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A B S T R A C T

Background: We developed and validated a prognostic and predictive computational pathology risk score
(CoRiS) using H&E stained tissue images from patients with early-stage non-small cell lung cancer (ES-
NSCLC).
Methods: 1330 patients with ES-NSCLC were acquired from 3 independent sources and divided into four
cohorts D1-4. D1 comprised 100 surgery treated patients and was used to identify prognostic features via an
elastic-net Cox model to predict overall and disease-free survival. CoRiS was constructed using the Cox
model coefficients for the top features. The prognostic performance of CoRiS was evaluated on D2 (N=331),
D3 (N=657) and D4 (N=242). Patients from D2 and D3 which comprised surgery + chemotherapy were used to
validate CoRiS as predictive of added benefit to adjuvant chemotherapy (ACT) by comparing survival
between different CoRiS defined risk groups.
Findings: CoRiS was found to be prognostic on univariable analysis, D2 (hazard ratio (HR) = 1.41, adjusted
(adj.) P = .01) and D3 (HR = 1.35, adj. P < .001). Multivariable analysis showed CoRiS was independently prog-
nostic, D2 (HR = 1.41, adj. P < .001) and D3 (HR = 1.35, adj. P < .001), after adjusting for clinico-pathologic fac-
tors. CoRiS was also able to identify high-risk patients who derived survival benefit from ACT D2 (HR = 0.42,
adj. P = .006) and D3 (HR = 0.46, adj. P = .08).
Interpretation: CoRiS is a tissue non-destructive, quantitative and low-cost tool that could potentially help
guide management of ES-NSCLC patients.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Early-stage non-small cell lung cancer (ES-NSCLC) usually com-
prises of stage I and II cancers and complete surgical excision is the
standard of care treatment for these patients [1�3]. While current
guidelines recommend adjuvant cisplatin based chemotherapy (ACT)
for stage II patients, stage I patients continue to be treated with sur-
gery alone. Benefit of ACT following surgical resection has been
shown in multiple large clinical trials [1�3], with significant
improvement in overall survival (OS) and Disease-free survival (DFS)
for the ACT group in ES-NSCLC. A large pooled meta-analysis of these
trials � the Lung Adjuvant Cisplatin Evaluation (LACE) [8] including
4584 patients across five trials revealed a 5-year benefit of 5.4% from
ACT with the hazard ratio (HR) for OS of 0.89 (95% CI, 0.82�0.96;
P = .005), with a median follow-up time of 5.2 years. Interestingly,
some trials including the Adjuvant Lung Project Italy (N=1209) and
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Research in context

Evidence before this study

Complete surgical excision is the standard of care treatment for
early-stage (stage I and II) non-small cell lung cancer (ES-
NSCLC). While current guidelines recommend adjuvant cis-
platin based chemotherapy (ACT) for stage II patients, stage I
patients continue to be treated with surgery alone. Benefit of
ACT following surgical resection has been shown in multiple
large clinical trials, with significant improvement in overall sur-
vival (OS) and Disease-free survival (DFS). Clinical parameters
such as tumor stage, nodal status, age, and performance score
have been traditionally shown to be prognostic, but presently
there is a paucity of accurate and validated biomarkers based
off clinicopathologic factors which can identify patients who
would benefit from ACT. With the advent of digital pathology
and the corresponding increase in machine learning and com-
puterized pathology image analysis, there is the opportunity to
mine and associate quantitative features relating to tumor mor-
phology to cancer prognosis and outcome. A few groups have
recently shown that machine learning based prognostic classi-
fiers can predict disease recurrence and survival in the context
of NSCLC.

Added value of this study

In this manuscript, we present a computational derived image
risk score (CoRiS) from hematoxylin and eosin (H&E) stained
whole slide images derived from surgical specimens, that is
prognostic of disease-free and overall survival, and also predic-
tive of added benefit of adjuvant chemotherapy (ACT) in early
stage (stage I and II) non-small cell lung cancer (ES-NSCLC). To
the best of our knowledge, this is the first computational
pathology based work that was validated to be not only prog-
nostic but also predictive of added benefit of ACT on multi-site
ES-NSCLC data set with over 1000 cases.

Implications of all the available evidence

The CoRiS presented in this study could be potentially used as
an inexpensive, tissue non-destructive, prognostic and predic-
tive companion diagnostic for ES-NSCLC to identify patients
with high risk for ACT.
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European Big Lung (N=381) trials failed to find statistically significant
differences in survival between the surgery only and the ACT group
in ES-NSCLC [9,10]. One possible reason is the lack of predictive bio-
markers to identify patients who would derive benefit from ACT.

Stratified subgroup analysis of these trials based on the American
Joint Committee on Cancer (AJCC) 6th edition tumor stage meanwhile
has shown that ACT does not lead to a significantly improved OS in
stage IB (T2aN0M0) patients (HR =0.92; 95% CI 0.78�1.10) [8]. Based
on the lack of significant survival benefit demonstrated in stage I
(and sometimes detriment in stage IA � HR>1) with ACT, ACT is cur-
rently not recommended following surgery in stage I patients [11].
However, even after curative resection about 40% of stage I patients
tend to recur [12,13], possibly indicating these are patients at
increased risk of disease recurrence and therefore might benefit from
ACT.

While clinical parameters such as tumor stage, nodal status, age,
and performance score have been traditionally shown to be prognos-
tic [14], presently there is a paucity of accurate and validated bio-
markers based off clinicopathologic factors which can identify
patients who would benefit from ACT. Companion diagnostic assays
like those from Myriad [15] are tissue destructive and expensive and
not routinely ordered for every lung cancer patient. While there are a
number of multi-gene based prognostic biomarkers, the few existing
biomarkers for predicting survival benefit of ACT are molecular or
multi-gene based assays [16�19].

With the advent of digital pathology and the corresponding
increase in machine learning and computerized pathology image
analysis, there is the opportunity to mine and associate quantitative
features relating to tumor morphology to cancer prognosis and out-
come. A few groups have recently shown that machine learning
based prognostic classifiers can predict disease recurrence and sur-
vival [4�7] in the context of NSCLC. However, none of these
approaches has been evaluated in their ability to predict added bene-
fit of ACT in ES-NSCLC.

In this work, we present a computational pathology risk score
(CoRiS) that employs quantitative image features relating to shape,
size, and morphology of cancer nuclei derived from digitalized hema-
toxylin and eosin (H&E) stained images of resected ES-NSCLC tissue
specimens to predict OS and DFS. Using a total of 1330 ES-NSCLC
patients from 3 sites, treated either with surgery+ACT or surgery
alone, we demonstrate that CoRiS is both (a) prognostic of OS and
DFS and (b) associated with added benefit of ACT in ES-NSCLC
patients.

2. Patients and methods

2.1. Ethics statement

An Institutional review board (IRB) approved protocol was used
for the retrospective analysis, and the informed consent requirement
was waived by the IRB. The study was compliant with the Health
Insurance Portability and Accountability Act (HIPPA). All data used in
this study were de-identified and no protected health data was
needed.

2.2. Patients

Retrospective chart review of patients continuously admitted in
the Cleveland Clinic Foundation (CCF) with NSCLC between 2005�15
yielded 670 patients. All resected stage I and II NSCLC were included
in the study, however those tissue slides which following pathologi-
cal evaluation did not meet quality requirements such as poor stain-
ing and lack of sufficient tissue were excluded (flow diagram, Fig. 1).
This process resulted in rendering 431 ES-NSCLC patients suitable for
the analysis. Out of these, 83 patients received ACT. 100 patients with
surgery alone formed the discovery cohort (D1) while the remaining
N=331 formed the validation cohort (D2). The Cancer Genome Archive
(TCGA)-lung adenocarcinomas (ADC; N=523) and TCGA-lung squa-
mous cell carcinomas (SCC; N=409) cohorts are publicly available
datasets, assembled from different institutions [20]. After applying
the inclusion and exclusion criteria, a TCGA derived independent val-
idation cohort D3 (N=657; ADC=378, SCC=279) was identified. In D3,
179 patients received ACT. Additionally, a cohort of N=269 consecu-
tive, primary resected ES-NSCLC patients from the University of Bern
was used for prognostic validation and formed D4 (N=242 after apply-
ing the inclusion and exclusion criteria). D4 comprised only SCC cases
and all of the patients underwent surgery with 62 patients received
ACT. Patient demographics and characteristics are summarized in
Table 1. (Fig. 2).

2.3. Image acquisition

Whole slide images (WSI) obtained from routine H&E diagnostic
tissue slides of the primary tumor were collected for D1, D2 and D3. D4

was collected in the form of tissue microarrays (TMA) to represent
the core of the tumor. The H&E slides in D1 and D2 were scanned



Fig. 1. Patient Selection Diagram from 3 different cohorts: D1 with 100 surgery alone patients were used as discovery set; and D2-4 were used as validation set.

Table 1
Patients’ demographics and characteristics.

Variable Sub variables D1 N(%) D2 N(%) D3 N(%) D4 N(%) Total N Adj. P

Number of patients 100 331 657 242 1330
Age (mean+/-std year) unknown unknown 64 +/-15 67+/-8 65+/-13 <0.001
Gender Male

Female
unknown unknown 438(66.7)

219(33.3)
207(85.5)
35(14.5)

645
254

<0.001

Tumor Size (mean+/-std mm) 39.6+/- 98.6 33.3+/-34.0 unknown 46.61+/-23.38 39.36+/-46.66 0.002
Smoking Status Previous/Current

Never
88(88)
12(12)

267(80.7)
64(19.3)

580(88.3)
77(11.7)

unknown 935
153

0.199

pN 0
1
Unknown

82(82)
8(8)
10(10)

230(69.5)
61(18.4)
40(12.1)

491(74.7)
155(23.6)
11(1.7)

152(62.8)
88(36.4)
2(0.8)

955
312
63

0.294

pT 1
2
3
Unknown

47(47)
44(44)
8(8)
1(1)

163(49.2)
134(40.5)
33(10.0)
1(0.3)

295(44.9)
310(47.2)
52(7.9)

60(24.8)
162(66.9)
20(8.3)

565
650
113
2

0.332

Overall Stage IA
IB
I
IIA
IIB
II

45(45)
32(32)
0(0)
14(14)
8(8)
1(1)

108(32.6)
110(33.2)
3(0.9)
66(19.9)
41(12.4)
3(0.9)

223(33.9)
191(29.1)
5(0.8)
141(21.5)
90(13.7)
7(1.1)

65(26.9)
31(12.8)
1(0.4)
75(31.0)
64(26.4)
6(2.5)

441
364
9
296
203
17

<0.001

Treatment Surgery Only
Surg. + Chemo

100(100)
0(0)

248(74.9)
83(25.1)

478(72.8)
179(27.2)

180(74.4)
62(25.6)

1006
324

<0.001

Recurrence Non-recurrence
Recurrence

78(78)
22(22)

249(75.2)
82(24.8)

519(79.0)
138(21.0)

145(59.9)
97(40.1)

991
339

0.233

Tumor types Adenocarcinoma
SCC
Others

10(10)
88(88)
2(2)

130(39.3)
20(6.0)
181(54.7)

378(57.5)
279(42.5)

0(0)
242(100)
0(0)

518
629
183

0.284

Abbreviations: SCC, squamous cell carcinoma; Surg. + Chemo: surgery and chemotherapy; Adj. p: adjusted p; pT: pathological tumor stage; pN:
pathological nodal stage.
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using a Roche-Ventana iScan HT scanner (serial #: BI15N7205) at a
magnification of 20x. D3 was a publicly acquired dataset from multi-
ple institutions and heterogeneous scanners. The different pathology
labs that contributed studies to the TCGA likely used different ven-
dors for the whole slide scanning, unfortunately the specific scanner
make and model for the individual TCGA sites were not available. For
our analysis, the image and feature analysis were consistently per-
formed at 20x magnification for all datasets. D4 was in the form of
TMAs scanned at 40x (down-sampled to 20x) by Panoramic Digital
Slide Scanner 250 (version: 1.23.1.71684).

2.4. Automatic tumor detection and segmentation of cancer nuclei and
perinuclear region

A U-Net based convolutional neural network was employed for
segmentation with adversarial training (training rates are 0.001 and
0.01 for regular and adversarial training, respectively) [21]. Two dif-
ferent U-net based models were trained for tumor detection and
nuclei segmentation respectively. While the tumor detector was used
to generate the heat map for WSI to indicate the probability of tumor,
the nuclei segmentation model was used to delineate the boundary
pixels of each nuclei. The perinuclear region was segmented by tak-
ing 15 pixels at 20x magnification outward from the boundaries of
nuclei. Each of WSI was sliced into 2000 by 2000 pixels consecutive
tiles and only the tiles from the detected tumor regions were used to
represent each patient. The ground truth set of nuclei and tumor was
generated by two pathologists from University Hospital. For nuclei
segmentation, 8000 nuclei were annotated from 100 digitized H&E
images of breast (40) and lung cancer (60). For tumor annotation, 125
whole slide sections of lung cancer were manually annotated, 80 of
them were used for training and rest 45 were used for validation. The
tumor detector achieved 90.6% patch-level accuracy on a ground
truth set curated by pulmonary pathologists. Meanwhile, nuclei seg-
mentation model yielded an F-score 0.88, comparable to current
state-of-the-art nuclear segmentation algorithm [22]. All U-Net based
segmentations were implemented in Tensorflow 1.6 on Nvidia Titan
XP GPU clusters (network details are specified in supplementary
Table S3).



Fig. 2. Flowchart of overall workflow: (a) automated tumor region prediction; (b) image tile extraction from tumor and (c) nuclei and peri-nuclei features extraction; (d) feature
selection and CoRiS calculation; (e) prognostic and predictive validation of CoRiS.
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2.5. Quantitative feature extraction

We extracted 242 nuclear descriptors from previously segmented
nuclei. These features corresponded to five categories: nuclei shape
[23], orientation entropy [24], texture, local and global graph [25]. On
the one hand, shape features included basic measurements of nuclear
area, perimeters and mathematical descriptors of contour. Orienta-
tion entropy and texture on the other hand characterized directional-
ity coherence and pixel intensity distribution of the nuclei [24]. While
local graph measured the architecture in relation to neighborhood
cells, global graph captured the arrangement in relation to the entire
WSI [6]. A graph was a mathematical operation which included a set
of nodes (nucleus) to capture relationships through pairwise edges
formed between the nodes (Details in supplementary Table S1).

Another 35 peri-nuclear features from the adjoining cytoplasmic
area were also extracted. These included quantitative measurements
including area, area ratio of the peri-nuclear region to the nuclear
region, pixel intensities as well as texture [26]. These features would
not only characterize the space adjoining the nuclei in the cancer cell
but would also highlight relationships between the nucleus and cyto-
plasm in the cancer cell (Details in supplementary Table S2). Finally
mean, standard deviation, min and max value of patch-level features
were calculated and concatenated to generate a patient level image
signature. The feature extraction was implemented in MatLab 2020a.

2.6. Constructing the CoRiS risk score

A total of 277 nuclear and peri-nuclear features were extracted for
each patient in D1. In order to regularize the number of features pro-
portionate to samples size [27], the top discriminative features were
selected by Elastic-Net regularization with non-zero coefficients and
these features were fit into Cox Proportional Hazard model with OS
and DFS as the outcomes of interest, respectively. The CoRiS was
computed by a weighted linear combination of selected features and
their corresponding coefficients. The tradeoff value alpha (mixing
parameter) between L1 and L2 for elastic net was evaluated from 0 to
1 with step size of 0.1. It was determined that 0.8 would be the opti-
mal value. The optimal value of the tuning parameter in the Elastic-
Net Cox (lambda) was determined by 10-fold cross validation in D1.

2.7. Statistical analysis

OS was measured from the date of diagnosis to the date of death
and censored at the date of last follow-up for survivors. DFS was
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calculated from the date of surgery to the date of recurrence or death
whichever occurred earlier and censored at the date of last follow-up
for those still alive without recurrence. The CoRiS was divided into
low and high risk based on the median value of CoRiS classifying OS/
DFS obtained on D1. Further stratification of CoRiS was done by divid-
ing it into four groups (H, IH, IL, L) based on quartile values from train-
ing CoRiS. High-risk group comprised the upper two quartiles, high
(H) and intermediate high (IH), while low risk comprised lower two
quartiles, intermediate low (IL) and low (L). Univariable analysis of
CoRiS and the clinicopathologic variables (i.e. smoking history, tumor
subtypes, pathological stage) were conducted. Multivariable Cox-
regression models were built to assess the relationships between the
various covariates and OS/DFS while adjusting for baseline factors
[28]. Forest plots were constructed to show the HRs comparing OS
between ACT and the surgery alone group in all the cohorts with
patients being stratified based on the quartiles of CoRiS. Further sub-
set analysis involved looking at survival differences in the different
AJCC stages and subtypes of tumor, i.e. SCC and ADC. Kaplan-Meier
survival curves were obtained to visualize the differences based on
CoRiS and Hazard Ratios were computed. All p-values were adjusted
based on Benjamin and Hochberg’s procedure[29,30] and a signifi-
cance level of 0.05 was set to be statistically significant. Statistical
analysis was implemented in R 3.6.1.
3. Experiments and results

3.1. CoRiS predicts OS and DFS on validation sets, independent of
clinicopathologic factors

Eleven most discriminative features were selected to construct
CoRiS (Figs. S1�S2). CoRiS, (Fig. 3) was found to be prognostic of both
OS (D1, HR = 2.97, 95% CI: 1.87�4.71, adjusted (adj.) P < .001; D2,
HR = 1.33, 95% CI: 1.05�1.68, adj. P = .067; D3, HR = 1.62, 95% CI:
1.24�2.11, adj. P < .001; D4, HR = 1.54, 95% CI: 1.03-2.3, adj. P = .082,
Figs. 3 and S5) and DFS (D1, HR = 2.4, 95% CI: 1.54�3.73, adj. P < .001;
D2, HR = 1.27, 95% CI: 1.01�1.61, adj. P = .082; D3, HR = 1.7, 95% CI:
1.24-2.33, adj. P = .028; D4, HR = 1.54, 95% CI: 1.05�2.25, adj. P = .082,
Figs. 3 and S6). On univariable analysis, only CoRiS was significantly
prognostic among all test sets (Table 2). Kaplan-Meier (KM) curves
for predicting OS/DFS by CoRiS are shown in Fig. 3 for D1�D3. On
multivariable analysis with controlling covariates, CoRiS was found
to be independently prognostic (D2, HR = 1.24, 95% CI: 1.06-1.39, adj.
P = 0.01 and D3, HR = 1.14, 95% CI: 1.02�1.28, adj. P = 0.01 Table 2). In
addition, CoRiS could separately predict the OS/DFS in two major
Fig. 3. Kaplan-Meier plots showing prognostic effect of CoRiS with (a�c) patients’ overall su
ment and risk score in overall survival for D1, D2, D3 was 0.17, 0.37, and 0.51, respectively; in
NSCLC subtypes, ADC and SCC. Details of the subtype analysis are
included in Figs. S5�S8.

3.2. CoRiS predicts ACT benefit in two independent validation sets

CoRiS classified 38 and 45 patients who received ACT into low-
risk and high-risk groups based on median CoRiS in D2 (Fig. 4a). Simi-
larly, in D3, CoRiS classified 93 and 86 of those patients who received
ACT into low-risk and high-risk groups respectively (Fig. 4c). Survival
comparisons between the groups (low-and high risk) in patients who
received ACT showed no statistically significant difference in OS for
both D2 (HR = 0.83 95% CI: 0.52�1.32, adj. P = .631, Fig. 4a) and D3

(HR = 1.42, 95% CI: 0.86�2.37, adj. P = .218, Fig. 4c). In contrast, for
patients who underwent surgery alone without ACT, there was a sta-
tistically significant difference in OS between the low and high risk
groups in D2 (HR = 1.75, 95% CI: 1.33�2.31, adj. P < .001, Fig. 4b) and
D3 (HR = 1.73, 95% CI: 1.26�2.36, adj. P = .004, Fig. 4d). Results for
DFS were similarly significant (see Supplementary Fig. S9). Granular
analysis of CoRiS showed the patients with increased risk (H and IH)
tended to have longer survival when ACT was administered. The H
group showed improved median OS by about 35 months (95% longer)
in D2 (HR=0.42, 95% CI: 0.26�0.69, adj. P = .006, Fig. 4e) and 46
months (115% longer) in D3 (HR=0.46, 95% CI: 0.24�0.87, adj.
P = .082, Fig. 4f) between ACT and surgery alone patients. In IH group,
median OS was found to be higher by 21 months (58% longer) in D2

(HR=0.51, 95% CI: 0.33�0.78, adj. P = .016, Fig. 4e) and 19 months
(61% longer) in D3 (HR=0.44, 95% CI: 0.22�0.91, adj. P = .082, Fig. 4f)
when ACT was given. In the IL and L groups, the ACT population
showed worse survival as compared to the surgery alone group but
was not statistically significant (adj. P > 0.05) in both D2 and D3

(Fig. 4 e, f). Estimated survival benefit according to DFS was similar to
OS, higher CoRiS showing an estimated DFS benefit in D2 (HR=0.36,
95% CI:0.20�0.66, adj. P = .015) and D3 (HR=0.45, 95% CI: 0.24�0.86,
adj. P = 0.082), respectively (Fig. S9 e, f).

On subset analysis by stage (stage IA, IB and II), CoRiS was predic-
tive of survival benefit to ACT, suggesting that only high-risk patients
received benefit to ACT, with either no advantage or potential nega-
tive impact of ACT in the low-risk group (Figs. S3 and S4, complete
results by stage).

4. Discussion

Due to contradictory results from multiple clinical trials, ACT is
currently not recommended in stage IA while there is controversy
rvival in D1-3 and (d�f) disease free survival in D1-3. (Interaction p-value between treat-
disease free survival, interaction p-values were 0.2 for D1, 0.35 for D2 and 0.46 for D3.)



Table 2
Univariable and multivariable with overall survival analysis on validation set (D2 and D3).

Dataset Variable Univariable Analysis Multivariable Analysis

HR (95% CI) Adj. P HR (95% CI) Adj. P

D2 Nonsmoker vs Previous/Current Smoker 1.34(1.00-1.80) 0.05 1.28(0.94-1.76) 0.14
Subtypes
ADC vs SCC

0.97(0.84-1.12) 0.64 0.93(0.80-1.09) 0.40

Overall Stage
IA
IB
IIA
IIB

Reference
1.10(0.75-1.63)
1.27(0.94-1.71)
1.45(1.06-1.98)

0.68
0.20
0.10

Reference
1.05(0.67-1.67)
1.23(0.90-1.68)
1.41(0.98-1.98)

0.81
0.24
0.08

Tumor Size (mm) 1.00(1.00-1.01) 0.21 1.00(0.99-1.01) 0.95
Treatment
Surg vs Surg + ACT

1.33(0.99-1.79) 0.06 1.38(0.97-1.83) 0.10

Risk score (CoRiS) 1.41(1.08-1.84) 0.01 1.24(1.06-1.39) 0.01
D3 Nonsmoker vs Previous/Current Smoker 1.04(0.56-1.41) 0.80 1.07(0.56-2.05) 0.85

Gender
Male vs Female

1.09(0.76-1.57) 0.64 1.24(0.56-2.01) 0.30

Age (years) 1.00(0.99-1.02) 0.55 1.01(0.99-1.02) 0.68
Subtypes
ADC vs SCC

0.89(0.68-1.16) 0.38 0.80(0.53-1.20) 0.30

Overall Stage
IA
IB
IIA
IIB

Reference
1.11(0.57-2.17)
1.35(0.83-2.19)
1.57(0.97-2.55)

0.81
0.30
0.16

Reference
1.13(0.58-2.21)
1.29(0.79-2.11)
1.64(0.97-2.67)

0.80
0.51
0.11

Treatment
Surg vs Surg + ACT

1.02(0.76-1.37) 0.89 1.21(0.71-1.98) 0.51

Risk score (CoRiS) 1.35(1.15-1.59) 2.52e-4 1.14(1.02-1.28) 0.01

Abbreviations: ADC, adenocarcinoma; SCC, squamous cell carcinoma; Surg, surgery; ACT: adjuvant chemotherapy;
HR, hazards ratio; CI, confidence interval; adj. p: adjusted p.
Note: HR standards for hazard ratio; values in bold are statistically significant by two-tailed test, p<0.05
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regarding its use in stage IB patients [1,2,11,16�19]. While the Amer-
ican Society of Clinical Oncology guidelines do not recommend ACT
in stage IB patients, the NCCN guidelines currently only recommend
ACT in stage IB patients with a high risk of recurrence[11,31]. There is
thus a need for predictive biomarkers to identify tumors at higher
risk of recurrence and would be potential candidates for ACT. Identi-
fying the low risk patients who will do well with surgery alone would
spare them from toxicity of ACT.

Amongst the existing biomarkers in NSCLC, most are prognostic
and reliant on molecular or multi-gene assays. For instance, many
studies showed that class III b-tubulin expression, abnormalities in
the k-ras oncogene and p53 tumor suppressor gene, and DNA meth-
ylation markers could potentially identify the high-risk patients who
would benefit from ACT [32,33]. The only known molecular assay
predictive of benefit to ACT was published by Zhu et al. [19] who
showed that a 15-gene signature was not only prognostic but pre-
dicted improved survival after ACT in signature defined high-risk
patients (HR = 0.33; 95% CI, 0.17 to 0.63; P = .0005), but not in low-
risk patients (HR = 3.67; 95% CI, 1.22 to 11.06; P = .0133; interaction P
< .001) [19]. However, all the mentioned biomarkers are tissue
destructive, expensive and time-consuming involving RNA expres-
sion and microarray profiling analysis.

In this work we presented CoRiS, the first of its kind digital pathol-
ogy based companion diagnostic test, which is not only prognostic
but also predictive of added benefit of ACT in ES-NSCLC. The CoRiS
comprises 11 features relating to nuclei and peri-nuclear histomor-
phometric attributes obtained from digitized H&E tissue images. We
used a group of resected ES-NSCLC without ACT to train CoRiS as
prognostic model. CoRiS was further independently validated on
multiple sets (independent of clinical factors such as tumor stage and
smoking history; see Table 2).

For predicting benefit to ACT, the two top CoRiS groups (H, IH)
showed statistically significant survival benefit for validation set D2.
While CoRiS did not yield the same significant survival difference
after p-value adjustment (adj. P<0.1) on D3, there was a clear trend
that patients who received ACT had a longer median survival time. In
fact, the highest risk CoRiS group (H) showed >90% median OS
improvement (Fig. 4e, f) for the ACT as compared to the surgery alone
patients. Interestingly, the low CoRiS groups (IL, L) across the valida-
tion cohorts showed no statistically significant differences in HR
between the surgery alone and ACT groups, and in some cases
showed detrimental effects of ACT (HR>1; Fig. 4e, f). This seems to
suggest that patients in the CoRiS low group (L) would do equally
well with surgery alone and can be spared the deleterious effects of
ACT.

A subgroup analysis on stage IB patients showed that CoRiS
divided D2-4 into low risk (Fig. S3d) and high risk (Fig. S3c) groups.
This illustrates that the patients who received ACT had reduced haz-
ard of dying in high risk group but in the low risk group, no survival
difference between two cohorts of patients (with or without ACT)
was identified with HR = 0.96 and adj. P = 0.899. In addition, the CoRiS
defined high-risk group had significantly improved OS with ACT ver-
sus surgery alone (Fig. 4e). However, the low risk CoRiS group had no
additional benefit with ACT (Fig. 4e). While the CALGB9663 and the
LACE meta-analysis showed a small but non-significant statistical
benefit to HR in stage IB with ACT, the IALT and the JBR10 trials did
not show OS differences in stage IB [2,4,5]. These results thus seem to
suggest a basis for the non-significant benefit to ACT in the com-
pleted clinical trials in stage IB patients. The combination of two dis-
tinct risk groups within a homogenous clinically defined stage could
be a possible reason for the low benefit to ACT seen in published
studies.

Meanwhile, in stage II patients where the present recommenda-
tion is ACT following resection, the CoRiS signature identified a low-
risk group that did not have a significantly different HR when com-
pared to the surgery alone group (Fig. S3f), thus potentially identify-
ing and unveiling a group with relatively good survival that might be
spared the toxicity of ACT.

Machine learning approaches have been applied to digital pathol-
ogy images for different cancer types to prognosticate patients’



Fig. 4. Kaplan-Meier plots showing predictive effect in CoRiS defined different risk of overall survival groups: (a) patients received adjuvant chemotherapy in D2; (b) patients only
received surgery in D2; (c) patients received adjuvant chemotherapy in D3; (d) patients only received surgery in D3. Forest plots of different CoRiS defined risk of overall survival
groups in (e) D2 and (f) D3.
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outcome[21,22]. To the best of our knowledge, CoRiS, is different
from previous works[19,34] in that it is not just prognostic of risk of
recurrence but also predictive of added benefit of ACT for early stage
NSCLC. Wang et al. demonstrated that nuclear shape and texture fea-
tures based off H&E biopsy TMAs could identify patients who would
recur following surgery in early-stage NSCLC [6]. Meanwhile, Corre-
dor et al. showed that the spatial architecture of tumor infiltrating
lymphocytes (TILs) was prognostic of recurrence free survival in sev-
eral independent validation datasets, pathologist based TIL estima-
tion by comparison was not prognostic for those datasets [4]. The
selected features for CoRiS includes descriptors characterizing nuclei
arrangement and abundance. For example, the average area of the
Voronoi diagram obtained by connecting nuclei could allow for cap-
ture of the number and proximity of nuclei within the tumor. In addi-
tion, the texture feature (Haralick) characterizing the peri-nuclei
region might be reflective of the coherence of extracellular staining,
in other word, less aggressive tumor might present with more
homogenous cytoplasm formation. This work was significantly differ-
ent from previous related publications [4,6,23] by (a) the features
comprising CoRiS included not just the morphology and spatial
arrangement (i.e. Voronoi and cell cluster graph) of nuclei but also a
set of innovative peri-nuclear features (texture features from peri-
nuclei region); (2) CoRiS has shown to be not only prognostic to
patients’ outcome but also predictive to benefits of ACT; and (3) CoRiS
was validated on over 1000 patients from multiple different institu-
tions.

The study did have its limitations. Firstly, CoRiS was developed
and validated using retrospective data from different institutions,
which means the pathological staging criteria applied might have
varied at the time of tissue examination [35], additionally at least a
few demographic related parameters were not available for some of
the datasets. Secondly, for predicting benefit to ACT, the surgery only
and the surgery+ACT groups used in the analysis were not strictly
and homogeneously controlled (including ACT protocol), it is likely
that the assignment and protocol of ACT might have differed across
the institutions considered in this study. Recently, transfer learning
based approaches have been applied in tumor detection and classifi-
cation [36,37]. An avenue for future investigation might involve the
use of transfer learning, potentially leveraging other data streams
like quantitative immunofluorescence, for the problems of cancer
prognosis and response prediction. While the difference of median
OS between CoRiS defined low and high risk group is over 90% in D3,
the survival benefit between two groups is not significant after p-
value adjustment. However, the effect sizes (HRs) of CoRiS across the
validation datasets (D2 and D3) are similar (see Table 2). Multiple test
correction using FDR approach was done only for each task separately
rather than done considering all related survival prediction tasks
together. As a result, the family-wise error rate was not controlled at
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0.05 level for all classification tasks. In addition, we focused on fea-
tures relating to nuclei from within cancer-identified regions on H&E
images without differentiating cell types (i.e. tumor and lymphocyte
cells). Computerized discrimination of the different cell type catego-
ries (i.e. lymphocytes, cancer nuclei, fibroblasts, macrophages) can be
challenging on H&E images alone, and we were cautious to include
another possible confounding variable to our predictor. Manually
checking the fidelity of the detected lymphocytes on over 1,000 H&E
WSIs from multiple institutions was clearly not feasible. Additionally,
we did not have access to immunohistochemistry (IHC) or quantita-
tive multiplex immunofluorescence (qmIF) images that would have
allowed us to better define and employ features from different
immune cell subtypes (e.g. CD4, CD3, and CD20). Clearly an avenue
for future investigation will be the possible combination of features
from H&E images along with corresponding features from IHC and
qmIF images. Deep learning has shown better performance in differ-
ent tumor segmentation tasks compared to hand-crafted based
approaches [38,39]. However, in detecting tumor regions directly
from whole slide images (WSI), our approach based on U-Net and
adversarial training achieves comparable results (Table S4) to
recently published deep learning methods in terms of both accuracy
and computational efficiency [40]. For clinical utility and deployment,
CoRiS needs to be prospectively validated, and needs to be applied on
clinical trials with randomly assigned patients to surgery and surgery
+ACT to truly validate its utility in predicting benefit to ACT.

In summary, we developed and validated an 11-feature prognos-
tic and predictive signature for ACT benefit in patients with ES-
NSCLC. With additional validation, possibly in the context of clinical
trials like JBR10 and IALT[4,7], CoRiS could be validated as an inex-
pensive, tissue non-destructive, prognostic and predictive companion
diagnostic for ES-NSCLC that could possibly have global impact.
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