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Germline de novo mutation rates on exons versus
introns in humans
Miguel Rodriguez-Galindo 1, Sònia Casillas 2,3, Donate Weghorn 1,4✉ & Antonio Barbadilla 2,3✉

A main assumption of molecular population genetics is that genomic mutation rate does not

depend on sequence function. Challenging this assumption, a recent study has found a

reduction in the mutation rate in exons compared to introns in somatic cells, ascribed to an

enhanced exonic mismatch repair system activity. If this reduction happens also in the

germline, it can compromise studies of population genomics, including the detection of

selection when using introns as proxies for neutrality. Here we compile and analyze published

germline de novo mutation data to test if the exonic mutation rate is also reduced in germ

cells. After controlling for sampling bias in datasets with diseased probands and extended

nucleotide context dependency, we find no reduction in the mutation rate in exons compared

to introns in the germline. Therefore, there is no evidence that enhanced exonic mismatch

repair activity determines the mutation rate in germline cells.
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One of the most general and widely accepted predictions
of the neutral theory of molecular evolution is that “the
more sequence conservation, the more functional

(selective) constraint on the sequence”1. This principle explains
why different functional regions in the genome have different
levels of polymorphism and divergence, such as the lower var-
iation at nonsynonymous vs synonymous sites in protein-coding
genes or in exonic vs intronic sequences2. This relationship
between constraint and variation constitutes one of the most
powerful approaches in the current search for functional regions
in the genome and the detection of natural selection at the
molecular level. An integral part of estimating constraint, or
purifying selection, on functional genomic regions is the com-
parison of the observed number of mutations to the expectation
under neutral evolution. In genes, this neutral expectation is
usually estimated from putatively nonfunctional regions or sites,
including intronic sequence3,4. A main requirement for the
validation of this assumption is that mutation rate on exons and
introns does not correlate with that sequence function.

Mutation rate can vary strongly across the human genome,
with regional differences up to threefold in the germline5 and at
least up to fivefold in tumor cells6. It is influenced by several
factors, including replication time, chromatin state, and expres-
sion level6–8. A priori, none of these factors are expected to
correlate directly with genic sequence function (exonic vs intro-
nic). Another important determinant of mutation rate is DNA
sequence composition. Recent studies have addressed mutational
processes and their associated sequence-dependent signatures,
both in the soma and the germline9–14. Germline and many
cancer tumor signatures exhibit a higher relative rate of C > T
transitions for single nucleotide variants (SNV)6,9,15. Conse-
quently, due to their higher G/C content, exonic regions show a
context-driven relative increase in mutation rate compared to
intronic regions16, which can be corrected for with the proper
mutational model.

A differential mutation rate between intronic and exonic DNA
beyond the context dependence would require a mutational pro-
cess that recognizes the difference between the two functional
sequence categories. Surprisingly, Frigola et al.17 found in tumoral
DNA, primarily from skin melanomas and DNA-polymerase-ε
(POLE)-mutant colorectal cancers, that mutation rates are lower in
exons than in introns after accounting for the trinucleotide-
context-dependent mutational signature. This reduced mutation
rate in exons is similar both in synonymous and nonsynonymous
sites, which rules out purifying selection as an explanation. The
study suggests that the lower mutation rate in exons results from
an enhanced mismatch repair (MMR) activity in exons compared
to introns. In turn, the increased repair activity is attributed to
different amounts of H3K36me3 epigenetic marks on exons and
introns17.

In the germline, whether originating from replication errors or
mediated by DNA damage, the dominant mutational processes
are expected to produce mismatches18–22. Hence, any MMR-
related mechanism is expected to play an important role in
germline DNA damage repair. If the enhanced somatic exonic
MMR activity found by Frigola et al.17 could be extrapolated to
the germline, as the study suggests, then population and func-
tional genomics studies would be compromised, and they should
include differential exonic and intronic mutation rates as an
integral part of their explanatory models.

Here, we investigate the relative mutation rates of exons and
introns in the human germline using de novo mutation (DNM)
data. We show that DNM densities do not differ between exons
and introns after accounting for trinucleotide sequence compo-
sition and an excess of nonsynonymous exonic variation arising
from sampling bias. We further explore factors that can impact

DNM densities on exons and adjacent introns, namely extended
sequence context dependency and several chromatin features,
including H3K36me3 epigenetic marks. Finally, we provide esti-
mates of exonic and intronic DNM rates.

Results
No evidence of reduced exonic DNM rate compared to introns.
To study the distribution of germline mutations across exons and
introns, we collected a total of 679,547 SNV DNMs from seven
family-based WGS datasets, consolidating a high-density, high-
quality DNM map across the human genome (see “Methods”).
The compiled datasets show highly similar mutation spectra and
an enrichment with CpG > TpG transitions (Supplementary
Fig. 1). We first analyzed whether exonic and intronic mutation
densities differ among human DNMs after accounting for
sequence composition. For that purpose, we computed the
observed total mutation burden at exonic and intronic sites by
summing over 95,633 internal exon-centered sequences of size
2001 base pairs (bp), carrying a subset of 50,780 genic mutations.
Since per-nucleotide mutation probability is influenced by the
neighboring sequence context, we derived the expected mutation
burden at each position of each 2001-bp internal exon-centered
window from a context-dependent model (see “Methods”). We
initially used a trinucleotide-context-dependent germline whole-
genome mutation signature model, in line with the analysis
presented in Frigola et al.17 for somatic mutations.

Frigola et al.17 found that the mutation burden of POLE-
mutant tumors in positions dominated by exonic DNA is lower
than expected (Fig. 1a). In contrast, in our study the observed
germline exonic mutation burden was significantly increased by
7.2% (s.d. 1.4%; P= 0.001, permutation-based test) compared to
the expectation across introns and exons (Fig. 1b). This result is
robust to biases in mutation calling due to region mappability
differences (Supplementary Table 1, Supplementary Fig. 2) and
effects of transcription-coupled repair on the mutational pattern
(Supplementary Fig. 3). This suggests that the hypothesized
mechanism of enhanced repair on exons compared to introns in
POLE-aberrant tumors is not determining mutation rate in the
germline.

Sampling bias explains exonic mutation density excess. Even in
the absence of the supposed enhanced MMR effect on exonic
DNA, we would expect a very slight deficit of exonic relative to
intronic DNMs, due to strong purifying selection on lethal de
novo variants in the early stages of embryonic development23.
Therefore, we next investigated potential factors that could
explain the observed increase in exonic relative to intronic
mutation burden in DNM datasets, such as technical differences
in sequencing and calling (Supplementary Table 2) and
enrichment with diseased probands. As detailed in Table 1, the
analyzed DNM datasets are heterogeneous regarding their study
conditions, including disease cohorts. Diseased probands, e.g.
those with autism spectrum disorder (ASD) or preterm birth,
are more likely than average to carry mutations with functional
impact24,25. This ascertainment bias in the data is expected to
entail an enrichment with exonic nonsynonymous variants26,27.
To test this, we classified the 4669 mutations in the internal
exons as synonymous and nonsynonymous changes, resulting
in 3488 nonsynonymous and 1170 synonymous DNMs (corre-
sponding to a ratio of 2.98:1). We then repeated the internal
exon-centered analysis for each of the two exonic mutation
categories.

Figure 2a shows that the observed synonymous profile
matches the expected profile almost perfectly, with a slight
nonsignificant deficit (−1.1%, P= 0.353). However, exonic
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nonsynonymous mutations show a large and statistically
significant excess compared to the expectation under the
trinucleotide-context model (10.4%, P= 0.001, Fig. 2b). Note
that this stratification by functional mutation category entails a
reduction of the number of both synonymous and nonsynon-
ymous mutations relative to flanking introns across the window
of stacked sequences. This is why the number of mutations,
when moving outwards from the center, converges to that of
Fig. 1b. Overall, Fig. 2 suggests that disease ascertainment
during data acquisition may be responsible for the overall
excess of 7.2% of exonic variants. Therefore, we next repeated
the analysis for all seven DNM datasets individually, as well as
for assembled samples with only healthy, only ASD, or a
representative mixture of probands (see “Methods”). We found
a significant exonic mutation excess only in cohorts with a high
fraction of diseased probands or those assembled purely from
diseased samples, while all cohorts with mostly or exclusively
healthy probands show no signal (Table 1). Moreover, when we
stratify exonic mutations by functional impact, we find a
statistically significant excess only in nonsynonymous muta-
tions among ASD individuals (Supplementary Table 3).

De novo variants show extended-context dependency. The
stratification into synonymous and nonsynonymous changes
entailed a polarization of the exonic excess (Fig. 2), intensifying
the signal for nonsynonymous variants (10.4%) with a con-
comitant decrease for synonymous variants (−1.1%). This type of
polarization could be due to the incompleteness of our mutational
model. Our mutational model for the expected number of
mutations was constructed using trinucleotide-context-dependent
mutation probabilities. However, it has been shown that SNPs
segregating in the human population are affected by the extended
flanking sequence, with a heptameric context explaining a
majority of the observed mutation rate variability13,14. Figure 3
and Supplementary Figs. 4, 5 show that this is confirmed by
DNMs based on the relative frequencies of all four nucleotides
around mutations in our DNM dataset, although the effect of the
extended flanking sequence is small compared to the one
observed in POLE-mutated tumor genomes28.

We assessed the impact of context dependency by expanding
our mutational signature model to incorporate the pentameric and
heptameric mutational sequence context (based on exact computa-
tion and a likelihood decomposition approach, respectively; see

Table 1 Properties of analyzed DNM datasets including excess in exonic burden.

Dataset Phenotypic condition Control/proband DNMs Exonic excess [%] Emp. p value

Halldorsson36 Mixed (multiple diseases) 180,151 11.7 ± 2.8 0.001
Yuen38 Mostly ASD 127/117,612 8.0 ± 4.1 0.015
Goldmann35 Mixed (preterm birth) 35,793 13.0 ± 6.6 0.016
Sasani39 Random (mostly healthy) 27,454/0 12.3 ± 7.9 0.052
An37 ASD+ healthy sibling 115,697/117,942 3.5 ± 2.2 0.070
GoNL16 Random (mostly healthy) 11,016/0 12.1 ± 14.5 0.181
Goldmann29 Healthy 73,755/0 2.5 ± 4.4 0.291

Autism probands ASD 0/235,554 8.4 ± 2.5 0.001
Representative sample Non-ASD+ASD 98,300/1,700 −2.5 ± 3.5 0.233
Healthy probands Healthy 189,579/0 −0.5 ± 2.5 0.417

The seven used datasets and their references are shown above the line, while below the results for the composed datasets (see “Methods”) are given. In each group, datasets are ordered from most to
least significant exonic mutation excess. Errors of the exonic excess denote 1 s.d. from 1000 permutations (see “Methods”).
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Fig. 1 Internal exon-centered analyses on somatic and germline de novo mutations. Exon-centered 2001-nt-wide observed and expected mutational
profiles (top) and exon density (bottom) in a somatic and b germline cells. The light red line represents the observed number of mutations at each position,
whereas the dark red and black lines represent smoothed numbers of observed and expected mutations, respectively, obtained from a polynomial fit.
a Profile of mutations in six POLE-mutant colorectal tumors, reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature
Genetics, Reduced mutation rate in exons due to differential mismatch repair, Frigola et al.17. b Profile of mutations in the germline of 11,237 trios.
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“Methods”, Supplementary Fig. 6). We applied these extended-
context models to the largest DNM dataset that had no diseased
probands, Goldmann et al.29, as well as to this dataset and the
pooled dataset stratified by synonymous and nonsynonymous
variants. We found that while the overall likelihood increases for
increasing context size, penalization due to the additional
parameters of the larger context models entails that the
trinucleotide-context-dependent model is found to be the best
model for the current datasets based on the Akaike information
criterion (AIC) (Table 2, Supplementary Tables 4–6).

H3K36me3 does not correlate with exonic mutation density.
The enhanced exonic MMR activity compared to introns in
POLE-aberrant tumors was proposed to be mediated by the
H3K36me3 mark17. Using our dataset of mutations from healthy
probands, we therefore investigated the relative exonic mutation
density as a function of H3K36me3 and nucleosome density.
These two features show differential coverage between (mainly
internal) exons and introns (Supplementary Fig. 7), and had been
previously described to contribute to the recognition of splice
marks at internal exon–intron boundaries30,31. We observed no
significant correlation (r=−0.03, P= 0.84) between the exonic
mutation enrichment and the H3K36me3 mark (Fig. 4b). This
contrasts with the recruitment mechanism described in somatic
cells32, which is invoked as the mechanistic hypothesis behind the
findings in Frigola et al.17 (Fig. 4a). Conversely, we find a nega-
tive, nearly significant correlation (r=−0.28, P= 5.38 × 10−2)
with nucleosome coverage (Supplementary Fig. 8). This result

complements the previously reported influence of nucleosome
organization on human germline DNMs5,33.

Estimation of exonic and intronic de novo mutation rate. We
estimated germline DNM rates for exons and introns separately.
Using the largest dataset with only healthy probands29, we
estimated 1.38 × 10−8 and 1.11 × 10−8 mutations per site per
generation for exons and introns, respectively. This difference
reflects the higher mutability of exons with respect to introns
due to sequence differences, namely higher CpG and overall GC
content16. These estimates are consistent with a previously
reported whole-genome based rate of 1.2 × 10−8 mutations per
site per generation20. Conversely, estimates obtained from the
pooled dataset reflect the disease ascertainment bias, with a
similar intronic mutation rate (1.15 × 10−8), but a much larger
exonic rate (1.52 × 10−8), in line with previous findings in dis-
eased cohorts34.

Discussion
We compiled human DNM data to show that the rate of genera-
tion of new genetic variants, the mutation rate, does not sig-
nificantly vary between exons and adjacent introns when
accounting for sequence context. Moreover, we went beyond pre-
vious analyses that used extreme rare variants as a proxy for
DNMs13,14 and described directly germline mutation patterns
based on a large aggregated DNM dataset. We corroborated earlier
findings, in particular an extended-context dependence of germline
variants. At the same time, the internal exon-centered analysis,
with its relatively low number of mutations compared to the entire
dataset, is still adequately described by a trinucleotide-context-
dependent model. Beyond context dependence, the sampling bias
introduced by enrichment with diseased probands is one of the
most important confounding factors of DNM analyses. We showed
that its effects can lead to significant deviations from the null
model and, depending on the application, should be addressed
through an informed choice of samples.

Our analysis shows that the results found in the soma cannot
be directly extrapolated to the germline, and the MMR-dependent
process that was proposed as an explanation for the decreased
exonic mutation burden in somatic cells does not seem to
determine germinal cell mutation rates. Last, this study provides a
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Fig. 2 Internal exon-centered analysis for synonymous and nonsynonymous DNMs. The light red line represents the observed number of mutations at each
nucleotide position, while the dark red and black lines represent averages in bins of size 25 positions for observed and expected mutations, respectively.
a Synonymous DNM profile with observed exonic mutation difference of −1.1% (P= 0.353). b Nonsynonymous DNM profile, showing an exonic excess of
10.4% (P= 0.001). Due to the removal of nonsynonymous and synonymous mutations in panels (a) and (b), respectively, the total number of exonic
mutations relative to flanking introns is reduced. The number of mutations, when moving away from the center, converges to that of Fig. 1b.

Table 2 Extended sequence context dependency for
Goldmann et al.29.

Model Exonic
excess [%]

Emp.
p value

Log-
likelihood

# param AIC

1-mer 16.2 ± 5.4 0.001 −68,111 12 136,247
CpG 1.7 ± 4.3 0.348 −66,594 18 133,224
3-mer 2.7 ± 4.3 0.281 −66,315 192 133,014
5-mer 2.9 ± 4.6 0.258 −66,054 1344 134,797
7-mer 2.8 ± 4.3 0.266 −65,981 2496 136,955

Errors of the exonic excess denote 1 s.d. from 1000 permutations (see “Methods”).
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clear-cut answer to the challenge posed by Frigola et al.17: It
validates the main assumption of molecular population genetics—
that genomic mutation rate does not depend on sequence func-
tion—and demonstrates different mutational dynamics in
somatic vs germinal cells.

Methods
De novo mutation data. We aggregated DNMs from seven family-based WGS
datasets coming from multiple centers and projects: the Genomes of the Nether-
lands (GoNL) project16, the Inova Translational Medicine Institute Preterm Birth
Study35, Inova Translational Medicine Institute’s Longitudinal Childhood Genome
Study29, deCODE genetics36, Simons Simplex Collection (SCC) and Korean ASD
cohort37, the Autism Genetic Research Exchange (AGRE) repository38 and Centre
d’Etude du Polymorphisme Humain (CEPH)39. Mutation datasets were down-
loaded from the supplementary tables of the respective papers35–39 or by direct
request to the authors29. Data from the GoNL were downloaded from http://www.
nlgenome.nl. Most of datasets were originally mapped to hg19, with exception of
the data from An et al.37 and Halldorson et al.36, which were mapped to hg38.
Subsequently, coordinates in these datasets were lifted over to hg19, the most
common reference genome in our data. To avoid possible biases arising from
mutation calling on sexual chromosomes, only autosomal SNVs were used, leaving
a total of 679,547 germline SNV DNMs coming from 11,237 trios.

Effect prediction of de novo mutations. The predicted consequence class of all
DNMs was obtained using the Ensembl Variant Effect Predictor (VEP)40 for the
GRCh37/hg19 assembly. Since some DNMs were reported to have more than one
consequence, e.g. different transcripts or overlapping genes, only one predicted
consequence for each DNM was retrieved (according to VEP criteria). Predictions
are classified from major to mild according to the Ensembl Variation hierarchy.

Whole-genome de novo mutation spectrum. All mutations were divided into
nine classes, considering the fact that CpG sites are highly mutagenic. The number
of mutations were corrected by the relative abundance of the context in the whole
genome, e.g. the total number of C > T (G > A) transitions occurring at CpG sites
divided by the relative abundance of CpG sites in the genome. We performed the
mutational analysis across all used studies (Supplementary Fig. 1). For all sub-
sequent analyses, extended nucleotide-context-dependent mutational models
were used.

Genomic coordinates of internal exons and flanking introns. Coordinates for a
total of 20,345 protein-coding genes were obtained from GENCODE v19 41. Genes
without introns and overlapping genes were discarded, leaving a filtered set of
13,474 genes. Genes located on chromosomes X, Y and on the mitochondrial
genome were removed from the analysis, leaving a total of 12,754 autosomal genes.
Finally, all transcripts per gene were merged into meta-exon and meta-intron
coordinates, both 5′ and 3′ flanking exons were removed as well as UTRs. Only
internal exons (unfiltered by mappability issues, see below) were used for the main
internal exon-centered mutational analyses.

Moreover, positions where mutation calling would be technically challenging
because of mappability issues were removed, leaving a total of 10,237 genes for the
gene by gene analyses. We also filtered out the internal exon-centered 2001-nt
windows that overlapped at least one nucleotide with regions with mappability
issues (Supplementary Table 1) for the supplementary internal exon-centered
analysis restricted to highly mappable regions (Supplementary Fig. 2). Coordinates
of unreliable regions42 were obtained from the UCSC Genome Browser, available at
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability.

Meta-exon and meta-intron coordinates of genes with at least five meta-exons
(not only internal) were extracted from GENCODE v19 for the analyses with
chromatin features across genic regions (Supplementary Fig. 7).

Sequence context model. We directly computed the probability of a mutation
into an alternative nucleotide, Ha where a∈ {1, 2, 3}, given the reference nucleotide
Hr and its flanking sequence X ¼ ðX50 ;X30 Þ, where X50 and X30 are the 5′ and 3′
flanking sequences, respectively. Here, Hr∈M= {A, C, G, T}, where the latter
denote nucleotides adenine, cytosine, guanine, and thymine, and
Ha 2 M0 ¼ fm 2 M ;m≠Hrg. For example, for the 5-mer GCACG >GCTCG
mutation Hr=A, Ha= T, X50 ¼ ðG;C Þ, X30 ¼ ðC;G Þ and X= (G, C, C, G).
Therefore, the probability of each of the possible k-mer changes, normalized by the
abundance of each reference k-mer in the genome, was computed as follows:

PðHajHr;XÞ ¼
NðHa;Hr;XÞ
GðHr;XÞ

; ð1Þ

where N(Ha, Hr, X) is the genome-wide number of observed mutations into
alternate allele Ha with given reference allele Hr and flanking sequence X. G(Hr, X)
is the abundance of the reference k-mer with reference nucleotide Hr and flanking
sequence X in the genome. We computed the relative abundance of each reference
k-mer in the autosomal genome using the pyFasta package. We also computed
strand-wise signatures restricted to mutations falling in genic regions (exons at the
canonical CDS and the respective introns) for the supplementary analysis in
Supplementary Fig. 3. To compute strand-wise signatures, we polarized mutations
according to the transcription strand on which the canonical CDS is annotated.

For some k-mer models, given limitations imposed by the amount of DNMs, we
used a decomposition approach to compute the probability. For a k-mer model of
sequence length k, let Hr be a reference core h-mer of length h and Ha an alternate
core h-mer, where 1 ≤ h < k. Let the tuple X= (x1, …, xg) with g= (k− h)
elements represent again the flanking sequence of the core h-mer, where xi∈
M ∀i∈ {1,…, g}. In other words, X∈Mg where Mg is the g-fold Cartesian product.
For example, with k= 7, h= 3 and the mutation ACTGACT > ACTCACT, then
Hr= TGA, Ha= TCA and X= (x1=A, x2= C, x3= C, x4= T). We then
approximate the probability P(Ha∣Hr, X) by:

PðHajHr;XÞ � PðHajHrÞ �
Yg
i¼1

PiðHajHr; xiÞ
PðHajHrÞ

; ð2Þ

with

PðHajHrÞ ¼
P

Z2Mg NðHa;Hr;ZÞP
Z2Mg GðHr;ZÞ

; ð3Þ

0

a b

40

20

0

–20

–40

–10

–20

–30

–40
E

xo
ni

c 
m

ut
at

io
ns

 d
iff

er
en

ce
 (

%
)

–50

–60

–70

1 2 3
H3K36me3 exon-to-intron ratio

Colorectal POLE mutants (n = 6)

r = –0.68

P = 6.71 × 10–8

4 5

E
xo

ni
c 

m
ut

at
io

ns
 d

iff
er

en
ce

 (
%

)

1 2 3

H3K36me3 exon-to-intron ratio

Germline cells (n = 3195 trios)

r = –0.03

P = 8.41 × 10–1

4 5

Fig. 4 Deviation in the exonic mutation burden as a function of the H3K36me3 exon-to-intron ratio. Blue dots denote 50 groups of genes binned by their
exon-to-intron ratio of H3K36me3 coverage (x-axis). The relative difference between the total observed and expected number of exonic mutations
(computed using a 3-mer model) per group is shown on the y-axis. The trend line and its confidence interval were added using the seaborn package of
Python, while the correlation coefficient and its significance were computed using the same iteratively re-weighted least-squares approach as used by
Frigola et al.17 to ensure comparability. a POLE-mutant colorectal tumors. The H3K36me3 histone mark is derived from colonic mucosa (E075), reprinted
by permission from Springer Nature Customer Service Centre GmbH: Springer Nature Genetics, Reduced mutation rate in exons due to differential
mismatch repair, Frigola et al.17. b DNMs from healthy probands (a total of 3195 trios). The H3K36me3 histone mark is derived from H1 stem cells (E003).
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and

PiðHajHr; xiÞ ¼
P

Z2Yxi
NðHa;Hr;ZÞP

Z2Yxi
GðHr;ZÞ

; ð4Þ

where

Yxi
¼ ðy1; :::; yj; :::; ygÞ 8j 2 f1; :::; gg if j ¼ i; yj ¼ xi

otherwise ; yj 2 M

(( )
: ð5Þ

We implemented this framework using custom Python code. The composite
likelihood model was applied to the 7-mer analysis of the data pooled across all
cohorts using k= 7 and h= 5. Also in the analysis of the largest single dataset
purely composed of healthy probands29 and the largest single dataset36, in each for
5-mers with k= 5 and h= 3 and for 7-mers with k= 7 and h= 3. The rest of
probabilities were computed using the direct approach. Supplementary Fig. 6
shows the relationship between the exact computations of mutational probabilities
and the composite likelihood model for the pooled dataset.

The number of parameters for the direct approach increases exponentially as k
increases following f(x)= 4x ⋅ 3, where x= k. For the decomposition approach they
increase linearly as k− h increases from a fixed h following g(y, x)= f(x) ⋅ (1+
3(y− x)), where y= k and x= h.

Comparison of sequence context models. We selected the sequence context
dependency model that best explains mutations across our set of exonic and
intronic sequences by means of the AIC. We interrogated each of the 191,361,633
(~6.4% of the whole-genome length) exonic and intronic sites on the 95,633 2001-
nt windows for the state in the observed data: mutated (and type) or not mutated.
For recurrent sites, we chose one observed mutation at random. For a given model,
we computed the log-likelihood as the sum across sites of the logarithm of the
estimated probability of the observed state at the site. Probabilities were estimated
with mutations from the entire dataset, through the direct or the decomposition
approach as stated above.

Internal exon-centered mutational analysis. A total of 95,633 stacked 2001-nt
sequences centered on the middle position of internal meta-exons were used to
compare the observed and expected mutational profiles across exons and introns.
We computed the frequency of mutation at a site l with reference core sequence Hl

r
and flanking sequence Xl as

f l ¼
X3
a¼1

PðHl
ajHl

r ;X
lÞ; l 2 f1; :::; Lg ; ð6Þ

where L= 2001 denotes the total number of considered sites. Then, each frequency
was normalized by the total frequency on the sequence:

f rescl ¼ f lPL
l0¼1 f l0

: ð7Þ
Finally, the total number of observed mutations ns on each of the 2001-nt

sequence s, of a total of S= 95,633 stacked sequences, was redistributed across both
middle exonic and flanking intronic sites according to the normalized frequencies:

n̂ls ¼ f rescl � ns; s 2 f1; :::; Sg ; ð8Þ
thus yielding the expected number of mutations at site l of a given sequence s. By
adding up the values of all the stacked sequences, we obtain the cumulative number
of expected mutations at site l,

n̂l ¼
XS
s¼1

n̂ls : ð9Þ

For the internal exon-centered analysis on synonymous or nonsynonymous
mutations, we separated all possible exonic mutations in middle exon sequences
into two groups: those with synonymous consequence and those with a
consequence ranking higher than synonymous in the Ensembl Variation hierarchy.
Then we computed the expected numbers by only adding frequencies for either
synonymous or nonsynonymous mutations.

Computation of effect size and statistical significance. We performed 1000
random permutations of the observed mutations in each stacked sequence based on
the probability of each site to acquire a mutation. The effect size, defined as the
relative increase or decrease in observed exonic mutations with respect to the
expected number, was computed based on the simulation mean expected value.
The error of this estimate is given as one standard deviation derived from the 1000
permutations. Moreover, we computed an empirical one-sided p value as the
fraction of the simulations with more (or fewer) exonic mutations than the
observed number of exonic mutations.

Composed datasets. Mutations were only resampled from datasets with known
conditions of the probands, either from healthy probands or those with ASD.
Given an ASD prevalence in humans of 1.7%, we created a random sample of
100,000 whole-genome DNMs, taking 98,300 mutations classified as strictly from

healthy probands and 1700 classified as ASD and repeated the internal exon-
centered analysis. To generate the purely healthy and purely ASD cohorts, we used
solely mutations from probands with the respective condition.

Nucleosome and H3K36me3 histone mark data. We downloaded narrow peak
coordinates and genome-wide read-coverage of H3K36me3 from human
embryonic stem cell H1-hESC (E003), as proxy for germline cells, from the Epi-
genome Roadmap consortium43 data portal (http://www.roadmapepigenomics.org/
data). The genome-wide nucleosome positioning density graph of ENCODE44 cell
line GM12878 (lymphoblastoid cell line) was obtained via the UCSC genome
browser (https://hgdownload.soe.ucsc.edu/downloads.html). Nucleosome peak
regions were identified across the genome by using the bwtool program (with
parameters local-extrema -maxima -min-sep= 150). The window of 146 bp
flanking the peak coordinate (73 bp per side) was considered the region covered by
a nucleosome.

Coverage of chromatin features across exons and introns. Exons and introns in
each gene were classified according to their position with respect to the tran-
scription start site, where the ones that occupy different positions in different
transcripts were discarded. We also discarded exons and introns at the lower
quartile of length to compute the coverage for a set of exons or introns of het-
erogeneous lengths in a given position: the fraction of bases covered by H3K36me3
and nucleosomes at the center of the stack corresponding to the window defined by
the shortest exon or intron remaining after the filtering. Finally, the difference
between the exonic and intronic coverage was computed via the two-tailed
Mann–Whitney p value of the comparison of both distributions.

We also computed the positions in the genome covered by H3K36me3 or
nucleosomes across 95,633 internal exon-centered 4001-nt windows. By stacking
sequences, we obtained middle exon-centered profiles of coverage across exons and
introns (Supplementary Fig. 7).

Nucleosome and H3K36me3 binned gene analysis. For each gene, we computed
the readcount-based exonic enrichment of H3K36me3 or nucleosomes as the ratio
between the exonic and intronic total number of bases covered by reads of the
chromatin feature. Genes with no exonic and intronic bases covered by reads were
removed from the analysis, as well as genes without any observed exonic or
intronic mutation. Thus, a total of 7215 and 6529 genes remained for the
H3K36me3 and nucleosome analysis, respectively.

For a given gene, we computed the exonic expected number of mutations as
follows:

n̂e ¼ Pe � n ; ð10Þ
where n is the total number of mutations (both exonic and intronic) observed on
the gene and Pe is the (binomial) probability of a mutation to fall on the exonic
region of the gene, which in turn is computed as:

Pe ¼
Le

Le þ Li
; ð11Þ

with

Le ¼
XLe
le¼1

X3
a¼1

PðHle
a jHle

r ;X
le Þ ; ð12Þ

and

Li ¼
XLi
li¼1

X3
a¼1

PðHli
a jHli

r ;X
li Þ : ð13Þ

Here, le∈ {1,…, Le} and li∈ {1,…, Li} denotes the set of all exonic and intronic
positions of a given gene, respectively. Le and Li represent the exonic and intronic
target size, respectively, expressed as the sum of the probability PðHl

ajHl
r ;X

lÞ of all
possible three mutations that can happen across all exonic or intronic sites of the
gene. The probability was computed under a 3-mer model for each of the genes as
explained above only with mutations from the composed dataset of healthy
probands.

Afterwards, genes were grouped into 50 bins according to their exonic
enrichment of H3K36me3 or nucleosomes. Then, with the observed ne and
expected n̂e exonic mutations over all genes in the bin, we computed the relative
difference between the observed and expected number of exonic mutations per bin
as follows:

Exonic mutations difference ½%� ¼ ne � n̂e
n̂e

� 100 : ð14Þ

Finally, we computed the correlation between the median exonic chromatin
feature enrichment and the difference in exonic mutations across the bins. The
trend line and its confidence intervals were added using the bootstrapping
functions of the python seaborn package, which confers equivalent weights in the
regression to all points. In order to guarantee that the trend is not the result of a
few outliers, the correlation coefficient and its significance were computed using an
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iteratively re-weighted least-squares approach, letting the variance of exonic
chromatin feature enrichment of the bins influence the weight of each point.

Estimation of absolute mutation rates. We estimated absolute mutation rate in
our set of 95,633 middle exons as a proxy of mean exonic mutation rate and
absolute mutation rate on the rest of the 2001-nt window as a proxy of mean
intronic mutation rate as follows:

μ ¼ Nobs

N site � Ngen
: ð15Þ

Here, μ is the mutation rate per site and generation, Nobs is the number of observed
mutations, Nsite is the number of sites (we used Nsite= 13,632,264 exonic sites and
Nsite= 177,729,369 flanking intronic sites) and Ngen is the number of generations.
A total of Ngen= 2582 gametogeneses for the largest dataset with healthy pro-
bands29 and Ngen= 22,474 gametogeneses in the pooled dataset.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the analyses in this study were based on published datasets. Mutation data from the
Genomes of the Netherlands (GoNL) project16 was downloaded from (http://www.
nlgenome.nl). The remaining mutation datasets were either by direct request to the
authors29 or downloaded from the supplementary tables of their respective publications35–
39. Coordinates of unreliable regions42 were obtained from the UCSC Genome Browser,
available at http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability.
Narrow peak coordinates and genome-wide read-coverage of H3K36me3 from human
embryonic stem cell H1-hESC (E003) were downloaded through the Epigenome Roadmap
consortium43 data portal (http://www.roadmapepigenomics.org/data). The genome-wide
nucleosome positioning density graph of ENCODE44 cell line GM12878 (lymphoblastoid
cell line) was obtained via the UCSC genome browser (https://hgdownload.soe.ucsc.edu/
downloads.html).

Code availability
Custom scripts and associated files needed to reproduce all analyses described here are
provided together with the code at https://bitbucket.org/weghornlab/germline_intron_
exon_mutrate. Segments of the code are based on scripts shared by Frigola et al.17 to ensure
comparability of the main analysis.
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