Therefore, this review summarizes 
the optimization of genetic and physicochemical parameters of the microbial system for improved production of 
natural products. Also, this review presents a brief history of natural consortium and describes the functional 
properties of monocultures. This review focuses on synthetic biology tools that enable new approaches to design 
synthetic consortia; and highlights the syntropic interactions that determine the performance and stability of 
synthetic consortia. In particular, the effect of processing conditions and advanced genetic techniques to improve 
the productibility of both monoculture and consortial based systems have been greatly emphasized. In this 
context, possible strategies are also discussed to give an insight into microbial engineering for improved pro-
duction of natural products in the future. In summary, it is concluded that the coupling of genomic modifications 
with optimum physicochemical factors would be promising for producing a robust microbial cell factory that 
shall contribute to the increased production of natural products.   

1. Background 

Green manufacturing industry, created from natural microorgan-
isms, is a productive cell factory capable of valorizing polysaccharides 
(that are sourced from either plants or animals) into highly value-added 
natural products (NPs), such as flavonoid, carotenoid, and essential oil, 
etc. However, it is challenging to obtain a high yield due to involved 
stereochemical complexity [1]. Therefore, pretreatment methods before 
valorization have been investigated to overcome this bottleneck. Studies 
reveal that the optimum NPs production can be achieved by increasing 
microbial enzymes permeability that can be further enhanced by 

engineering microbial cells [2,3]. Generally, microbial-derived natural 
products exhibit lower water and land requirements and contribute as 
environmental benign (i.e., reduce global warming and pollution). 
Furthermore, these products are also cost-effective compared to prod-
ucts obtained from chemical plants. Normally, two major approaches, 
monoculture and consortial strategy, are adopted by microbial cells to 
produce diversified valuable products, as shown in Fig. 1 [4]. However, 
in the last decade, an increase in preference has been noticed for con-
sortial systems because of higher production efficiency and fulfilment of 
more complicated processing tasks. Recently, a study on environmental 
biodiversity demonstrated the existence of 99% microorganisms in the 
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form of consortia and highlighted their application areas such as 
wastewater treatment, bioremediation, composting, biomining, biofuel 
production and functional ingredients in the food industry [5–8]. 

Apart from the evolution of microbial platforms to transform nearly 
any carbon source into the desired product, a rather modest number of 
these cases have seen the successful transition to industrial-scale mar-
keted products. Moreover, the quality and titer of obtained products in 
the laboratory setting are lower than that of commercial setup; hence, 
several techniques (i.e., genetic engineering and process optimization) 
have been considered to proceed with the scale-up. Recently, multiple 
reviews have been written on process engineering practices but are 
limited to particular product scale-up in microbial production systems 
[9–11]. This review extensively focuses on physical (i.e., temperature, 
pH, inoculum ratio, and media composition) and genetic parameters 
that allow a better scale-up microbial NPs production. While, the com-
parison between two production schemes, including monoculture and 
consortium, shows system limitations regarding optimum product yield 
[12]. Secondly, the present review comprehensively assesses the 
monoculture and consortial systems and their syntrophic interaction 
identified by advanced synthetic techniques. 

2. Primary microbial systems for sustainable NPs development 

It is challenging for the microbiologists to identify and isolate novel 
producing microorganisms to meet the demand for natural products. It 

has been found that less than 5% of fungi and 1% of bacterial species are 
currently known, indicating still a large number of NP’s synthetic mi-
crobial species to be discovered [13]. These natural products, especially 
polyphenols, flavonoids and carotenoids are characterized by an 
adequate level of antimicrobial and antioxidant properties comparable 
to or even better than many synthetic antioxidants. Additionally, ther-
apeutic drugs and functional foods formulated with natural products 
have also been developed because of the less toxicity, cost-effectiveness, 
and surplus availability [14]. In general, there are approximately 1 
million types of natural products that are simply categorized into 
bioactive and inactive compounds. Of these natural products, biologi-
cally active compounds are around 25%, while 60% have plant origin 
and the rest are from microbial sources. Meanwhile, the terrestrial 
environment seems to be ideal for the obtainment of natural products; 
approximately 129 bioactive natural products were collected from ma-
rine microbes from 2000 to 2003 [15]. 

2.1. Bacteria and fungi: a robust and efficient microbial factory 

Particularly, fungi and bacteria possess stronger adaptation ability 
for every ecological niche, making them the largest kingdom globally. 
There are approximately 1.5 million known species of fungi, and only 
10% of them are known to microbiologists that mostly undergo some 
sort of mutualistic relationships, such as mycorrhiza, lichen, and bifi-
dobacterium (gut microbe). While, the examples of symbiotic nitrogen- 

Fig. 1. Schematic diagram shows the multi-step technique leading to biosynthesis of natural products via monoculture and consortium bioprocessing strategies.  

M.H. Hussain et al.                                                                                                                                                                                                                             



Synthetic and Systems Biotechnology 7 (2022) 586–601

588

fixing bacteria include rhizobium and azospirillum, which are mainly 
associated with plants [16,17]. Because of the complex ecosystem in an 
animal’s intestine, a symbiotic relationship between gut microbiota and 
the host has been developed in which Bacteroidetes and Firmicutes make 
up 99% of the total gut population. Intriguingly, the existence of bac-
teria on earth dates back to over 3 billion years ago, and eukaryotes even 
existed for over 1 billion years. In terms of economic and ecological 
roles, specific bacterial and fungal families, such as Lactobacillaceae, 
Enterobacteriaceae, Saccharomycetaceae, and Agaricaceae, etc., have been 
well-recognized and also effectively contribute towards environmental 
benefits. 

However, since the discovery of penicillin, more than 23,000 natural 
products (i.e., antivirals, antimicrobials, anti-inflammatory and cyto-
toxic agents, etc.) have been isolated [15]. Of these products, 42% are 
made from fungi (Basidiomycota and Ascomycota) and 32% by fila-
mentous bacteria (actinomycetes with an average mass range of 200–3, 
000 Da) [18]. More importantly, some ascomycetes, such as Aspergillus, 
Pencillium and Fusarium species, are identified as a major source of 
valuable compounds, from which 950, 900, and 350 bioactive com-
pounds have been isolated, respectively [19]. The development of new 
antibiotics is facing an increasing trend, as the human’s fatalities by 
pathogenic microbes are progressively increasing. Because of the high 
quality and functionality, commercial antibiotics have been developed 
from fungi and bacteria, with the production proportion of 50, 15, 20% 
by the actinomycetes, non-filamentous bacteria and filamentous fungi, 
respectively [15]. 

3. Growing market demand for microbial derived NPs 

According to Business Communication Company (BCC), global 
market for microbial products shows an increasing trend, from $143.5 
billion in 2014 to $306 billion in 2020 [20]. Moreover, the latest tech-
nologies for the manufacturing of microbial products exhibit a higher 
degree of technical and economic advantages relative to simple syn-
thetic processing. These microbial-derived products include nutrition 
supplements like amino acids and vitamins, secondary metabolites, 
organic acids, enzymes, coloring agents, flavoring agents, and thera-
peutic products (i.e., drugs, and antibiotics) [21]. Approximately 75% of 
antibiotics production in actinomycetes is majorly due to the single genus 
Streptomyces, which alone had a market of $25 billion in 2001 [22]. The 
market for antifungal drugs is expected to reach approximately $4 
billion in 2002 [23]. The isoprenoid production seems to fluctuate over 
the time, the overall trend has been rising with hundreds of new struc-
tures being reported each year; while, markets for isoprenoids, including 
polyketides and terpenoids are $17 and $12 billion, respectively. 

4. Monoculture as primitive and simpler strategy for bio- 
manufacturing 

In environmental diversity, a single productive cell possesses the 
strong capacity to endure harsh physiological changes, including 
nutrient deficiency and negative biological interactions, by adopting the 
dormant strategy. Compared with the dormant state, the single culture 
exhibits increased potential growth in non-dormant mode but is more 
susceptible to predation [24]. However, metabolic control effect and 
microbial growth behavior also regulate the cell behavior primarily 
because of interacting intra- and extracellular chemical and physical 
parameters and due to the genetically encoded characteristics. There are 
several methods to identify the growth and behavior of single cell cul-
ture (i.e., known as monoculture). Of these, molecular and spectroscopic 
methods exhibit better results than conventional techniques. Mean-
while, it is challenging for the small percentages of monocultures to 
grow under severe environmental conditions, as they require controlled 
laboratory conditions after isolation and purification from environ-
mental samples (e.g. water, soil, air, and animal gut) [25]. Till now, 
several studies have demonstrated the effect of various processing 

conditions, such as medium composition, incubation temperature, pH, 
and inoculum ratio, etc. on monoculture’s growth and behavior profiles. 
However, this review aims to motivate the potential of utilizing con-
sortium and monoculture as natural product sources and functional 
additives in the food and non-food industries, with the highlight on the 
effect of physical and genetic parameters on their optimal growth and 
production in subsequent sections [26]. 

4.1. Monoculture as a bio-manufacturing system for NPs 

In industrial biotechnology, microbial strains isolated from nature 
are characterized by functional properties to execute the industrial NPs 
manufacturing process successfully. During process designing, the 
overall contribution of each microorganism also largely affects the plant 
and animal-derived natural products development. For instance, when 
comparison with non-model organisms, industrial natural products 
produced by model monocultures (i.e., E. coli and S. cerevisiae) are 
significantly higher, suggesting its simplified metabolic engineering and 
optimized bioprocess control [27]. Moreover, non-model organisms 
exhibit growth incompatibility at laboratory setting, but the recent ad-
vances in genome engineering technologies based on the combination of 
computational models, CRISPR/Cas tools, and synthetic biology 
methods, such as DNA assembly method are enabling their optimal 
growth in pre-defined laboratory model. Latter tools lead to rapid 
testing, construction, and characterization of genetic parts from 
different organisms [28]. With desired genetic characteristics, recom-
binant strains produce a higher level of natural products than nonre-
combinant strains in an industrial setting, as displayed in Fig. 2 [29]. 

Furthermore, hydrolysis of polysaccharides via enzymes signifi-
cantly enhances NPs, such as isoprenes, aromatic compounds, peptides, 
etc. These products have attracted tremendous manufacturer interests 
due to on-demand production and higher yield as well as controlled and 
scalable production in fermentation facilities; see Fig. S1, Supporting 
Information [30]. In terms of the application of monoculture as func-
tional food additives, they can be simply categorized into GRAS 
(Generally Regarded as Safe) microbes (i.e., S. cerevisiae, and 
C. glutamicum etc.) and non-conventional GRAS microbes (Y. lipolytica), 
which is further positively correlated with the development of ther-
apeutical and nutraceutical products [31–33]. Besides the well-known 
monoculture drawbacks, multiple reports have also demonstrated 
certain benefits, such as cost-effectiveness, simpler cultivation proced-
ure, and robust method when compared to mixed culture [34–36]. 

5. Bio-synthetic tool assisted shift of monoculture system to 
consortium one 

Recently, comprehensive assessments of activity and complexity of 
microbial systems have gained much attention in several scientific 
studies, which might be due to its association with the enhanced NPs 
production via monoculture and/or consortial based production set-ups. 
During symbiotic evolution, the monocultures that thrive under 
different environmental conditions usually adopt the traits of commu-
nities. Interestingly, a functional consortium comes into being by the 
interaction of several groupings of microorganisms, which indicates its 
wide range of specificity and complexity in structure than that of 
monoculture [4]. Thus, the multi-organism design (i.e. raceway ponds) 
could be a competitive alternative to traditional monoculture strategy, 
saving time and exhibiting resilience to fluctuating environmental 
conditions. This transition from static to dynamic programme is thought 
to be a result of synthetic biology tools that enable genetic engineering 
and DNA assembly methods to control organisms within consortia [37, 
38]. These tools consist of exogenous molecules to control population 
behaviors, to develop communication systems between consortial 
members via intercellular signalling, and to construct codependent links 
of microorganisms by syntrophic interactions. 

Generally, biosynthesis of natural products via interactive approach 
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is considered relatively difficult, mostly because of complex population 
dynamics, inter-modules metabolites transport, inappropriate pre-
cursors supply, different growth rate of both upstream and downstream 
modules, and long fermentation period [39]. Despite its limitations, 
recent researches have also demonstrated certain underlying consortium 
advantages that include increased substrates utilization spectra, lower 
metabolic stress through labor division approach, controlled interme-
diate products accumulation through changing strain–strain ratios, 
co-culture stability inside the fermentation reactors, reduced metabo-
lite’s production cost and by-product formation simultaneously [40,41]. 

5.1. Synthetic consortia as mimicking system from natural one 

Since 1980, microbiologists aim to motivate the potential of utilizing 
community based activities (i.e., bioleaching, and degradation of pol-
lutants) which are evolved from macro-to micro-sphere natural sce-
narios [42]. Recently, system biology tools have been introduced that 
determine the microbial community functioning and composition with 
the purpose to develop synthetic consortia [38,43]. The biological ac-
tivities of microorganisms which are isolated from their natural com-
munities have been widely reported. Meanwhile, in the laboratory, the 
unculturability of isolated strains might be due to niche mismatch, 
dormancy, antagonistic effects and obligate metabolic interactions. 
However, ‘unculturable’ indicates that present culturing techniques are 
not appropriate to grow a given microorganism in pure cultures under 
the laboratory setting [44]. Therefore, to resolve this problem microbial 
ecologists have adopted certain strategies such as selecting bacteria 
amenable to conventional culturing, and using culture-independent 
methods. In addition, many studies have shown that majority of these 
isolated strain prefer to grow as consortium rather than individual 
monocultures, and it is strongly indicating towards metabolic in-
teractions in all possible combinations which might bring together 
strains that would not meet in their natural habitat [45,46]. 

In general, there are two major ways to procure microbial consortia 

involving either (i) a synthetic assembly obtained from scratch, or (ii) 
microbial community isolated from environmental samples [47]. 
Because of the high functional properties, natural consortia is commonly 
used to develop commercial food products, such as beverage and baked 
products, and also well-known for its role in some clinical studies 
[48–50]. Moreover, natural consortium synergism was commonly 
observed in herbivores’ gut and in bioleaching processing. It is 
mimicked by synthetic consortia, which leads to beneficial interaction 
for enhanced productivity of target natural products from cheap raw 
materials, such as lignocellulose wastes and animal manures; hence, no 
further acidic and enzymatic pretreatments are required [51,52]. 

6. Syntropic interaction in well-defined consortial system 

Particularly, different members of microbial community that 
together respond well against industrial and environmental challenges 
in relative to monocultures, indicating the strong syntropic interaction 
among the diverse microorganisms like algae and bacteria [53,54]. It 
suggests that change in nutritional parameters affect the interaction 
pattern, which may be classified into two major types, either coopera-
tive (symbiosis, mutualism, and commensalism) or non-cooperative 
interaction (parasitism, ammensalism and predation) [55]. Hence, 
cooperative interaction is practically important to achieve maximum 
beneficial outcomes in terms of valuable products quality and titer. In 
both cases, metabolic interactions exist along two main axes: (i) the 
investment by the involved partners (i.e. production cost of exchanged 
metabolite), and (ii) the degree of reciprocity (i.e. flow direction of 
metabolite). The microbial community is characterized by unique 
functional properties which emerge as a result of different interactions 
among inter-species. Moreover, shaping of function, structure, and dy-
namics of microbial communities have been aroused from inter-species 
interactions leading to the development of synthetic consortial system 
[56,57]. 

Fig. 2. Illustration of combinational strategy including, CRISPR gene editing tool, synthetic biology method (DNA assembly and automated sequencing) and 
computational modeling in nonmodel organisms for rapid testing, and construction, and characterization of recombinants genetic parts for improved production of 
natural products. 
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6.1. Spatially linked microbial consortia as a conceptual design to 
engineer consortia 

It has been found that an enhanced control over the system (con-
sortium) is achieved by applying a compartmentalization strategy that 
provides ideal settings compatible with the consortial members. Addi-
tionally, cross-feeding interactions influence the growth of consortial 
members in spatially linked microbial consortia (SLMC); while, it has 
been affected by certain factors, for example, regulation of biosynthesis 
enzymes, allocation of limited resources (e.g. expression machinery, 
nutrients, and space), and biotic composition of bacterial community, as 
well as certain ecological parameters like chemical diffusivity and de-
gree of spatial structuring, etc. The transfer rate of metabolite is higher 
through membrane transport than diffusion-based transport, which also 
bears some risks, such as consumption of nutrients by third party, 
degradation and loss of exchanged metabolites by fast diffusion [58]. At 
the laboratory scale, several synthetic structures (e.g. nanotubes, 
channels, and pili) facilitate the attachment of bacterial communities in 
order to exchange the metabolites. Furthermore, Dietz et al. [59] used 
dialysis membrane reactor to exchange metabolites on either side of a 
membrane at a commercial scale. On the other hand, Hollow-fibre 
bioreactor provides similar growth conditions to co-culture on each 
side of separate bioreactors, as demonstrated in Fig. 3. 

Besides, spatial segregation coupled with in-line nutrient supple-
mentation further improves the production of natural products. It has 
been considered an effective approach to retrieve consortial related 
drawbacks, such as growth inhibition by toxic intermediate compounds, 
inter-species dependency for nutrients, and lower product yield by 
downstream strains. Meanwhile, simple nutritional requirements are the 
key prerequisite characteristics for selecting upstream microorganisms 
limiting the metabolism interferences in downstream microorganisms. 
Moreover, the downstream microorganisms should possess some of the 
following characteristics: capable of co-habiting, matching growth rates, 
increasing the capability of upstream micro-organism to consume 

multiple feedstocks, nontoxic in nature, maintaining genetic integrity, 
and functioning as a bio producer [60–62]. 

7. Design and evaluation of consortial functioning by advanced 
synthetic technologies 

Non-linearity in combination coupled with the immense complexity 
of microbial communities remains a major challenge to construct an 
efficient synthetic microbial consortium in which the role of each 
member is well-defined in the provision of community-derived fluxes 
under dynamic environments with varying physical and chemical con-
ditions. The omics technology and genome-editing tools have gained 
much regard currently to achieve a rational design of synthetic micro-
bial consortia. Omics tools arm researchers to have holistic views of 
growth dynamics and metabolic fluxes in defined consortia [63,64], but 
indicate a particular genetic pathway and interlinking between con-
sortial members, leading to a consortium with the desired functional 
characteristics. Furthermore, the genetic-based treatments, such as 
transcriptional control, genome editing, and high-throughput muta-
genesis significantly enhance the processing capabilities (i.e. enduring 
fluctuating reactor’s environment, and producing optimum level of NPs) 
of synthetic microbial consortia, with more obvious improvement 
observed by CRISPR/Cas-based toolkits [65–67]. The aforementioned 
technologies such as omics and genetic engineering should be coupled to 
computer modelling to further contribute for a better understanding of 
microbial interactions [68,69]. Hence, comprehensive assessments of 
synthetic consortium structure, composition and functionality of con-
sortial members are usually essential to promote their application in the 
industrial, medical, and environmental sectors [70,71]. 

Modern technique, including omics approach (transcriptomics, 
metabolomics, and proteomics), is one of the most robust, precise and 
efficient techniques (coupled with a higher level of detection limit) to 
analyze monoculture, environmental microbial communities, and 
defined consortia to understand the underlying molecular mechanisms 

Fig. 3. Engineered laboratory (A) and commercial (B) scale approach to make consortium derived natural products under ideal growth conditions. At laboratory 
scale, microfluidic offers growing set of tools for manipulating the consortium growth under controlled environmental conditions, while hollow-fiber bioreactor is 
considered as commercial bioreactor, as it maintains the similar growth conditions for co-culture on each side of separate reactors. 
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of microbial interactions; see Fig. S2, Supporting Information [72,73]. 
Interestingly, by applying current metatranscriptomics and meta-
proteomics technologies, the obtained informative data are employed to 
compare the temporal gene expression between consortia and mono-
cultures, such as temporal proteomes when complemented with the 
metabolomic analysis demonstrated the positive interaction between 
K. vulgare and B. megaterium to produce 2-keto-gulonic acid. In general, 
there are two major strategies for the selection of consortium members, 
the top-down method that considers consortium members as the 
keystone players isolated from specific complex microbial community 
[74], and the bottom-up method considering consortium members 
having desired traits and selected from the pool of engineered micro-
organisms [40]. Meanwhile, comparing the top-down method which is 
based on multiple omics analysis [75–77], the bottom-up method is 
more preferable for constructing the stable artificial microbial consortia, 
probably due to the rational guidance of genetic engineering principles 
with comprehensive analysis on system’s genetic elements, circuits, 
modules, and metabolic pathways, as shown in Fig. 4 [78,79]. 

Several studies report that the process efficiency and ease to 
construct synthetic consortia via top-down approach is lower as 
compared to bottom-up strategy, which is mainly due to the unavail-
ability of isolates, lack of genomic information, and suitable engineering 
tools for unconventional microorganisms. The bottom-up approach, 
which is facilitated by multiple synthetic biology tools, has thus been 
investigated for resolving this drawback to further lead in constructing 
robust and stable artificial consortia for the optimum production of NPs. 

8. Optimum processing conditions for microbial bio-operational 
unit 

Particularly, the biosynthetic strain behavior, either in consortium or 
in monoculture, is dependent on several factors, such as genomic 
(mutagenesis, and genetic engineering), and physicochemical parame-
ters including media composition, incubation temperature, pH, and 
inoculation ratio etc. Microbial cell factory overall represents a valuable 
source of NPs, and these compounds are capable of meeting the re-
quirements of value-added foods and therapeutic drugs of the local 
population [80–82]. Interestingly, the higher level of microbial NPs has 

been obtained by compatible physicochemical conditions coupled with 
desired genetic modification, and both of these are specific for various 
bacterial or fungal species [83,84]. There are several tools for recom-
binant geneticists, including genetic recombination, targeted duplica-
tion, and deletion by genetic engineering and transposition mutagenesis, 
to achieve the desired production of natural products [85]. Recent ad-
ditions to these techniques include transcriptome analysis, metabolic 
engineering and genome shuffling. Moreover, this review aims to 
motivate the potential of utilizing monoculture and consortium for the 
optimum microbial NPs (e.g., lovastatin, and 3 aminobenzoic acid, etc.) 
production at a commercial scale, with the highlights on its compatible 
physicochemical conditions and desired genetic modulations, as dis-
played in Fig. 5. These parameters will be discussed herein. 

8.1. Effect of physical conditions on microbial derived-NPs production 

In general, the microbial production of natural products and sec-
ondary metabolites is affected by external stimuli, i.e., the surrounding 
environment. Particularly, the microbial cell possesses the strong ca-
pacity to tolerate severe perturbation in environmental conditions. 
Considering the influence of environmental factors on microbial cells, it 
is possible to determine the most significant, as described in the 
following section. 

8.1.1. Effect of temperature on microbial derived-NPs production 
Many reports have shown that fermentation temperature can 

significantly affect microbial growth, specific enzyme activity, and 
enzyme folding [86]. Moreover, several temperature-related studies 
have also demonstrated its considerable impact on the production 
phases of NPs metabolism of microorganisms in monoculture and con-
sortium and influence the interactions between various microbial groups 
[87,88]. In general, microorganisms are categorized into three major 
classes based on optimum growth temperature requirements: psychro-
philes, mesophiles, and thermophiles. Psychrophiles, which grow as 
monoculture, appears to be an efficient source of novel metabolites, as 
they only perform under a certain temperature range of 0–15 ◦C. At the 
same time, these cold-adapted micro-organisms show enhanced adapt-
ability against numerous stresses, like cold temperature stress, 

Fig. 4. Top-down (A) and bottom-up (B) approaches for synthetic consortia construction. In top down approach, the consortium members are isolated from complex 
microbial community, while in bottom up approach, consortium member are ascribed to specific traits and selected from pool of engineered microorganisms. 
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decreased fluidity of cell membrane, low nutrient availability, and 
transport protein efficiency [89]. Among the cold-adapted strains 
examined, the Penicillium griseofulvum exhibits increased fulvic acid, 
chanoclavine I, elymoclavine and mycelianamide production, all of 
which possess strong antimicrobial activity [90]. Additionally, Pseudo-
gymnoascus sp. and Bacillus sp. are predicted to be among the most 
promising psychrophiles, based on their ability to produce higher con-
centrations of asteric acid derivatives and mixirins. These compounds 
are known to reduce fungal infection and proliferation of colon tumour 
cells, respectively [91,92]. 

More importantly, most monocultures prefer to grow and produce 
natural products at a moderate temperature range in between 20 and 
45 ◦C. For example, Bacillus subtilis and Aspergillus sp. were cultured to 
produce optimum antifungal and insecticidal substances at a specific 
temperature, ranging from 25 ◦C to 37 ◦C as well as Aspergillus sp. also 
contributed in the production of aspochalasins antimalarial antibiotic 
[93]. A few findings have also been reported by Wiebe et al. 28, who 
demonstrated the microbial growth suppression by lack of substrate at 
minimum growth temperature (near 10 ◦C), which can be treated either 
by addition of substrates or rise in temperature [94]. Besides, Strepto-
myces thermoviolaceus, which grows as a thermophilic monoculture 
(from 40 ◦C to 55 ◦C) produced antibiotic granaticin and various 
extracellular proteins at a growth rate of 0.175 h-l at 45 ◦C [95]. 

A detailed study on the consortial growth behaviour during 
myeolchi-aekjeot (MA) fermentation demonstrates that the low tem-
perature notably affects interaction among mesophilic bacterial com-
munities and has adverse effects on microbial growth due to 
mycoplasma toxicity. Meanwhile, fermentation-derived amino acid 
production escalates many folds when the temperature is adjusted to 
25–30 ◦C [96]. Anammox consortia, consisting of bacteria from phylum 
Chloroflexi, Chlorobi, and Proteobacteria, is a mesophilic consortium 
(20–25 ◦C), which is significantly linked to energy conservation strategy 
and capable of producing a higher level of amino acids [97]. Further-
more, the synthetic bacterial consortium consists of Streptomyces sp. and 
Methanosarcina sp. which have been recognized as a robust producer of 
actinorhodin (with an optimum growth between 25 ◦C and 37 ◦C) [98, 
99]. In shrimp fermentation, psychrophile community members exhibit 
a higher production of amino acids at 15 ◦C due to the growth inhibition 
of pathogenic strains (i.e., Vibrio, Aliivibrio, and Photobacterium sp.) after 

105 days [100]. On the other hand, thermophilic methanogenic con-
sortium TERIL63 was developed to produce a significant amount of 
volatile fatty acid (2037 mg/L), consisted of two strains, Meth-
anothermobacter thermoautotrophicus and Thermoanaerobacter sp. It can 
grow in the wide range of 60–100 ◦C temperature in methogenic me-
dium [101]. 

8.1.2. Effect of pH on microbial derived-NPs production 
The pH level of the growth medium imposes selective pressure on 

microbial metabolism, growth, and secondary metabolites production. 
Interesting, both hydrogen and hydroxyl ions concentrations have an 
appreciable impact on microbial cell behaviour, or it may act indirectly 
by changing the degree of dissociation of valuable compounds in the 
growth medium. Hence, the pH variation largely impacts the enzymatic 
activity and normal nutrient solubility and influences the distribution of 
microorganisms in a diversified ecosystem [102,103]. In general, there 
are three major types of microorganisms, which are described as alka-
liphiles, acidophiles, and neutrophiles on the basis of optimum pH 
requirement for growth. Importantly, microorganisms produce higher 
level of NPs at a wider range of pH (typically, most of the synthetic 
microbial cells prefer the pH range of 3–4 units) and pH variation 
remarkably affects the activity and composition of microbial commu-
nity, indicating its significance more than temperature in certain in-
dustrial bioprocess (i.e. volatile fatty acid (VFA) production in 
bioreactor) [104]. 

For example, Bacteroides can adapt themselves over a wide range of 
pH rather than that of Streptococcus and Veillonella, which experience 
growth inhibition under acidic pH treatments [105]. Furthermore, in 
comparison with butyrogenic reactions (operated at acidic pH 5.5), 
propionate- and acetate-producing consortia, consisted of Veillonella, 
Escherichia, and Bacteroides, exhibited enhanced production of second-
ary matabolites at pH 6.5–6.9 (neutral pH) [106]. It has been found that 
basic mesophilic consortia, consisting of Bacteroidetes, Firmicutes, Acti-
nobacteria, Tenericutes, Proteobacteria and Cyanobacteria, largely 
contributed in the production of longer chain VFAs at pH 9–10 and its 
yield was calculated up to 388 ± 28 mg VFA as HAceq g VS− 1 added, 
where average composition comprises of 83% acetic acid, 6.3% propi-
onic acid, 4.4% isovaleric acids, 3.6% isobutyric, and 2.7% n-butyric 
[104,107]. In addition, duckweed treatment via acidic mesophilic 

Fig. 5. Multi-objective optimization of processing conditions and genomic engineering for enhanced production of microbial-derived natural products.  
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consortia (comprises of Bacteroidia, Gammaproteobacteria, and Clos-
tridia) produces an appropriate level of volatile fatty acids; while, the 
optimization of processing conditions can further improve its yield. 
Later, genus Acidaminococcus, a mesophilic gram-negative cocci, is well 
determined for its amino acid production in acidic mesophilic fermenter 
[108]. 

In the case of monoculture, an increased selection has been noticed 
for both alkaliphile (i.e. B. aurantinus), and acidophile (i.e. A. terreus, 
and Streptomyces) to meet the demand of local population for antimi-
crobial products, such as aurantin, anti-influenza agent and secondary 
metabolites, etc., which are produced at pH value of 7.5, 6.4, and 5, 
respectively [109,110]. Aside from this, an appreciable level of gran-
aticin antibiotic has been identified in the fermentation broth of 
S. therrnoviolaceus at pH 6.5–7.5 [111]. 

8.1.3. Effect of growth medium on microbial derived-NPs production 
The prerequisite requirement for successful industrial fermentation 

is a good fermentation medium with a good nutritional profile, such as 
carbon, potassium, phosphorus, manganese, nitrogen, energy sources, 
etc. Also, some trace elements, including minimal salts, heavy metals 
and vitamins (growth factor), must meet the elemental needs for 
metabolite production and cell metabolism [112,113]. Thereafter, the 
high functional constituents in the medium serve as regulators which 
influence the quantity and type of metabolite produced during incuba-
tion. Moreover, it is important to determine the appropriate incubation 
period for the production of NPs because in a long incubation period, 
desired biologically active compounds convert into other less significant 
compounds. Cultivation medium can be simply categorized into com-
plex media and minimal media. For instance, complex media exhibits 
higher cell density and microbial growth rates than minimal broth 
media, which has been widely reported for enhanced fatty acids, and 
sugars production [114]. 

As in monoculture, 2% of glucose supplementation appears as a su-
perior substrate for higher antimicrobial metabolites production and cell 
growth in Streptomyces sp. RUPA-08PR and sucrose exhibit a similar 
pattern of result followed by xylose, mannose, and fructose, respectively 
[115]. However, it is not surprising to observe little antibiotic produc-
tion in galactose and lactose supplemented medium due to its interfer-
ence with microbial metabolism [116]. Particularly, the growth medium 
of B. subtilis is supplemented with glucose (40 g/L) and NH4NO3 (4.5 
g/L), which positively contributes to enhanced surfactin production 
[117]. In the case of organic and inorganic nitrogen sources, yeast 
extract exhibited a higher yield of antimicrobial agents followed by 
peptone, NaNO3, beef extract, KNO3, etc. Meanwhile, 1% NaCl supple-
mentation shows higher production of antimicrobial metabolites in 
various strains. Few studies have been reported that potato dextrose 
broth as an efficient growth medium, used to produce tropolone (anti-
malarial antibiotic) and cladospolide D (antifungal antibiotic) against 
Cordyceps sp. and Cladosporium sp., respectively [118]. 

Various cultivation media are identified in advanced microbial 
metabolomics studies, such as M9, minimal broth, universal 13C-labelled 
medium, nutrient broth, and Luria-Bertani broth [119]. It was found 
that too high substrate (phenanthrene, pyrene, and naphthalene) con-
centration cause toxicity to microbes, while low substrate concentration 
cannot meet the growth requirement of the microbial cell. Hence, 
selecting an ideal biosynthetic strain is necessary either by direct evo-
lution or genetic engineering, allowing the microorganisms to co-utilize 
the multiple sugars in the cultivation medium [120,121]. A detailed 
assessment of consortia’s co-utilization of various substrate mixtures 
demonstrates that engineered E. coli co-culture can co-utilize both xylose 
and glucose in a similar cultivation medium to produce flavonoid nar-
ingenin [122]. Moreover, in the fermenter, a periodic feeding of xylose, 
phosphate, and ammonium during the first 24 h, has been proved to 
optimize S. cerevisiae’s growth in coculture to increase oxygenated tax-
ane titer about threefold (16 mg/L in 90 h). Additionally, amino acids 
supplementation (i.e. Pro, Thr, Ile, Leu, and His) was added to the 

2-Keto-D-gluconic acid producing consortium (G. oxydans-K. vulgare), 
which greatly improves 2-KGA (2-keto-L-gulonic acid) titer by 41.8% 
when compared to the original consortium (without amino acid sup-
plementation) [123]. 

8.1.4. Effect of inoculation ratio on microbial derived-NPs production 
Primarily, mixed synthetic communities are characterized by various 

kinds of species with varying growth rates in which the faster-growing 
species destabilizes other species through vigorous consumption of nu-
trients. Co-cultivation techniques have thus been investigated for 
resolving this drawback by optimizing the relative population ratio of 
microbial consortium either by varying the initial inoculum ratio or by 
inoculating a downstream strain during the culturing of upstream strain 
[124–126]. During fermentation, adjusting the initial inoculum ratio of 
upstream to downstream strains before strain cultivation could appre-
ciably enhance population growth rate and specific performance of 
strains in the consortium. Moreover, population control strategies such 
as rational tuning of inoculation ratio among consortium partners 
should be applied to regulate overall production. For example, con-
sortium with dominant ratios of upstream strains utilizes more sub-
strates. However, it produces less final product rather than that of 
consortium with dominant downstream ratios, which exhibits decreased 
substrate utilization and enhanced final product production [124,127]. 

More importantly, the growth phase and inoculation timing are the 
important parameters that influence the consortium’s performance and 
general structure. Generally, each growth phase (i.e., lag, log and sta-
tionary phase) associates with specific physiological changes which 
appear in the microbial cell [128]. A synthetic consortium, consisted of 
R. glutinis and C. vulgaris, displayed an enhanced lipid production 
(70.9%) at a ratio of 1:1 in their log phase. Besides, lipid producing 
consortia (Saccharomyces cerevisiae-Chlorella sp.) exhibits a higher level 
of metabolite production at ratio of 2:1 [129,130]. Additionally, a 
robust two member’s consortium of Dinoroseobacter shibae strain and 
Thalassiosira pseudonana strain has been reported to provide higher 
metabolite yield when T. pseudonana is in exponential growth phase 
before the bacterial inoculation [131]. 

Meanwhile, it is challenging to achieve optimum production of 
β-carotene and flavonoids via synthetic consortia, such as Rhodotorula 
glutinis-Debaryomyces castellii (upstream:downstream) consortium and 
E. coli-E. coli consortium. Therefore, the adjustment of inoculum ratio at 
1:1 and 8:2, respectively, have been investigated for enhanced produc-
tion of β-carotene, and flavonoid [132,133]. It has been reported that 
the consortium’s stability is negatively influenced by long fermentation 
period and large fermentation volume due to the incompatible growth 
requirements, metabolite dilution, and spatiotemporal dynamics inside 
the fermenter and thus, it is not surprising to exploit advanced genetic 
techniques to resolve these problems [134,135]. 

The inoculum density and age are now regarded as important pa-
rameters which influence the metabolite and biomass accumulation in 
monoculture as well as provide economic feasibility (in case of com-
mercial fermentation) [136,137]. Bacillus subtilis SPB1, grown as a 
monoculture, provides an optimum lipopeptide yield (3.4 g/l) by 
adjusting second inoculum age and size to 4 h and 0.01, respectively, 
after a first inoculum age of 23 h [138]. In particular, glucose as a car-
bohydrate substrate increases the surfactin production in B. subtilis, 
which improves by optimum incubation time and inoculum size of 72 h 
and 1.5–2% (v/v), respectively. In B. braunii, maximum production of 
biomass and hydrocarbon up to 5.97 and 2.99 g m− 2 day− 1 can be 
achieved at controlled seed age and inoculum density of 14 days and 
7.9–10.1 g m− 2, respectively [139]. Finally, comprehensive assessments 
of physical requirements, including temperature, pH, medium compo-
sition, and inoculum density that are optimal for bacterial production, 
were conducted in Table 1. 

M.H. Hussain et al.                                                                                                                                                                                                                             



Synthetic and Systems Biotechnology 7 (2022) 586–601

594

8.2. Effect of genetic modifications on microbial derived-NPs production 

As a robust natural product producer, genetically modified micro-
organisms (GMOs) have gained growing popularity in food, cosmetics, 
pharmaceutical, and many other industries. These microorganisms have 
been developed by engineering the genome on inserting and deleting 

desirable genes or pathways which will be discussed herein and also 
shown in Fig. 6. 

8.2.1. Effect of heterologous host selection on microbial derived-NPs 
production 

The optimum production of microbial-derived natural products, such 

Table 1 
Effects of physico-chemical parameters on the production of natural products via monocultutre and consortial based system.  

Physico-chemical parameters 

Factor Organism Specifications Production Bioprocessing 
strategy 

Reference 

Temperature 
33.7 ◦C P. acidilactici Observe bacterial growth at various temperature at a 

constant pH of 6.5 
No growth was seen at 10 ◦C, 50 ◦C 

959.75 AU 
mL− 1 

Bacteriocin 

Monoculture [168] 

37 ◦C A. senegalensis Enzymes speed up metabolism 
Bacterial cells rapidly multiply 

57 mg mL− 1 

Bacterial 
cellulose 

Monoculture [103] 

37 ◦C E. coli-E. coli Heterologous enzyme folding and its activity in E. coli is 
dependent on temperature 

1.5 mg/L 
3-amino- 
benzoic acid 

Consortium [169] 

25–35 ◦C Acinetobacter, 
Acetitomaculum, 
Bacillus 

Mesophilic consortia operate well in acidogenic phase 
Microbial activity inhibited at 20 ◦C 

4403 mg/L 
Volatile fatty 
acid 

Consortium [170] 

pH 
4.5 A. senegalensis Carried out oxidative reaction 

Aids nutrient solubility 
98 mg mL− 1 

Bacterial 
cellulose 

Monoculture [103] 

5.8–4.0 P. pastoris Medium pH effect the chemical structure of end-products 60 mg/L &14.4 
mg/L 
monacolin J, 
lovastatin 

Monoculture [171] 

6.0 L. lactis-S. cerevisiae pH control strategy without alkali supplementation was 
adapted 

150.3 mg/L 
Nisin 

Consortium [172] 

6.0 L. lactis-K. marxianus pH controlled by NaOH supplementation 
In anaerobic cultivation, nisin production is higher as 
compared to aerobic conditions 

98 mg/L 
Nisin 

Consortium [173] 

Medium composition 
41 g/L fructose + 38 g/L peptone with HS 

medium 
K. intermedius Optimization of culture condition via response 

surface methodology (RSM) 
Fulfill nutritional requirement 

3.906 g/L  
Bacterial 
cellulose 

Monoculture [174] 

WB + BHM-YEP media B. altitudinis J208 Optimization of culture condition through RSM 
based on central composite design (RSM-CCD) 
Cheap nutrient source 
Highly efficient and stable medium 

60.1 L-1 h-1 

Xylanase 
11343 L-1 h-1 

Pectinase 

Monoculture [175] 

55 g/L lactose + 15 g/L corn steep liquor + 5 
g/L ammonium sulphate with MRS 

Lactobacillus LMI8 Optimization of culture condition through RSM 
Cost effectiveness 
Highly efficient source of medium 

52.37 g/L 
Lactic acid 

Monoculture [176] 

Glucose 20 g/L + yeast extract 2.5 g/L +
KH2PO4 1 g/L + MgSO4 0.5 g/L +
(NH4)2SO4 0.05 g/L + FeSO4 0.01 g/L 

T. maxima, P. carneus Optimization of culture condition via 
Plackett–Burman experimental design 
Maximum laccase production on the 3rd day in co- 
culture 13 
Maximum MnP production on the 10th day in co- 
culture 15 

12,382.5 U/mg 
protein 
Laccase activity 
564.1 U/mg 
protein 
MnP activity 

Consortium [177] 

LB broth + antiboitics + sodium acetate +
disodium malonate 

E. coli-E. coli Combination of modules I (Pc4CL2, VvSTS genes), 
IIc (S. coelicolor genes) and III (E.coli K-12 genes) 
generate piceatannol 

124 mg/L 
(piceatannol) 

Consortium [178] 

LB broth + antiboitics + disodium malonate E. coli-E. coli Combination of module I (Pc4CL2, VvSTS genes) 
with module II (two different gene sets) to generate 
resv 

137 mg/L 
(resveratrol) 

Consortium [178] 

Inoculum concentration/ratio 
20% A. senegalensis Decrease competition between bacteria in 

consuming nutrients 
Promote bacterial growth 

395 g L− 1 

Bacterial 
cellulose 

Monoculture [179] 

1:2 P. pastoris-P. pastoris Conversion capacity of intermediates was improved 
DML and ML totally converted to MJ 

93 mg/L 
monacolin J 

Consortia [171] 

20:1 E. coli-E. coli BW23 upstream module optimized for consolidated 
SAG production 
BW downstream module designed for the conversion 
of SA to SAG 

2500 mg/L 
salicylate 2-O- 
β-D-glucoside 

Consortia [180] 

1:1 P. pastoris-P. pastoris Ratio of P. p/FNsD_RFP_sAR should be optimized 
Downstream LV module could match upstream DML 
module 

24.6 mg/L 
lovastatin 

Consortia [171] 

Abbreviation: HS medium, Hestrin-Schramm medium; WB, wheat bran; BHM-YEP, Bushnell Haas Medium-Yeast extract and Peptone; MRS, De Man, Rogosa and 
Sharpe; LB broth, Luria-bertani; SA, salicylate; SAG, salicylate 2-O-β-D-glucoside; DML, dihydromonacolin L acid; ML, monacolin L acid; LV, lovastatin. 
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as flavonoids, alkaloids, polyketides, and pharmaceutical products (i.e., 
antibiotic and antifungal drugs, etc.) have been widely reported via 
strain improvement, precursor supply engineering, pathway engineer-
ing, and mutagenesis. Interesting, deregulated organisms exhibit lower 
NPs production, probably due to the absence of appropriate biosynthetic 
enzymes. Thus genetic engineering (optimization of copy number and/ 
or transcription frequency) is carried out in the suitable microbial host, 
including E. coli or S. cerevisiae, to resolve this low productivity issue 
[140]. However, an increased selection has been noticed for both 
Escherichia coli and Saccharomyces cerevisiae due to the availability of 
genetic manipulation tools, which are amenable to simple cultivation 
methods and production scale-up. Besides, other microorganisms, 
including Corynebacterium glutamicum and Streptomyces species have 
been extensively utilized as a heterologous host for NPs production 
[141,142]. 

Monoculture derived NPs have gained the growing popularity at 
commercial level because of its cost effectiveness and simpler cultiva-
tion protocols. Amorphadiene, an artemisinin precursor, has been pro-
duced by heterologous E. coli approximately 24 mg/L, by expressing 
S. cerevisiae’s mevalonate pathway and synthetic amorphadiene syn-
thase gene and its production will further improve up to 105 mg/L by 
optimization of processing conditions [143]. One additional avenue 
when selecting an appropriate host for NP production is to utilize 
co-culture (E. coli- S. cerevisiae) with components of a metabolic pathway 
split between distinct consortium’s members to produce benzylisoqui-
noline alkaloids (BIAs) in which membrane-bound P450 enzymes ex-
presses in upstream strain (S. cerevisiae) and (S)-reticuline 
biosynthesizes in downstream strain (E. coli), respectively [1,144–146]. 
Some examples of bioactive NPs derived from recombinant hosts have 
been shown in Table 2. 

8.2.2. Effect of precursor engineering on microbial derived-NPs production 
After the host selection, strains exposure to the suitable genetic 

engineering techniques, such as overexpression of metabolic genes, gene 
deletion and replacement of existing enzymes with more active homo-
logues have been proved to enhance the supply of biosynthetic pre-
cursors. This suggests the potent role of precursor supply engineering 
which can be achieved by manipulating either the enzymes (i.e., phos-
phoenolpyruvate carboxylase in E. coli and, Glc-6-phosphate dehydro-
genase in S. cerevisiae) or pathway (i.e., NADPH and Malonyl-CoA 
generating pathway) participated in precursor supply [147,148]. As 
an example of precursors supply in monoculture, the addition of 
propionyl-CoA carboxylase coupled with propionate supplementation 
could further improve rapamycin and methylmalonyl-CoA titers upto 
23.6 mg/L in the UV irridiated mutant S. rapamycinicus strain which is 
3.2-fold higher than that of parental strain (7 mg/L) [149]. 

Aside from the overexpression of endogenous genes, an appreciable 
level of biosynthetic precursors can be achieved by the deletion of un-
desired side or competing pathways in the host. For example, the double 
deletion of ATF1 and OYE2 enzymes in strictosidine producing strain 
resulted in reduction of geraniol synthesis which could enhance the 
strictosidine production by 6-folds [150]. Meanwhile, in recent study, 
the two members consortium (E. coli-S. cerevisiae) has been investigated 
for resolving the problem of lower precursor supply during the taxanes 
production by carrying out oxygenation reaction in S. cerevisiae and 
enhancing taxadiene production in E. coli, leading to increased pro-
duction of oxygenated taxanes (33 mg/L) [151,152]. Many reports have 
shown that precursor supply techniques have positive effects on opti-
mum NPs production, shown in Table 2. 

8.2.3. Effect of pathway engineering on microbial derived-NPs production 
Metabolic pathway engineering comprises gene knockout, gene 

overexpression, and introduction of the functional genes capable of 
enhancing NP production [153]. Many studies have shown that deletion 
of genes can improve the yields of natural products, probably due to the 
elimination of competing pathways that involve unnecessary 

Fig. 6. Overview of the various techniques, such as selection of suitable host, precursor engineering, pathway engineering and mutagenesis, employed in genetic 
engineering have led to the increased production of natural products. 

M.H. Hussain et al.                                                                                                                                                                                                                             



Synthetic and Systems Biotechnology 7 (2022) 586–601

596

consumption of cellular resources. In the case of monoculture, the 
streptomycin gene cluster is introduced into the genome-minimized 
S. avermitilis (83% of its original size) and result in the maximum level 
of streptomycin titer when compared to parental strain carrying a 
similar heterologous gene cluster [154]. The overexpression of protein 
disulfide isomerase and actinorhodin gene cluster (4–12 tandem copies) 
greatly improves the production of Na-ASP1 protein and actinorhodin in 
P. pastoris and S. coelicolor, respectively [155,156]. Furthermore, 
compared with monoculture, the co-cultivation system possesses more 
flexibility and stability, leading to the optimum conversion of substrate 
to natural products [151]. 

As in the flavonoid synthesis pathway, six genes were split between 
the two modules, each carrying three genes, as per the co-factor 
requirement, i.e. NADPH and malonyl-CoA. This technique leads to 
enhanced flavan-3-ol production upto 40.7 mg/L, which is 970-fold 
higher than mono-cultivation system [37,157]. Meanwhile, the stabil-
ity of engineered synthetic consortium (K. vulgare-G. oxydans) seems to 
be enhanced by knocking out specific metabolic genes and make it an 

ideal consortium for optimum production of 2-KGA (reached 89.7% 
within 36 h) against d-sorbitol [123]. Additionally, stable consortium 
and monoculture can be used to prepare amino acid, purine, antibiotics 
and fatty acid, as demonstrated in Table 2. 

8.2.4. Effect of mutagenesis on microbial derived-NPs production 
Mutation strategies have been utilized to procure overproducing cell 

lines that are resistant to environmental stress and toxic inhibitor [158]. 
Mutagenesis can be simply categorized into physical mutagenesis (e.g., 
by X-rays or ultraviolet light) and chemical mutagenesis (e.g., by ethyl 
methanesulfonate, nitrous acid, p-fluorophenylalanine or N-methyl--
N′-nitro-N-nitrosoguanidine). Of these, p-fluorophenylalanine was 
employed to select overproducing cell lines with respect to phenolics 
[159]. As in fermentation industry, introduction of mutant strains of 
Brevibacterium, Serratia and Corynebacterium have been considered to 
improve the production of several natural products, such as antibiotics, 
amino acids, and nucleotides. Moreover, certain genetic techniques like 
protoplast fusion, and genomic shuffling are used extensively for strain 

Table 2 
Effect of genetic parameters on the production of natural products via monocultutre and consortial based system.  

Genetic parameters 

Factor Organism Specifications Production Bioprocessing 
strategy 

Reference 

Host selection E. coli Plasmid having tryptophan synthase 
Induction with 3-indole acrylate 

180 g L − 1 

Tryptophan 
Monoculture [181] 

Host selection E. coli Overexpression of heterologous crt genes (P. ananatis) & ispDF in DXP 
pathway 

433 mg/L 
Astaxanthin 

Monoculture [182] 

Host selection E. coli-E. coli Modular nature of co-culture engineering to rapidly identify a particular 
E. coli strain that markedly improved the efficiency of 3AB biosynthesis 

48 mg/L 
3-amino-benzoic 
acid (3AB) 

Consortium [169] 

Pathway 
engineering 

E. coli Integration of MVA and lycopene pathway 
Extra copies of the idi gene 

1.44 g/L Lycopene Monoculture [183] 

Pathway 
engineering 

E. coli Combinatorial tuning of pathway enzymes (TAL, 4CL, CHS, CHI) 
Inducible promoter strengths 
Enhancement of intracellular tyrosine supply 

100 mg/L 
Naringenin 

Monoculture [184] 

Pathway 
engineering 

E. coli Coupling of 3AB synthase, and PctV with the engineered shikimate pathway 
T7 promoter enhances the expression of pathway enzymes 

1.5 mg/L 3AB Monoculture [169] 

Pathway 
engineering 

Y. lipolytica Introduction of β-carotene biosynthesis pathway 
Optimization of upstream MVA pathway Downregulation of squalene 
synthase 
Overproduction of astaxanthin synthesis 

10.4 mg/L 
Astaxanthin 

Monoculture [185] 

Pathway 
engineering 

P. pastoris Lovastatin and monacolin J production improved by 55% and 71% in 
consortial approach 
Upstream and downstream modules accommodate in two fluorescent strains 

593.9 mg/L 
Monacolin J 
250.8 mg/L 
Lovastatin 

Consortium [171] 

Pathway 
engineering 

Three E. coli 
modules 

Upstream strain produces pathway intermediate p-coumaric acid 
Midstream strain produces naringenin. Downstream strain converts 
naringenin into acacetin 

20.3 mg/L Acacetin Consortium [186] 

Precursor 
engineering 

S. clavuligerus Supply of 10 mM methyl oleate to bacteria carrying (MCM) pathway 
Enhanced the conc. of methylmalonyl-CoA 

17.8 mg/L 
FK506 

Monoculture [187] 

Precursor 
engineering 

E. coli MEP pathway (B. subtilis), GPPS2 (A. grandis), MVA pathway are coexpressed 122.4 mg/L 
β-carotene 

Monoculture [188] 

Precursor 
engineering 

E. coli-E. coli Co-culture enhance the availability of p-coumaric acid as a precursor for the 
production of sakuranetin 

29.7 mg/L 
Sakuranetin 

Consortium [189] 

Precursor 
engineering 

E. coli-S. cerevisiae E. coli excretes p-coumaric acid in mediumSaccharomyces cerevisiae  
expressing codon-optimized 4CL and STS for the conversion of p-coumaric 

acid into resveratrol 

28.5 mg/L 
Resveratrol 

Consortium [190] 

Precursor 
engineering 

E. coli-E. coli Upstream E. coli BL21 engineered to produce caffeic acid by expressing 
HpaBC, RgTAL 
Downstream E.coli utilize caffeic acid to generate caffeoylmalic acid 

570.1 mg/L 
Caffeoylmalic acid 

Consortium [191] 

Mutagenesis E. coli Generation of GadB mutant (Glu89Gln/Δ452–466) upon pH shift 4.8 g/L of GABA Monoculture [192] 
Mutagenesis S. 

viridochromogenes 
Mutation in ribosome protein S12 (rps12) through gene shuffling and 
ribosome engineering 

1.4 g/L of 
Avilamycin 

Monoculture [193] 

Mutagenesis S. cerevisiae 25 min of UV exposure 
Addition of 20 mM Zinc sulphate 

4.632 (v/v) 
Alcohol 

Monoculture [194] 

Mutagenesis S. cerevisiae Express CrtZ (A. aurantiacum) and CrtW (B. vesicularis) 
Subjected to ARTP mutagenesis 

217.9 mg/L 
Astaxanthin 

Monoculture [195] 

Mutagenesis E. coli-E. coli ALE and ARTP mutagenesis coupled with efflux pump in the acquisition of 
pinene tolerant strain E. coli YZFP 

166.5 mg/L 
α-Pinene 

Consortium [196] 

Abbreviation: MCM, methylmalonyl-CoA mutase; GABA, gamma-aminobutyrate; ARTP, Atmospheric and room-temperature plasma, ALE, Adaptive laboratory evo-
lution; GPPS2, geranyl diphosphate synthase; MEP, methylerythritol 4-phosphate pathway, MVA, mevalonate pathway; 4CL, 4-coumarate-CoA ligase; STS, resveratrol 
synthase; TAL, tyrosine ammonia lyase; CHS, chalcone synthase; CHI, chalcone isomerase; DXP, 1-deoxy-D-xylulose-5-phosphate pathway; crt, carotenogenic gene. 
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improvement at industrial scale [160–163]. Genome shuffling in-
troduces a point mutations at a very low controlled rate which has been 
successfully improved the NPs titers in several strains like 130-fold in-
crease in production of epothilone (104 mg/L) was observed in mutant 
strain of S. cellulosum GSUV3-205 in comparison with parental strain 
S. cellulosum So0157-2 (0.8 mg/L) [164]. 

Serratia marcescens, which grows as a monoculture, undergoes con-
trol mutation to achieve optimum production of threonine (25 g/l) and 
its titer was further improved up to 63 g/l by recombinant DNA tech-
nology [165,166]. Recently, a direct evolution technique is applied to 
microbial consortia to generate mutant strains of individual consortium 
members to construct productive consortia. For example, in mutated 
anammox consortium, the candidate genes in dominant organism Can-
didatus Kuenenia stuttgartiensis has been reported to efficiently perform 
certain tasks, such as the hydrazine metabolism and ladderane synthesis 
[167]. In addition, optimum productions of NPs were obtained via 
mutant strains have been demonstrated in Table 2. 

9. Concluding remarks and future perspectives 

This review emphasizes the significance of monoculture- and 
consortium-based bioprocessing approaches for the development of 
natural products that have gained popularity in many food and non-food 
industries because of their high yields, ease of optimization, economic 
feasibility, robust growth on inexpensive media, and stability. More 
importantly, these microbial-derived natural products are currently 
grabbing attention due to the rapid development of controllable con-
sortia and monoculture through advanced genetic and process optimi-
zation techniques. 

In particular, we briefly foreground some of the practical imple-
mentation of microbial consortium and a monoculture and some of the 
directions for future research that offer the potential of enhanced pro-
duction yields and reduced processing costs. Potential directions include 
(i) development of inexpensive gene-chip assay and high-throughput 
screening tools that cause directed evolution in multiple communities 
(ii) in-depth understanding of microbial interactions (in case of a syn-
thetic consortium), and metabolic networks to develop rational meta-
bolic engineering design (iii) Advancement in omics approaches (such as 
transcriptomics and metabolomics) appears to be an effective way to 
quantify biochemical changes and metabolic mechanisms, as well as 
advances in metagenomics positively contributes to enhanced under-
standing of immensely diverse microbial sources, such as rivers, lakes, 
sub-seafloor sites, and ice cores. Ultimately, the scientific community 
will utilize advanced biotechnological data and computational models 
to achieve optimum natural products production via stable monoculture 
and consortium. 
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