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Abstract

Background

Mesenchymal stem cells (MSC) improve alveolar and vascular structures in experimental

models of bronchopulmonary dysplasia (BPD). Female MSC secrete more anti-inflamma-

tory and pro-angiogenic factors as compared to male MSC. Whether the therapeutic effi-

cacy of MSC in attenuating lung injury in an experimental model of BPD is influenced by the

sex of the donor MSC or recipient is unknown. Here we tested the hypothesis that female

MSC would have greater lung regenerative properties than male MSC in experimental BPD

and this benefit would be more evident in males.

Objective

To determine whether intra-tracheal (IT) administration of female MSC to neonatal rats with

experimental BPD has more beneficial reparative effects as compared to IT male MSC.

Methods

Newborn Sprague-Dawley rats exposed to normoxia (RA) or hyperoxia (85% O2) from

postnatal day (P) 2- P21 were randomly assigned to receive male or female IT bone mar-

row (BM)-derived green fluorescent protein (GFP+) MSC (1 x 106 cells/50 μl), or Placebo

on P7. Pulmonary hypertension (PH), vascular remodeling, alveolarization, and angiogen-

esis were assessed at P21. PH was determined by measuring right ventricular systolic

pressure (RVSP) and pulmonary vascular remodeling was evaluated by quantifying the

percentage of muscularized peripheral pulmonary vessels. Alveolarization was evaluated

by measuring mean linear intercept (MLI) and radial alveolar count (RAC). Angiogenesis

was determined by measuring vascular density. Data are expressed as mean ± SD, and

analyzed by ANOVA.
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Results

There were no significant differences in the RA groups. Exposure to hyperoxia resulted in a

decrease in vascular density and RAC, with a significant increase in MLI, RVSP, and the

percentage of partially and fully muscularized pulmonary arterioles. Administration of both

male and female MSC significantly improved vascular density, alveolarization, RVSP, per-

cent of muscularized vessels and alveolarization. Interestingly, the improvement in PH and

vascular remodeling was more robust in the hyperoxic rodents who received MSC from

female donors. In keeping with our hypothesis, male animals receiving female MSC, had a

greater improvement in vascular remodeling. This was accompanied by a more significant

decrease in lung pro-inflammatory markers and a larger increase in anti-inflammatory and

pro-angiogenic markers in male rodents that received female MSC. There were no signifi-

cant differences in MSC engraftment among groups.

Conclusions

Female BM-derived MSC have greater therapeutic efficacy than male MSC in reducing

neonatal hyperoxia-induced lung inflammation and vascular remodeling. Furthermore, the

beneficial effects of female MSC were more pronounced in male animals. Together, these

findings suggest that female MSC maybe the most potent BM-derived MSC population for

lung repair in severe BPD complicated by PH.

Introduction

Bronchopulmonary dysplasia (BPD) was first described in infants ventilated for hyaline mem-
brane disease (HMD) by Northway and colleagues in 1967 [1]. This disease is a chronic multi-
factorial disorder that affects 12–32% of infants less than 32 weeks of gestation, with most cases
occurring in extremely low birth weight infants [2]. Over the last 2 decades, the characteristics
of BPD have beenmodified by the use of prenatal corticosteroids, postnatal surfactant and
gentle ventilation strategies [3, 4]. This “new” BPD is characterized by alveolar simplification,
increased alveolar diameter and abnormal vascular development [5]. Extremely low birth
weight (ELBW) infants are now surviving in greater numbers and BPD with its associated pul-
monary arterial hypertension (PH) now constitute a major source of morbidity and late mor-
tality [3, 6]. Unfortunately, therapeutic options are limited, with survivors experiencing an
increased risk of adverse neurodevelopmental outcomes [7].

Gender variability in BPD incidence has been described for several decades. Animal studies
have demonstrated that gender not only influences lung maturation but also susceptibility to
lung diseases [8, 9]. Male mice are more susceptible to hyperoxic lung injury than female
mice [10]. Population based data from the Australian and New ZealandNeonatal Network
show that pretermmales are more likely than females to develop BPD [11]. Similarly, in the
MOSAIC cohort from ten European regions, multivariate analysis reveal that male gender is
associated with an increased incidence of BPD [12]. Interestingly, although the exact mecha-
nisms underlying the gender-specific differences in BPD incidence remain unknown, female
mice express less pro-inflammatory and oxidative stress markers in response to hyperoxia [10].
Whether the efficacy of BPD therapies is modified by their interaction with the gender of the
host is unclear.
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Mesenchymal stem cells (MSC) have been studied extensively as therapeutic mediators in
multiple diseases [13–15]. These cells are particularly attractive for therapy as they are rela-
tively easy to expand, possess potent anti-inflammatory, immunomodulatory, and pro-angio-
genic effects, with low risk of inciting the immune system [16, 17]. In rodent models of BPD,
early administration of MSC is associated with improved alveolarization, decreased vascular
remodeling, promotion of angiogenesis and improvement of PH [18–20]. In a recent phase-1
clinical trial, administration of umbilical cord derivedMSC to preterm infants at risk for BPD
was shown to be safe and feasible, with some potential beneficial effects [21]. Data however
remains limited on the most efficaciousMSC population for lung regeneration in BPD.

Gender-specific differences in stem cell expansion capacity, differentiation potential, and
secretome have been reported in the literature [22, 23]. This sex-related difference in stem cell
function is influenced by the stem cell population, recipient responses and the disease process.
Female muscle derived stem cells regenerate skeletal muscle more efficiently than male cells
but transplantation of male stem cells into female recipients or pre-treatment of male cells with
estradiol fail to yield comparable regeneration, implying that gender-related differences in
stem cell functionmay not be entirely dependent on sex hormones [24]. In a mouse model of
myocardial infarction, infusion of female derivedMSC was associated with more pronounced
improvement in left ventricular dysfunction [25]. Similarly, in a rat model of endotoxin medi-
ated cardiac dysfunction, female MSC showed greater cardiac protection against endotoxemic
injury and this was accompanied by an improvement in the myocardial anti-apoptotic profile
[26]. In vitro data also shows that female MSC exposed to either lipopolysaccharide or hypoxia
have less apoptosis, release less tumor necrosis factor alpha (TNF-α) and more vascular endo-
thelial growth factor (VEGF) than male MSC [27]. Whether the therapeutic efficacy of MSC in
attenuating lung injury in an experimentalmodel of BPD is influenced by the sex of the donor
or recipient is unknown.

In this study, we hypothesized that female BM-derivedMSC would have greater lung
regenerative effects than male BM-derivedMSC in a model of BPD, and the effects would be
preferential to male recipients. We demonstrate in vitro that female MSC secrete more anti-
inflammatory and pro-angiogenic factors as compared to male MSC. In vivo, we also show
that female MSC have greater anti-inflammatory and pro-angiogenic effects as compared to
male MSC in neonatal pups with experimental BPD. Moreover, female MSCmore robustly
improves neonatal hyperoxia-induced PH and vascular remodeling. Interestingly, in keeping
with our hypothesis, female MSC improved vascular remodeling to a greater degree in male
recipients than male MSC. These findings have important clinical implications for cell-based
therapies in preterm infants with BPD.

Methods

Animals

Adult male and female Green Fluorescent Protein (GFP) transgenic and pregnant female Spra-
gue Dawley rats were purchased from The Rat Resource and Research Center (Columbia,
MO). Animals were treated according to National Institutes of Health guidelines. The protocol
was approved by the Animal Care and Use Committee (ACUC) of the University of Miami
Miller School of Medicine.

Experimental Procedure

Randomly chosen Sprague-Dawley pups from 16 litters (N = 142) were assigned at birth to
Room air (RA) or hyperoxia (85–90%O2) from P2 to P21. Pups were housed in a plexiglass
chamber with O2 monitoring. Litters for each experimental group were limited to 10 pups to
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control for the effect of litter size on nutrition and growth. Studies were repeated with several
litters in order to obtain an equivalent number of pups per experimental condition. Dams were
rotated every 48 hours to standardize the nutrition provided to each litter. Oxygen exposure
was continuous with brief intermittent interruptions for animal care (<10 min/day). After 3
weeks in the designated exposure, the litters were removed and studied for hemodynamicmea-
surements and morphometry. The sex of the pups was determined by examining external and
internal genitalia.

MSC Administration

MSC obtained from the bonemarrow of adult (6 to 8 week old) male and female GFPpos Spra-
gue-Dawley rats were isolated and cultured as previously described [28]. For intra-tracheal
(IT) injection, fourth passage cells were thawed, assessed for viability, and washed with phos-
phate buffered saline (PBS). They were then re-suspended in PBS at 1 X106 viable cells/50 μl. A
single IT dose of 50 μl was utilized for administration.

On P7, the pups were anesthetized with ketamine and xylazine via intraperitoneal injection.
The trachea was exposed through a small midline incision on the neck. MSC (1 X106 cells/
50 μl), or phosphate buffered saline/PL (50 μl) was delivered by tracheal puncture with a
30-gauge needle. Pups were placed in a warmed plastic chamber under normoxic or hyperoxic
conditions for recovery. Once the pups were fully awake, they were returned to their dams.

Hemodynamic Measurements

Right ventricular systolic pressure (RVSP) was evaluated as previously described [29]. Briefly, a
thoracotomy was performed and a 22-gauge needle connected to a pressure transducer was
inserted into the right ventricle. RVSP was measured and recorded on a Gould polygraph
(model TA-400; Gould instruments, Cleveland, OH).

Morphometric Analysis

Lung morphometrywas performed as previously described [30]. Briefly, lungs were inflated
and perfusedwith 4% paraformaldehyde (PFA) at a pressure of 15 cmH2O for five min. The
samples were allowed to sit in PFA for 24 hours prior to serial dehydration in ethanol solutions
the following day. The lungs were then embedded in paraffin.

Serial 5 μm-thick paraffin-embeddedsections obtained from the lung were stained with
hematoxylin and eosin. Images from 10 randomly selected, non-overlapping parenchymal
fields were acquired from two lung sections of each animal at 20x magnification. Care was
taken to exclude major bronchioles, vessel and artifacts from the field. Images were captured
by a blinded observer, and the mean linear intercept, (MLI), a measure of inter-alveolar wall
distance, and the radial-alveolar count (RAC), a measure of alveolarization were analyzed.

Pulmonary Angiogenesis

Vascular density was evaluated as previously described [19]. Briefly, lung sections were stained
with polyclonal rabbit antihuman Von Willebrand Factor (VWF; Dako, Carpinteria, CA), a
marker of endothelial cells, and 4’6-di-amidino-2-phenylindole (DAPI;Vector Laboratories), a
marker of cell nuclei. Five randomly selected non-overlapping parenchymal fields were evalu-
ated from lung sections of each animal. The number of blood vessels (20–50 μm in diameter)
in each high-power field was counted by a blinded observer as previously described [31].
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Pulmonary Vascular Remodeling

Pulmonary vascular remodeling was evaluated as previously described [19]. Briefly, lung sec-
tions were stained with polyclonal rabbit antihuman VWF (Dako), mouse anti α-Smooth
Muscle Actin (SMA) (Sigma, St Louis, MO), a marker of smoothmuscle in the medial wall of
vessels, and DAPI (Vector Laboratories). Five randomly selected non-overlapping parenchy-
mal fields were evaluated from lung sections of each animal. The blood vessels (20–50 μm in
diameter) in each high-power field were counted by a blinded observer and the degree of mus-
cularization assessed at that time [31]. Medial wall thickness was measured in 20 randomly
selected arterioles (20–50 μm in diameter) at 40X magnification as previously described [32].
Briefly, the thickness of the medial layer of the arteriole was identified using SMA fluorescence
and measured at its thickest portion. The average diameter of the arteriole was also obtained.
The medial wall thickness index was calculated as 2 X measured thickness of the medial layer /
average diameter of the vessel X 100%.

ELISA & Western Blot

Bonemarrow derivedMSC frommale and female donors (N = 6) were cultured in fetal bovine
serum (FBS) for 24 hours under normoxic-conditions. The cells were trypsinizedand protein
isolated as previously described [19]. The protein concentration of VEGF and Interleukin-10
(IL-10) in male and female MSC as well as homogenized lungs was determined by Enzyme
Linked Immunosorbent Assay (ELISA). VEGF and IL-10 ELISA kits were obtained from
Abcam (Cambridge,MA). The protein expression of Interleukin-1β (IL-1β) in lung homoge-
nates was determined by Western Blot using a mouse monoclonal antibody obtained from
Cell Signaling (1:1000, Beverley, MA), with β-Actin acting as a normalization protein (Sigma-
Aldrich, St. Louis, MO). The intensities of protein bands were quantified by densitometry
using Quantity One Imaging Analysis Program (Bio-Rad, Hercules, CA).

Cell Engraftment

Serial five micrometer (μm) paraffin-embeddedsections obtained from the upper and lower
lobes of the lungs were dewaxed and rehydrated in descending grades of alcohol. Following
antigen retrieval and blocking of non-specific binding sites with a protein blocker, the lung sec-
tions were stained anti-GFP antibody (1:50; Santa Cruz Biotechnology, Santa Cruz, CA).
EngraftedGFPpos cells were imaged with a confocal microscope (Leica DMI 6000, Mannheim,
Germany) and 5 random fields per sectionwere counted by a blinded observer and expressed
as a percentage of all nuclei present in that field.

Statistical Analysis

Data are expressed as mean ± standard deviation and were analyzed by two-way ANOVA with
post hoc analysis (Holm-sidak). P values (P)�0.05 were considered statistically significant. Sta-
tistical analysis was performed using SigmaStat software (SyStat Software, San Jose, CA).

Results

Female MSC express more VEGF and IL-10

Female MSC grown for 24 hours under normoxic conditions had higher VEGF concentration
than male MSC (7.6 ± 0.8 vs 4.7 ± 1.0 pg/mL, female vs male MSC; P< 0.05, N = 3/group), Fig
1a. Female MSC also secretedmore of the anti-inflammatory cytokine, IL-10 than male MSC
(34.2 ± 3.0 vs 26.8 ± 2.1 pg/mL, female vs male MSC; P< 0.05, N = 3/group), Fig 1b.
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These findings suggest that female MSC possess greater pro-angiogenic and anti-inflamma-
tory effects than their male derived counterparts.

Female and male MSC similarly improve alveolarization

Hyperoxia-exposed placebo treated rats had marked alveolar simplification (Fig 2a). This was
evidencedby an increase in MLI (58 ± 4 vs 86 ± 14 μm, RA vs hyperoxia-PL; P< 0.05, N = 10/
group), and a decrease in RAC (12.2 ± 0.9 vs 5.4 ± 1.0, RA vs hyperoxia-PL; P< 0.05, N = 10/
group), Fig 2b and 2c. Administration of male or female MSC to hyperoxic pups reducedMLI
(77.9 ± 13.6 vs 72.4 ± 7.2 μm, hyperoxia male MSC vs hyperoxia female MSC; N = 10/group)
and increased RAC to similar degree (9.3 ± 1.3 vs 9.8 ± 1.2, hyperoxia male MSC vs hyperoxia
female MSC; N = 10/group), Fig 2b and 2c. This suggests that female derivedMSC are as effec-
tive as male derivedMSC in promoting alveolarization in neonatal hyperoxia-induced lung
injury. Moreover, subgroup analysis performed to study interactions between recipient and
donor sexes revealed no significant differences in the alveolarization noted betweenmale and
female MSC when administered to hyperoxia exposed female or male pups (N = 5/group), Fig
2d and 2e respectively.

Female and male MSC similarly improve angiogenesis

Exposure of placebo treated rats to hyperoxia caused vascular pruning (Fig 3a) as demonstrated
by a reduction in vascular density (13.2 ± 1.1 vs 4.2 ± 0.7 vessels per HPF, RA vs hyperoxia-PL;
P<0.05, N = 10/group), Fig 3b. Treatment with male or female MSC improved angiogenesis to
a similar degree. (7.4 ± 1.5 vs 7.7 ± 0.8 vessels per HPF, hyperoxia male MSC vs hyperoxia
female MSC; N = 10/group). There was no difference in VEGF concentration betweenRA and
hyperoxia-exposed placebo treated animals (202 ± 46 vs 172 ± 67 pg/mL, RA vs hyperoxia -PL,
N = 5-6/group), Fig 3c. Administration of female MSC significantly increased lung VEGF con-
centration (120 ± 62 vs 193 ± 15 pg/mL, hyperoxia male MSC vs hyperoxia female MSC;
P< 0.05, N = 7-9/group) Fig 3c. Interestingly, although hyperoxia exposedmale animals
treated with female MSC had higher pulmonary VEGF levels (117 ± 71 vs 198 ± 12, pg/mL;
hyperoxia male MSC vs hyperoxia female MSC; P< 0.05, N = 4-5/group), and there were
trends to higher pulmonary VEGF levels in hyperoxia exposed female pups treated with female
MSC (125 ± 64 vs 186 ± 19 pg/mL; hyperoxia male MSC vs hyperoxia female MSC; N = 4/

Fig 1. Female MSC produce more VEGF and IL-10 after 24 hours in culture. (a) VEGF concentration as measured by

ELISA in male and female MSC (b) IL-10 concentration as measured by ELISA in male and female MSC (* P < 0.05; Male vs

Female MSC, N = 3 experiments/group).

doi:10.1371/journal.pone.0164269.g001
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Fig 2. Intra-tracheal (IT) administration of male or female MSC similarly improves alveolarization. (a) Hematoxylin and eosin stained

lung sections demonstrating improved alveolar structure in hyperoxia-exposed pups treated with IT male or female MSC. Original

magnification X 200. Bars = 100 μm. IT male or female MSC similarly increased mean linear intercept (b) and decreased radial alveolar

count (c). IT male or female MSC similarly improve RAC in female (d) and male (e) animals. (*P < 0.05; Room air (RA) vs hyperoxia-

placebo (PL), † P <0.05; hyperoxia -PL vs hyperoxia male or female MSC). White bars are RA and black bars are hyperoxia.

doi:10.1371/journal.pone.0164269.g002
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Fig 3. IT male or female MSC similarly improve lung angiogenesis. (a) Lung sections stained with Von Willebrand Factor (green) and

4’6-diamidino-2-phenylindole (DAPI: blue), demonstrating improved vascular density in hyperoxia-exposed pups treated with male and

female MSC at P7. Original magnification X 100. Bars = 100 μm. (b) IT male and female MSC similarly increased lung vascular density in

hyperoxic pups. (c) Female MSC normalizes lung VEGF concentration in hyperoxia. Female and male MSC exhibit similar efficacy in

improving lung angiogenesis in female (d) and male (e) animals. (*P < 0.05: RA vs hyperoxia-PL; † P <0.05: hyperoxia-PL vs hyperoxia

male or female MSC; $ P <0.05: hyperoxia male MSC vs hyperoxia female MSC). White bars are RA and black bars are hyperoxia.

doi:10.1371/journal.pone.0164269.g003
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group), the improvement in angiogenesis was not affected by the sex of the recipient, Fig 3d
and 3e.

Female MSC are superior to male MSC in attenuating pulmonary

hypertension

PH is a prominent feature of severe lung injury. Right ventricular systolic pressure is a surro-
gate for pulmonary artery pressure. Exposure of placebo treated animals to hyperoxia was asso-
ciated with the development of PH (RVSP: 15 ± 2 vs 25 ± 3 mmHg, RA (N = 32) vs hyperoxia-
PL (N = 15); P< 0.05), Fig 4. Treatment with male or female MSC significantly improved PH.
Interestingly, in keeping with our hypothesis, female MSC improved RVSP to a greater degree
than male MSC (21 ± 4.0 vs 19 ± 2 mmHg, hyperoxia male MSC vs hyperoxia female MSC;
P< 0.05, N = 10–11 / group), Fig 4a. This suggests that female MSCmay bemore beneficial in
treating PH complicating BPD.

Subgroup analysis revealed that the improvement in PH with male or female MSC was not
dependent on the sex of the recipient animal (N = 5-7/group), Fig 4b and 4c respectively.

Female MSC are superior to male MSC in improving vascular

remodeling

Vascular remodeling is a prominent feature of HILI. Placebo- treated hyperoxic animals had
decreased percentage of non-muscularized vessels (90± 7 vs 20 ± 12%, RA vs hyperoxia-PL;
P< 0.05, N = 10 / group), Fig 5a and 5b. This was accompanied by an increase of fully muscu-
larized blood vessels in the 20–50 μm range (0.7 ± 1 vs 58% ± 22%, RA vs hyperoxia-PL;
P< 0.05, N = 10 / group), Fig 5a and 5b. Interestingly, although treatment with male or female
MSC decreasedmedial wall thickening (Fig 5c) to a similar degree, the number of fully muscu-
larized blood vessels were markedly less in hyperoxic pups that received female MSC (30 ± 22
vs 16± 12%, hyperoxia male MSC vs hyperoxia female MSC; P< 0.05, N = 10 / group), Fig 5b.

Subgroup analysis revealed that although there were trends towards less fully muscularized
vessels in hyperoxia exposed female pups receiving femaleMSC, this was not statistically signif-
icant, Fig 5d. The degree of improvement of medial wall thickness with male or female MSC
was also not different in female or male recipients, Fig 5e and 5g. In contrast, hyperoxia
exposedmale pups receiving female MSC had significantly less fully muscularized vessels than
male MSC treated animals (26 ± 14 vs 13 ± 11%, hyperoxia male MSC vs hyperoxia female
MSC; P< 0.05, N = 5 / group), Fig 5f. This suggests that female MSC are superior to male
MSC in improving hyperoxia-induced pulmonary vascular remodeling especially in male
recipients.

Female MSC Possess More Anti-inflammatory Properties

IL-10 is a pleiotropic regulatory cytokine known to be secreted by BM- derivedMSC [33]. It
down-regulates the expression of pro-inflammatory cytokines. Since female MSC secreted
more IL-10 than male MSC, we next sought to ascertainwhether its beneficial anti-inflamma-
tory effects were evident in the lungs of hyperoxia exposed pups. There were no significant dif-
ferences in IL-10 concentration in the lungs of hyperoxia-PL or hyperoxia male MSC treated
groups, Fig 6a. In contrast, treatment of hyperoxia exposed pups with female MSC significantly
increased lung IL-10 concentrations (66 ± 10 vs 59 ± 8 vs 80 ± 10, pg/mL, hyperoxia-PL vs
hyperoxia male MSC vs hyperoxia female MSC; P< 0.05, N = 5-6/group), Fig 6a.

Furthermore, evaluation of IL-1β expression, a pro-inflammatory cytokine known to play
an important role in BPD pathogenesis [34, 35], demonstrated that the protein expression of
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this cytokinewas significantly increased in lung homogenates obtained from hyperoxia-PL ani-
mals (RA vs hyperoxia-PL; P< 0.05, N = 5/group). In contrast, while treatment with male or
female MSC decreased lung IL-1β expression, this was more marked in hyperoxic pups which
received female MSC (hyperoxia male MSC vs hyperoxia female MSC; P< 0.05, N = 4–6 /
group), Fig 6b and 6c.

These differences in anti-inflammatory properties betweenmale and female MSC were
prominent in hyperoxia exposedmale pups receiving female MSC. They had greater pulmo-
nary IL-10 concentration than male MSC treated animals (56 ± 10 vs 83 ± 12 pg/mL; hyperoxia
male MSC vs hyperoxia female MSC; P< 0.05, N = 4-5/group). Similar trends were noted in
female pups receiving female MSC, but the differences were not statistically significant (61 ± 2
vs 78 ± 16 pg/mL; hyperoxia male MSC vs hyperoxia female MSC; N = 4/group).

Fig 4. Female MSC have more marked effects on pulmonary hypertension. (a) Female MSC improve right ventricular systolic pressure

(RVSP) to a greater degree than male MSC. The efficacy of MSC in improving RVSP in female (b) and male (c) animals is not dependent on

the sex of the recipient. (*P < 0.05: RA vs hyperoxia-PL; † P <0.05: hyperoxia-PL vs hyperoxia male or female MSC; $ P <0.05: hyperoxia

male MSC vs hyperoxia female MSC). White bars are RA and black bars are hyperoxia.

doi:10.1371/journal.pone.0164269.g004
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Fig 5. Female MSC exhibit greater anti-remodeling effects. (a) Lung sections stained with Von Willebrand

Factor (green), α-smooth muscle actin (red), and DAPI (blue), demonstrating improved vascular remodeling in

hyperoxia-exposed pups treated with male or female MSC. Original magnification X400. (b) Female MSC are

superior to male MSC in reducing the percentage of fully muscularized blood vessels. (c) IT male or female

MSC improved medial wall thickness of vessels (20–50 μm). In female pups, IT male or female MSC similarly

improve the percentage of muscularized vessels (d), and the medial wall thickness (e). In male pups, IT female

MSC are superior to male MSC in improving the percentage of muscularized blood vessels (f), while being as
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This suggests that female MSC decreases lung inflammation in experimental BPD to a
greater degree than male MSC.

Female and Male MSC exhibit similar rates of engraftment

MSC from female human donors have been shown to be more clonogenic and to express more
vascular cell adhesionmolecule 1 than MSC obtained frommale donors [22]. However,
whether female MSC engraft more than male MSC in the lungs of neonatal pups with hyper-
oxia-induced lung injury is unknown.We assessedMSC engraftment using GFPpos immunos-
taining. There was no difference in lung engraftment rates betweenmale or female MSC in
hyperoxic pups (0.72 ± 0.95 vs. 1.28 ± 1.81 GFPpos cells per 1000 lung cells, hyperoxia male
MSC vs hyperoxia female MSC; N = 10/group).

effective in reducing the medial wall thickness (g). (*P < 0.05: RA vs hyperoxia-PL; † hyperoxia-PL vs hyperoxia

male or female MSC; $ P <0.05: hyperoxia male MSC vs hyperoxia female MSC). White bars are RA and black

bars are hyperoxia unless otherwise specified.

doi:10.1371/journal.pone.0164269.g005

Fig 6. IT MSC and lung inflammation. (a) Markedly greater lung IL-10 concentration in pups treated with female as compared to

male MSC. (b) Female MSC decrease lung IL-1β expression to a greater degree than male MSC (c) Representative Western blot

demonstrating a more marked decrease in lung IL-1β expression in hyperoxic pups treated with female MSC. β-actin is utilized as the

normalization protein. (*P < 0.05: RA vs hyperoxia-PL; † hyperoxia-PL vs hyperoxia male or female MSC; $ P <0.05: hyperoxia male

MSC vs hyperoxia female MSC; N = 5-6/group). White bars are RA and black bars are hyperoxia.

doi:10.1371/journal.pone.0164269.g006
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Discussion

Over the last decade, cell-based therapies have been investigated as a potential strategy to
decrease BPD. The most efficacious cellular population has yet to be elucidated. In the present
study, we provide new evidence that female BM-derivedMSC have greater therapeutic efficacy
than male MSC in reducing neonatal hyperoxia-induced lung inflammation and vascular
remodeling. Furthermore, the beneficial effects of female MSC were more pronounced in male
animals. These findings have significant clinical implications as cell-based therapies for pre-
term infants with severe BPD/PHmove from the bench to the bedside.

The hallmarks of BPD are alveolar simplification, vascular pruning and remodeling [36].
Despite strategies to limit lung injury, BPD still occurs in 30% of infants< 1,000g and results
in significantmorbidity and mortality, particularly if complicated by PH [37]. In a study on
Medicaid health care expenditure for the care of children with chronic illnesses inWashington
State, chronic respiratory diseases cost the program in excess of 17 million dollars, with the
majority of these children having BPD or sequelae of prematurity [38]. Urgent therapies are
therefore needed.

In rodent models, MSC are efficacious in reducing experimental BPD complicated by PH
[18–20]. Furthermore, a dose escalation clinical trial in high-risk neonates demonstrated the
short-term safety of intra-trachealMSC delivery [21]. MSC possess anti-inflammatory, pro-
angiogenic, anti-oxidant, and anti-fibrotic properties [19, 39]. However, given the heteroge-
neous nature of MSC, the most efficaciousMSC subset for the treatment of BPD needs to be
elucidated prior to their clinical use.

MSC possess sex hormone receptors [22, 40], and this has been suggested to influence their
efficacy. Estradiol treated male MSC are more effective than untreated MSC in animal models
of multiple sclerosis and cardiac injury [41, 42]. Moreover, in an endotoxin-inducedmyocardial
injurymodel, Manukyan et al. demonstrated the superiority of female MSC in ameliorating
injury [26]. These differences are potentially secondary to variation in signaling pathways that
modulate cytokine production in male and femaleMSC. Indeed, Crisostomo et al. demonstrated
that stress activated female MSC have lower TNF production as compared to male MSC, and
these differences were due to an inherent resistance to TNFR1 activation in female MSC [27].

In our study, we also demonstrate that female MSC have more anti-inflammatory effects as
compared to maleMSC.We show that femaleMSC secretemore IL-10, and hyperoxia-exposed
pups treated with female MSC had higher lung IL-10 concentration as compared to pups that
receivedmale MSC. This was accompanied by lower expression of the pro-inflammatory cyto-
kine IL-1β in the lungs of hyperoxic pups that received female MSC.MSC are known to secrete
IL-10 and several studies have demonstrated the important role of IL-10 in MSC-mediated
organ repair. Burchfield et al showed that MSC secretion of IL-10 played a central role in pro-
moting myocardial repair [43]. IL-10 is a pleiotropic regulatory cytokinewhich downregulates
the expression of several pro-inflammatory cytokines, including IL-1β, and exogenous admin-
istration of recombinant IL-10 alleviatedHILI in rodents [44].

Interestingly, the greater anti-inflammatory effect of female MSC conferred a marked bene-
fit on the pulmonary vasculature. In our study, pups with hyperoxia-induced lung injury that
received female MSC had a more robust attenuation in PH and degree of pulmonary vascular
remodeling. Pulmonary inflammation is known to cause pulmonary vascular remodeling [45,
46]. Treatment with anti-inflammatory agents reduces PH and vascular remodeling in several
lung injury models [47]. Moreover, female MSC are superior to male MSC in reducing mono-
crotaline-inducedPH [48].

Another important finding in our study is the restoration of lung VEGF concentration to
normoxic levels by female MSC. This is in keeping with prior findings of increasedVEGF

Gender and MSC Efficacy

PLOS ONE | DOI:10.1371/journal.pone.0164269 October 6, 2016 13 / 18



production in female MSCmade by Crisostomo et al [27]. VEGF is a pluripotent growth factor
that plays an integral role in lung development. Neonatal hyperoxia-exposure decreases VEGF
concentration [49, 50], and administration of recombinant VEGF improves neonatal hyper-
oxia-induced lung injury [51].

Intriguingly, in our study, sub-group analysis investigating gender donor-recipient interac-
tions revealed that males with HILI benefitedmore from female MSC administration as
compared to male MSC. This was accompanied by higher levels of pulmonary IL-10 and resto-
ration of VEGF in this group of pups. This suggests that femaleMSC exert their superior regen-
erative properties by providing a more anti-inflammatory and proangiogenic state in the
injured lung. Interestingly, our study did not demonstrate any difference in the degree of
hyperoxia-induced lung injury betweenmale and female rats. The profound lung injury in our
model may have eliminated these differences in the host lungs. Other studies have however
shown that male animals undergomore pronounced injury and develop a more severe form of
PH [10]. This is likely mediated by the differential expression of genes in response to injury
between the two sexes; with males up-regulating pro-inflammatory pathways [52]. We postu-
late that male animals benefitedmore from female MSC as a consequence of the differential
gene expression in response to lung injury between the two sexes [52], and the potential effect
of estradiol (E2) secreted by female MSC on the male recipient [53]. E2 has been shown to
increase the efficacy of male MSC in other models of injury [41, 42].

It is also important to discuss the limitations of our study. Hyperoxia induced lung injury
models parallel a more severe form of BPD which in now infrequently seen. Hence, it would be
imperative to evaluate the efficacy of MSC from different sexes in milder lung injury models.
We also studied engraftment using GFPpos localization. The GFP transgene is however unstable
and as a result may have underestimated the degree of engraftment. Additionally, hyperoxia
exposesmultiple organs to injury through systemic inflammation and formation of circulating
reactive oxygen species. It would therefore be crucial to examine the differential systemic
effects of IT-MSC and any potential long-term side effects in future studies.

Our study however clearly demonstrates the superiority of female MSC in reducing lung
inflammation, improving PH and hyperoxia-induced pulmonary vascular remodeling. These
benefits were particularly evident in male animals with even more pronounced anti-inflamma-
tory effects evidenced in these recipients. Our present findings have important implications as
cell-based therapies to repair the injured preterm lung move from the bench to the bedside,
providing firm evidence that female MSC are the more efficacious population to reduce severe
BPD complicated by PH in male preterm infants.
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